1
|
Presser A, Blaser G, Pferschy-Wenzig EM, Kaiser M, Mäser P, Schuehly W. Pharmacomodulation of the Redox-Active Lead Plasmodione: Synthesis of Substituted 2-Benzylnaphthoquinone Derivatives, Antiplasmodial Activities, and Physicochemical Properties. Int J Mol Sci 2025; 26:2114. [PMID: 40076744 PMCID: PMC11900971 DOI: 10.3390/ijms26052114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Malaria remains a major global health problem that has been exacerbated by the impact of the COVID-19 pandemic on health systems. To combat this, the World Health Organization (WHO) has set a target of driving forward research into innovative treatment methods such as new drugs and vaccines. Quinones, particularly 1,4-naphthoquinones, have been identified as promising candidates for the development of antiprotozoal drugs. Herein, we report several methods for the preparation of 2-benzyl-1,4-naphthoquinones. In particular, the silver-catalyzed Kochi-Anderson radical decarboxylation is well suited for the preparation of these compounds. The antiprotozoal activity of all synthesized compounds was evaluated against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity towards L6 cells was also determined, and the respective selectivity indices (SI) were calculated. The synthesized compounds exhibited good antiplasmodial activity against the P. falciparum (NF54) strain, particularly (2-fluoro-5-trifluoromethylbenzyl)-menadione 2e, which showed strong efficacy and high selectivity (IC50 = 0.006 µM, SI = 7495). In addition, these compounds also displayed favorable physicochemical properties, suggesting that the benzylnaphthoquinone scaffold may be a viable option for new antiplasmodial drugs.
Collapse
Affiliation(s)
- Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria;
| | - Gregor Blaser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria;
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria; (E.-M.P.-W.); (W.S.)
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland or (M.K.); or (P.M.)
- Faculty of Philosophy and Natural Sciences, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland or (M.K.); or (P.M.)
- Faculty of Philosophy and Natural Sciences, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Wolfgang Schuehly
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria; (E.-M.P.-W.); (W.S.)
| |
Collapse
|
2
|
Dewi MK, Muhaimin M, Joni IM, Hermanto F, Chaerunisaa AY. Fabrication of Phytosome with Enhanced Activity of Sonneratia alba: Formulation Modeling and in vivo Antimalarial Study. Int J Nanomedicine 2024; 19:9411-9435. [PMID: 39282578 PMCID: PMC11402348 DOI: 10.2147/ijn.s467811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Sonneratia alba extract exhibits antimalarial activity, mainly due to its secondary metabolites-naphthoquinones, flavonoids, tannins, and saponins-where naphthoquinone is the primary active component. However, its low bioavailability limits its effectiveness. To improve this, a phytosome-based vesicular system was proposed. This study focused on formulating a phytosome with S. alba and developing a predictive model to enhance its antimalarial activity. Methods Phytosomes were produced using antisolvent precipitation and optimized with 3-factor, 3-level Box-behnken model. Particle size, zeta potential, and entrapment efficiency were assessed. The optimized phytosomes were characterized by their physical properties and release profiles. Their antimalarial activity was tested in white BALB/c mice infected with Plasmodium berghei using Peter's 4-day suppressive test. Results The optimal phytosome formulation used a phospholipid-to-extract ratio of 1:3, reflux temperature of 50°C, and a duration of 2.62 hours. The phytosomes had a particle size of 471.8 nm, a zeta potential of -54.1 mV, and an entrapment efficiency (EE) of 82.4%. In contrast, the phytosome-fraction showed a particle size of 233.4 nm, a zeta potential of -61.5 mV, and an EE of 87.08%. TEM analysis confirmed both had a spherical shape. In vitro release rates at 24 hours were 86.2 for the phytosome-extract and 95.9% for the phytosome-fraction, compared to 46.9% and 37.7% for the extract and fraction alone. Overall, the phytosome formulation demonstrated good stability. The actual experimental values closely matched the predicted values from the Box-Behnken model, indicating a high degree of accuracy in the model. Additionally, the phytosomes exhibited significantly greater antimalarial activity than the S. alba extract and fraction alone. Conclusion The findings indicated that the vesicular formulation in phytosomes can enhance the antimalarial activity of S. alba extract and fraction.
Collapse
Affiliation(s)
- Mayang Kusuma Dewi
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
3
|
Viana Dos Santos MB, Braga de Oliveira A, Veras Mourão RH. Brazilian plants with antimalarial activity: A review of the period from 2011 to 2022. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117595. [PMID: 38122914 DOI: 10.1016/j.jep.2023.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria continues to be a serious global public health problem in subtropical and tropical countries of the world. The main drugs used in the treatment of human malaria, quinine and artemisinin, are isolates of medicinal plants, making the use of plants a widespread practice in countries where malaria is endemic. Over the years, due to the increased resistance of the parasite to chloroquine and artemisinin in certain regions, new strategies for combating malaria have been employed, including research with medicinal plants. AIM This review focuses on the scientific production regarding medicinal plants from Brazil whose antimalarial activity was evaluated during the period from 2011 to 2022. 2. METHODOLOGY For this review, four electronic databases were selected for research: Pubmed, ScienceDirect, Scielo and Periódicos CAPES. Searches were made for full texts published in the form of scientific articles written in Portuguese or English and in a digital format. In addition, prospects for new treatments as well as future research that encourages the search for natural products and antimalarial derivatives are also presented. RESULTS A total of 61 publications were encountered, which cited 36 botanical families and 92 species using different Plasmodium strains in in vitro and in vivo assays. The botanical families with the most expressive number of species found were Rubiaceae, Apocynaceae, Fabaceae and Asteraceae (14, 14, 9 and 6 species, respectively), and the most frequently cited species were of the genera Psychotria L. (8) and Aspidosperma Mart. (12), which belong to the families Rubiaceae and Apocynaceae. Altogether, 75 compounds were identified or isolated from 28 different species, 31 of which are alkaloids. In addition, the extracts of the analyzed species, including the isolated compounds, showed a significant reduction of parasitemia in P. falciparum and P. berghei, especially in the clones W2 CQ-R (in vitro) and ANKA (in vivo), respectively. The Brazilian regions with the highest number of species analyzed were those of the north, especially the states of Pará and Amazonas, and the southeast, especially the state of Minas Gerais. CONCLUSION Although many plant species with antimalarial potential have been identified in Brazil, studies of new antimalarial molecules are slow and have not evolved to the production of a phytotherapeutic medicine. Given this, investigations of plants of traditional use and biotechnological approaches are necessary for the discovery of natural antimalarial products that contribute to the treatment of the disease in the country and in other endemic regions.
Collapse
Affiliation(s)
- Maria Beatriz Viana Dos Santos
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil.
| | - Alaíde Braga de Oliveira
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Rosa Helena Veras Mourão
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
| |
Collapse
|
4
|
Navarro-Tovar G, Vega-Rodríguez S, Leyva E, Loredo-Carrillo S, de Loera D, López-López LI. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:ph16040496. [PMID: 37111253 PMCID: PMC10144089 DOI: 10.3390/ph16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Natural product derivatives are essential in searching for compounds with important chemical, biological, and medical applications. Naphthoquinones are secondary metabolites found in plants and are used in traditional medicine to treat diverse human diseases. Considering this, the synthesis of naphthoquinone derivatives has been explored to contain compounds with potential biological activity. It has been reported that the chemical modification of naphthoquinones improves their pharmacological properties by introducing amines, amino acids, furan, pyran, pyrazole, triazole, indole, among other chemical groups. In this systematic review, we summarized the preparation of nitrogen naphthoquinones derivatives and discussed their biological effect associated with redox properties and other mechanisms. Preclinical evaluation of antibacterial and/or antitumoral naphthoquinones derivatives is included because cancer is a worldwide health problem, and there is a lack of effective drugs against multidrug-resistant bacteria. The information presented herein indicates that naphthoquinone derivatives could be considered for further studies to provide drugs efficient in treating cancer and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Gabriela Navarro-Tovar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City 03940, Mexico
| | - Sarai Vega-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Silvia Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Correspondence: (D.d.L.); (L.I.L.-L.)
| | - Lluvia Itzel López-López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78377, Mexico
- Correspondence: (D.d.L.); (L.I.L.-L.)
| |
Collapse
|
5
|
Topçu S, Şeker MG. In Vitro Antimicrobial Effects and Inactivation Mechanisms of 5,8-Dihydroxy-1,4-Napthoquinone. Antibiotics (Basel) 2022; 11:antibiotics11111537. [PMID: 36358192 PMCID: PMC9687054 DOI: 10.3390/antibiotics11111537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Naphthoquinones are an important class of natural organic compounds that have antimicrobial effects. However, the mechanisms of their action remain to be elucidated. Therefore, the antimicrobial activity of the chemically synthesized naphthoquinone derivative, 5,8-dihydroxy-1,4-naphthoquinone, was investigated in this study against 10 different microorganisms. Its inhibitory activity was evident against Bacillus cereus, Proteus vulgaris, Salmonella enteritidis, Staphylococcus epidermidis, S. aureus, and Candida albicans, and its MIC50 values were determined to be 14, 10, 6, 2, 4, 1.2, and <0.6 µg/mL, respectively. Moreover, the crystal violet uptake, TTC dehydrogenase activity, protein/DNA leakage, and DNA damage of the compound in these microorganisms were also investigated to reveal the antimicrobial mechanisms. In addition, scanning electron microscopy was used to detect physiological damage to the cell membrane of S. epidermidis, S. aureus, and C. albicans, which was most severe in the crystal violet uptake assay. The overall results showed that 5,8-dihydroxy-1,4-naphthoquinone exhibited its effects on S. aureus, S. epidermidis, and C. albicans by various mechanisms, especially membrane damage and membrane integrity disruption. It also caused DNA leakage and damage along with respiratory chain disruption (78%) in C. albicans. Similarly, it caused varying degrees of reduction in the respiratory activity of S. aureus (47%), S. epidermidis (16%), B. cereus (12%), S. enteritidis (9%), and P. vulgaris (8%). Therefore, 5,8-dihydroxy-1,4-naphthoquinone proved to be a very effective antifungal and antibacterial agent and could be considered a new potential drug candidate, inspiring further discoveries in these microorganisms.
Collapse
|
6
|
Berg A, Swartchick CB, Forrest N, Chavarria M, Deem MC, Sillin AN, Li Y, Riscoe TM, Nilsen A, Riscoe MK, Wood WJL. 2-hydroxy-1,4-naphthoquinones with 3-alkyldiarylether groups: synthesis and Plasmodium falciparum inhibitory activity. Future Med Chem 2022; 14:1611-1620. [PMID: 36349868 PMCID: PMC9832320 DOI: 10.4155/fmc-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background: In 1948, the synthesis and Plasmodium lophurae activity of 2-hydroxy-1,4-naphthoquinones containing 3-alkyldiarylether side chains was reported. Method/results: The synthesis of five related compounds, designed to be more metabolically stable, was pursued. The compounds were synthesized using a radical alkylation reaction with naphthoquinones. One compound had a lower IC50 value against various strains of Plasmodium falciparum and assay data indicate that it binds to the Qo site of cytochrome bc1. With a low yield for the radical alkylation of the most active compound, a reductive alkylation method with used to improve reaction yields. Conclusion: Further synthetic knowledge was obtained, and the assay data indicate that there are sensitivity differences between avian and human malarial parasites for these molecules.
Collapse
Affiliation(s)
- Amanda Berg
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Chelsea B Swartchick
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Noah Forrest
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Matthew Chavarria
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Madeleine C Deem
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Alyson N Sillin
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| | - Yuexin Li
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Teresa M Riscoe
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Aaron Nilsen
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Michael K Riscoe
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 Sam Jackson Boulevard, Portland, OR 97239, USA
| | - Warren JL Wood
- Department of Chemistry & Biochemistry, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| |
Collapse
|
7
|
Scheiber N, Blaser G, Pferschy-Wenzig EM, Kaiser M, Mäser P, Presser A. Efficient Oxidative Dearomatisations of Substituted Phenols Using Hypervalent Iodine (III) Reagents and Antiprotozoal Evaluation of the Resulting Cyclohexadienones against T. b. rhodesiense and P. falciparum Strain NF54. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196559. [PMID: 36235096 PMCID: PMC9573667 DOI: 10.3390/molecules27196559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Quinones and quinols are secondary metabolites of higher plants that are associated with many biological activities. The oxidative dearomatization of phenols induced by hypervalent iodine(III) reagents has proven to be a very useful synthetic approach for the preparation of these compounds, which are also widely used in organic synthesis and medicinal chemistry. Starting from several substituted phenols and naphthols, a series of cyclohexadienone and naphthoquinone derivatives were synthesized using different hypervalent iodine(III) reagents and evaluated for their in vitro antiprotozoal activity. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. We found that benzyl naphthoquinone 5c was the most active and selective molecule against T. brucei rhodesiense (IC50 = 0.08 μM, SI = 275). Furthermore, the antiprotozoal assays revealed no specific effects. In addition, some key physicochemical parameters of the synthesised compounds were calculated.
Collapse
Affiliation(s)
- Nina Scheiber
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Gregor Blaser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-380-5369
| |
Collapse
|
8
|
Olyaei A, Abediha S, Sadeghpour M, Adl A. An Efficient One‐Pot Pseudo Five‐Component Synthesis of Bis‐heteroarylaminomethylnaphthoquinone Mannich Bases from Lawsone. ChemistrySelect 2022. [DOI: 10.1002/slct.202201650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry Payame Noor University (PNU), PO BOX 19395-4697 Tehran Iran
| | - Shohreh Abediha
- Department of Chemistry Payame Noor University (PNU), PO BOX 19395-4697 Tehran Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry Takestan Branch Islamic Azad University Takestan Iran
| | - Alireza Adl
- Department of Chemistry Payame Noor University (PNU), PO BOX 19395-4697 Tehran Iran
| |
Collapse
|
9
|
|
10
|
Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. COATINGS 2021. [DOI: 10.3390/coatings11040434] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the current era, an ever-emerging threat of multidrug-resistant (MDR) pathogens pose serious health challenges to mankind. Researchers are uninterruptedly putting their efforts to design and develop alternative, innovative strategies to tackle the antibiotic resistance displayed by varied pathogens. Among several naturally derived and chemically synthesized compounds, quinones have achieved a distinct position to defeat microbial pathogens. This review unleashes the structural diversity and promising biological activities of naphthoquinones (NQs) and their derivatives documented in the past two decades. Further, realizing their functional potentialities, researchers were encouraged to approach NQs as lead molecules. We have retrieved information that is dedicated on biological applications (antibacterial, antifungal, antiparasitic) of NQs. The multiple roles of NQs offer them a promising armory to combat microbial pathogens including MDR and the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group. In bacteria, NQs may exhibit their function in the following ways (1) plasmid curing, (2) inhibiting efflux pumps (EPs), (3) generating reactive oxygen species (ROS), (4) the inhibition of topoisomerase activity. Sparse but meticulous literature suggests the mechanistic roles of NQs. We have highlighted the possible mechanisms of NQs and how the targeted drug synthesis can be achieved via molecular docking analysis. This bioinformatics-oriented approach will explicitly lead to the development of effective and most potent drugs against targeted pathogens. The mechanistic approaches of emerging molecules like NQs might prove a milestone to defeat the battle against microbial pathogens.
Collapse
|
11
|
Paengsri W, Promsawan N, Baramee A. Synthesis and Evaluation of 2-Hydroxy-1,4-naphthoquinone Derivatives as Potent Antimalarial Agents. Chem Pharm Bull (Tokyo) 2021; 69:253-257. [PMID: 33431728 DOI: 10.1248/cpb.c20-00770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of 3-substituted-2-hydroxy-1,4-naphthoquinone derivatives with a variety of side chains were successfully synthesized by Mannich reaction of 2-hydroxy-1,4-naphthoquinone (lawsone) with selected amines and aldehydes. All substances (1-16) were evaluated for in-vitro antimalarial activity against strains of Plasmodium falciparum by microculture radioisotope technique. Bioassay data revealed that ten derivatives (1-8, 11 and 13) displayed significantly good activity with values of IC50 ranging from 0.77 to 4.05 µg/mL. The best biological profile (IC50 = 0.77 µg/mL) was observed in compound 1, possessing a n-butyl substituted aminomethyl group. Experimental results support the potential use of our active Mannich components as promising antimalarial agents in the fight against malaria infections and multidrug resistance problems.
Collapse
Affiliation(s)
- Wanthani Paengsri
- Department of Chemistry, Faculty of Science, Chiang Mai Universit.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University
| | | | - Apiwat Baramee
- Department of Chemistry, Faculty of Science, Chiang Mai Universit
| |
Collapse
|
12
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
13
|
Patel OPS, Beteck RM, Legoabe LJ. Antimalarial application of quinones: A recent update. Eur J Med Chem 2020; 210:113084. [PMID: 33333397 DOI: 10.1016/j.ejmech.2020.113084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Atovaquone belongs to a naphthoquinone class of drugs and is used in combination with proguanil (Malarone) for the treatment of acute, uncomplicated malaria caused by Plasmodium falciparum (including chloroquine-resistant P. falciparum/P. vivax). Numerous quinone-derived compounds have attracted considerable attention in the last few decades due to their potential in antimalarial drug discovery. Several semi-synthetic derivatives of natural quinones, synthetic quinones (naphtho-/benzo-quinone, anthraquinones, thiazinoquinones), and quinone-based hybrids were explored for their in vitro and in vivo antimalarial activities. A careful literature survey revealed that this topic has not been compiled as a review article so far. Therefore, we herein summarise the recent discovery (the year 2009-2020) of quinone based antimalarial compounds in chronological order. This compilation would be very useful towards the exploration of novel quinone-derived compounds against malarial parasites with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
14
|
Kalt MM, Schuehly W, Saf R, Ochensberger S, Solnier J, Bucar F, Kaiser M, Presser A. Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents. Eur J Med Chem 2020; 207:112837. [PMID: 33002847 DOI: 10.1016/j.ejmech.2020.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc2 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed.
Collapse
Affiliation(s)
- Marc-Manuel Kalt
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, A-8010, Graz, Austria
| | - Wolfgang Schuehly
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Sandra Ochensberger
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Julia Solnier
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Universitaetsplatz 4, A-8010, Graz, Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| | - Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, A-8010, Graz, Austria.
| |
Collapse
|
15
|
Choudhari D, Salunke-Gawali S, Chakravarty D, Shaikh SR, Lande DN, Gejji SP, Rao PK, Satpute S, Puranik VG, Gonnade R. Synthesis and biological activity of imidazole based 1,4-naphthoquinones. NEW J CHEM 2020. [DOI: 10.1039/c9nj04339j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and development of drugs in multi-drug resistant (MDR) infections have been of growing interest. The syntheses, structural studies, antibacterial and antifungal activities of imidazole-based 1,4-naphthoquinones are studied in this investigation.
Collapse
Affiliation(s)
- Dinkar Choudhari
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | | | - Samir R. Shaikh
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Dipali N. Lande
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Pradeep Kumar Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Surekha Satpute
- Department of Microbiology
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Vedavati G. Puranik
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| | - Rajesh Gonnade
- Centre for Material Characterization
- National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
16
|
Verdaguer IB, Zafra CA, Crispim M, Sussmann RA, Kimura EA, Katzin AM. Prenylquinones in Human Parasitic Protozoa: Biosynthesis, Physiological Functions, and Potential as Chemotherapeutic Targets. Molecules 2019; 24:molecules24203721. [PMID: 31623105 PMCID: PMC6832408 DOI: 10.3390/molecules24203721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Human parasitic protozoa cause a large number of diseases worldwide and, for some of these diseases, there are no effective treatments to date, and drug resistance has been observed. For these reasons, the discovery of new etiological treatments is necessary. In this sense, parasitic metabolic pathways that are absent in vertebrate hosts would be interesting research candidates for the identification of new drug targets. Most likely due to the protozoa variability, uncertain phylogenetic origin, endosymbiotic events, and evolutionary pressure for adaptation to adverse environments, a surprising variety of prenylquinones can be found within these organisms. These compounds are involved in essential metabolic reactions in organisms, for example, prevention of lipoperoxidation, participation in the mitochondrial respiratory chain or as enzymatic cofactors. This review will describe several prenylquinones that have been previously characterized in human pathogenic protozoa. Among all existing prenylquinones, this review is focused on ubiquinone, menaquinone, tocopherols, chlorobiumquinone, and thermoplasmaquinone. This review will also discuss the biosynthesis of prenylquinones, starting from the isoprenic side chains to the aromatic head group precursors. The isoprenic side chain biosynthesis maybe come from mevalonate or non-mevalonate pathways as well as leucine dependent pathways for isoprenoid biosynthesis. Finally, the isoprenic chains elongation and prenylquinone aromatic precursors origins from amino acid degradation or the shikimate pathway is reviewed. The phylogenetic distribution and what is known about the biological functions of these compounds among species will be described, as will the therapeutic strategies associated with prenylquinone metabolism in protozoan parasites.
Collapse
Affiliation(s)
- Ignasi B. Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Camila A. Zafra
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Rodrigo A.C. Sussmann
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro 45810-000 Bahia, Brazil
| | - Emília A. Kimura
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Alejandro M. Katzin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +5511-3091-7417
| |
Collapse
|
17
|
Synthesis and biological evaluation of 2-chloro-3-[(thiazol-2-yl)amino]-1,4-naphthoquinones. Bioorg Med Chem Lett 2019; 29:1572-1575. [DOI: 10.1016/j.bmcl.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
|
18
|
Crystal structures and biological activity of homologated (N)-n-alkylammonium salts of 2-bromo-3-oxido-1,4-naphthoquinone. Struct Chem 2019. [DOI: 10.1007/s11224-019-01343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Azami SJ, Teimouri A, Keshavarz H, Amani A, Esmaeili F, Hasanpour H, Elikaee S, Salehiniya H, Shojaee S. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice. Int J Nanomedicine 2018; 13:7363-7374. [PMID: 30519020 PMCID: PMC6233476 DOI: 10.2147/ijn.s181896] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to prepare curcumin nanoemulsion (CR-NE) to solve the problems associated with poor water solubility and low bioavailability of CR and to test its efficiency in the treatment of acute and chronic toxoplasmosis in mouse models. Materials and methods CR-NE 1% was prepared using spontaneous emulsification by soybean as oil phase; a mixture of Tween 80 and Tween 85 as surfactant; ethanol as cosurfactant and distilled water. Particle size and zeta potential of NE were assessed using Nano-ZS90 dynamic light scattering. Stability testing of NE was assessed after storage for 2 months at room temperature. In vivo experiments were carried out using 50 BALB/c mice inoculated with virulent RH strain (type I) and 50 BALB/c mice inoculated with avirulent Tehran strain (type II) of Toxoplasma gondii and treated with CR-NE (1% w/v), CR suspension (CR-S, 1% w/v), and NE without CR (NE-no CR). Results The mean particle size and zeta potential of CR-NE included 215.66±16.8 nm and −29.46±2.65 mV, respectively, and were stable in particle size after a three freeze–thaw cycle. In acute phase experiment, the survival time of mice infected with RH strain of T. gondii and treated with CR-NE extended from 8 to 10 days postinoculation. The differences were statistically significant between the survival time of mice in CR-NE-treated group compared with negative control group (P<0.001). Furthermore, CR-NE significantly decreased the mean counts of peritoneum tachyzoites from 5,962.5±666 in negative control group to 627.5±73 in CR-NE-treated mice (P<0.001). Growth inhibition rates of tachyzoites in peritoneum of mice receiving CR-NE, CR-S, and NE-no CR included 90%, 21%, and 11%, respectively, compared with negative control group. In chronic phase experiment, the average number and size of tissue cysts significantly decreased to 17.2±15.6 and 31.5±6.26 µm, respectively, in mice inoculated with bradyzoites of T. gondii Tehran strain and treated with CR-NE compared with that in negative control group (P<0.001). Decrease of cyst numbers was verified by downregulation of BAG1 in treatment groups compared with negative control group with a minimum relative expression in CR-NE (1.12±0.28), CR-S (11.76±0.87), and NE-no CR (14.67±0.77), respectively, (P<0.001). Conclusion Results from the current study showed the potential of CR-S and CR-NE in treatment of acute and chronic toxoplasmosis in mouse models for the first time. However, CR-NE was more efficient than CR-S, and it seems that CR-NE has a potential formula for the treatment of acute and chronic toxoplasmosis, especially in those with latent bradyzoites in brain.
Collapse
Affiliation(s)
- Sanaz Jafarpour Azami
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Aref Teimouri
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, .,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Hasanpour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, .,Department of Medical Parasitology and Mycology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Samira Elikaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Hamid Salehiniya
- Department of Public Health, School of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
20
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
21
|
Novais JS, Moreira CS, Silva ACJA, Loureiro RS, Sá Figueiredo AM, Ferreira VF, Castro HC, da Rocha DR. Antibacterial naphthoquinone derivatives targeting resistant strain Gram-negative bacteria in biofilms. Microb Pathog 2018; 118:105-114. [PMID: 29550501 DOI: 10.1016/j.micpath.2018.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
The aims of this study were the planning, synthesis and in vitro evaluation of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against Gram-negative and Gram-positive strains, searching for potential lead compounds against bacterial biofilm formation. A series of 12 new analogs of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones were synthesized by adding a thiol and different substituents to a ο-quinone methide using microwave irradiation. The compounds were tested against Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. simulans ATCC 27851, S. epidermidis ATCC 12228 and a hospital Methicillin-resistant S. aureus (MRSA) strain), as well as Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, P. aeruginosa ATCC 15442, Proteus mirabilis ATCC 15290, Serratia marcescens ATCC 14756, Klebsiella pneumoniae ATCC 4352 and Enterobacter cloacae ATCC 23355) strains, using the disk diffusion method. Ten compounds showed activity mainly against Gram-negative strains with a minimal inhibitory concentration (MIC = 4-64 μg/mL) within the Clinical and Laboratory Standards Institute (CLSI) levels. The biofilm inhibition data showed compounds, 9e, 9f, 9j and 9k, are anti-biofilm molecules when used in sub-MIC concentrations against P. aeruginosa ATCC 15442 strain. Compound (9j) inhibited biofilm formation up to 63.4% with a better profile than ciprofloxacin, which is not able to prevent biofilm formation effectively. The reduction of P. aeruginosa ATCC 15442 mature biofilms was also observed for 9e and 9k. The structure modification applied in the series resulted in 12 new naphthoquinones with antimicrobial activity against Gram-negative bacteria strains (E. coli ATCC 25922, P. aeruginosa ATCC 27853 and ATCC 15442). Four compounds decreased P. aeruginosa biofilm formation effectively.
Collapse
Affiliation(s)
- Juliana S Novais
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Caroline S Moreira
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Ana Carolina J A Silva
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Raquel S Loureiro
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Santa Rosa, 24241-002, Niterói, Rio de Janeiro, Brazil
| | - Helena C Castro
- Universidade Federal Fluminense, PPBI Instituto de Biologia, Departamento de Biologia Celular e Molecular, 24020-150, Niterói, Rio de Janeiro, Brazil.
| | - David R da Rocha
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Biological Evaluation of Two 1,4-Naphthoquinone Derivatives Against a Breast Human Adenocarcinoma Cell Line. CURRENT HEALTH SCIENCES JOURNAL 2017; 43:335-339. [PMID: 30595899 PMCID: PMC6286458 DOI: 10.12865/chsj.43.04.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
ABSTRACT: Two novel 1,4-naphthoquinone derivatives containing salicylic acid and
procaine moieties were synthesized and evaluated for their anticancer activity
in vitro. The antiproliferative effect was assayed against MDA-MB-231 cells, a
human breast adenocarcinoma cell line, using CellTiter-Glo® Luminescent Cell
Viability Assay. Both compounds tested proved a growth inhibition effect on this
cell line in a dose-dependent manner. Our results showed that the compound with
procaine effectively reduces breast cancer MDA-MB-231 cells viability and
proliferation at higher concentration while that with salicylic acid had an
inhibitory effect at lower concentrations and might be tested as an anticancer
agent.
Collapse
|
23
|
Sánchez-Calvo JM, Barbero GR, Guerrero-Vásquez G, Durán AG, Macías M, Rodríguez-Iglesias MA, Molinillo JMG, Macías FA. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1550-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Aneja B, Kumar B, Jairajpuri MA, Abid M. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra19673f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article provides a comprehensive review of inhibitors from natural, semisynthetic or synthetic sources against key targets ofPlasmodium falciparum.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Bhumika Kumar
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| | - Mohammad Abid
- Medicinal Chemistry Lab
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi 110025
- India
| |
Collapse
|
25
|
Kim EE, Onyango EO, Fu L, Gribble GW. Synthesis of a monofluoro 3-alkyl-2-hydroxy-1,4-naphthoquinone: a potential anti-malarial drug. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Abstract
Lawsone has been used as the starting material for the synthesis of a variety of biologically active compounds and materials.
Collapse
Affiliation(s)
- Alessandro K. Jordão
- Universidade Federal Fluminense
- Institute of Chemistry
- Niterói
- Brazil
- Unidade Universitária de Farmácia
| | - Maria D. Vargas
- Universidade Federal Fluminense
- Institute of Chemistry
- Niterói
- Brazil
| | - Angelo C. Pinto
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | | | |
Collapse
|
27
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
28
|
Moreira DRM, de Sá MS, Macedo TS, Menezes MN, Reys JRM, Santana AEG, Silva TL, Maia GLA, Barbosa-Filho JM, Camara CA, da Silva TMS, da Silva KN, Guimaraes ET, dos Santos RR, Goulart MOF, Soares MBP. Evaluation of naphthoquinones identified the acetylated isolapachol as a potent and selective antiplasmodium agent. J Enzyme Inhib Med Chem 2014; 30:615-21. [DOI: 10.3109/14756366.2014.958083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat Commun 2014; 5:4029. [DOI: 10.1038/ncomms5029] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 05/02/2014] [Indexed: 11/08/2022] Open
|
30
|
Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era. Future Med Chem 2014; 5:1573-91. [PMID: 24024949 DOI: 10.4155/fmc.13.121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite intense efforts, there has not been a truly new antimalarial, possessing a novel mechanism of action, registered for over 10 years. By virtue of a novel mode of action, it is hoped that the global challenge of multidrug-resistant parasites can be overcome, as well as developing drugs that possess prophylaxis and/or transmission-blocking properties, towards an elimination agenda. Many target-based and whole-cell screening drug development programs have been undertaken in recent years and here an overview of specific projects that have focused on targeting the parasite's mitochondrial electron transport chain is presented. Medicinal chemistry activity has largely focused on inhibitors of the parasite cytochrome bc1 Complex (Complex III) including acridinediones, pyridones and quinolone aryl esters, as well as inhibitors of dihydroorotate dehydrogenase that includes triazolopyrimidines and benzimidazoles. Common barriers to progress and opportunities for novel chemistry and potential additional electron transport chain targets are discussed in the context of the target candidate profiles for uncomplicated malaria.
Collapse
|
31
|
Reconstructing the Qo site of Plasmodium falciparum bc 1 complex in the yeast enzyme. PLoS One 2013; 8:e71726. [PMID: 23951230 PMCID: PMC3741170 DOI: 10.1371/journal.pone.0071726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials.
Collapse
|
32
|
Schuck DC, Ferreira SB, Cruz LN, da Rocha DR, Moraes MS, Nakabashi M, Rosenthal PJ, Ferreira VF, Garcia CRS. Biological evaluation of hydroxynaphthoquinones as anti-malarials. Malar J 2013; 12:234. [PMID: 23841934 PMCID: PMC3726445 DOI: 10.1186/1475-2875-12-234] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hydroxynaphthoquinones have been extensively investigated over the past 50 years for their anti-malarial activity. One member of this class, atovaquone, is combined with proguanil in Malarone®, an important drug for the treatment and prevention of malaria. METHODS Anti-malarial activity was assessed in vitro for a series of 3-alkyl-2-hydroxy-1,4-naphthoquinones (N1-N5) evaluating the parasitaemia after 48 hours of incubation. Potential cytotoxicity in HEK293T cells was assessed using the MTT assay. Changes in mitochondrial membrane potential of Plasmodium were measured using the fluorescent dye Mitrotracker Red CMXROS. RESULTS Four compounds demonstrated IC50s in the mid-micromolar range, and the most active compound, N3, had an IC50 of 443 nM. N3 disrupted mitochondrial membrane potential, and after 1 hour presented an IC50ΔΨmit of 16 μM. In an in vitro cytotoxicity assay using HEK 293T cells N3 demonstrated no cytotoxicity at concentrations up to 16 μM. CONCLUSIONS N3 was a potent inhibitor of mitochondrial electron transport, had nanomolar activity against cultured Plasmodium falciparum and showed minimal cytotoxicity. N3 may serve as a starting point for the design of new hydroxynaphthoquinone anti-malarials.
Collapse
Affiliation(s)
- Desiree C Schuck
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Sabrina B Ferreira
- Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
- Departamento de Química Orgânica, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil
| | - Laura N Cruz
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - David R da Rocha
- Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Myna Nakabashi
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Vitor F Ferreira
- Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Celia RS Garcia
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Universidade de São Paulo, Instituto de Biociências, Rua do Matão, travessa 14, n.321 Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
33
|
Kim JH, Campbell BC, Chan KL, Mahoney N, Haff RP. Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid. Molecules 2013; 18:1564-81. [PMID: 23353126 PMCID: PMC6269749 DOI: 10.3390/molecules18021564] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 11/17/2022] Open
Abstract
Co-application of certain types of compounds to conventional antimicrobial drugs can enhance the efficacy of the drugs through a process termed chemosensitization. We show that kojic acid (KA), a natural pyrone, is a potent chemosensitizing agent of complex III inhibitors disrupting the mitochondrial respiratory chain in fungi. Addition of KA greatly lowered the minimum inhibitory concentrations of complex III inhibitors tested against certain filamentous fungi. Efficacy of KA synergism in decreasing order was pyraclostrobin > kresoxim-methyl > antimycin A. KA was also found to be a chemosensitizer of cells to hydrogen peroxide (H2O2), tested as a mimic of reactive oxygen species involved in host defense during infection, against several human fungal pathogens and Penicillium strains infecting crops. In comparison, KA-mediated chemosensitization to complex III inhibitors/H2O2 was undetectable in other types of fungi, including Aspergillus flavus, A. parasiticus, and P. griseofulvum, among others. Of note, KA was found to function as an antioxidant, but not as an antifungal chemosensitizer in yeasts. In summary, KA could serve as an antifungal chemosensitizer to complex III inhibitors or H2O2 against selected human pathogens or Penicillium species. KA-mediated chemosensitization to H2O2 seemed specific for filamentous fungi. Thus, results indicate strain- and/or drug-specificity exist during KA chemosensitization.
Collapse
Affiliation(s)
- Jong H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA.
| | | | | | | | | |
Collapse
|
34
|
Bustamante FL, Silva MM, Alves WA, Pinheiro CB, Resende JA, Lanznaster M. Isomerism and nuclearity control in bis(lawsonato)zinc(II) complexes. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Chew WK, Segarra I, Ambu S, Mak JW. Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother 2012; 56:1762-1768. [PMID: 22271863 PMCID: PMC3318357 DOI: 10.1128/aac.05183-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/09/2012] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC(0-∞)) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC(0-∞) values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment.
Collapse
Affiliation(s)
- Wai Kit Chew
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ignacio Segarra
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Stephen Ambu
- Department of Pathology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Joon Wah Mak
- School of Post graduate studies and Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Fisher N, Abd Majid R, Antoine T, Al-Helal M, Warman AJ, Johnson DJ, Lawrenson AS, Ranson H, O'Neill PM, Ward SA, Biagini GA. Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression. J Biol Chem 2012; 287:9731-9741. [PMID: 22282497 PMCID: PMC3322985 DOI: 10.1074/jbc.m111.324319] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/26/2012] [Indexed: 11/24/2022] Open
Abstract
Atovaquone is an anti-malarial drug used in combination with proguanil (e.g. Malarone(TM)) for the curative and prophylactic treatment of malaria. Atovaquone, a 2-hydroxynaphthoquinone, is a competitive inhibitor of the quinol oxidation (Q(o)) site of the mitochondrial cytochrome bc(1) complex. Inhibition of this enzyme results in the collapse of the mitochondrial membrane potential, disruption of pyrimidine biosynthesis, and subsequent parasite death. Resistance to atovaquone in the field is associated with point mutations in the Q(o) pocket of cytochrome b, most notably near the conserved Pro(260)-Glu(261)-Trp(262)-Tyr(263) (PEWY) region in the ef loop). The effect of this mutation has been extensively studied in model organisms but hitherto not in the parasite itself. Here, we have performed a molecular and biochemical characterization of an atovaquone-resistant field isolate, TM902CB. Molecular analysis of this strain reveals the presence of the Y268S mutation in cytochrome b. The Y268S mutation is shown to confer a 270-fold shift of the inhibitory constant (K(i)) for atovaquone with a concomitant reduction in the V(max) of the bc(1) complex of ∼40% and a 3-fold increase in the observed K(m) for decylubiquinol. Western blotting analyses reveal a reduced iron-sulfur protein content in Y268S bc(1) suggestive of a weakened interaction between this subunit and cytochrome b. Gene expression analysis of the TM902CB strain reveals higher levels of expression, compared with the 3D7 (atovaquone-sensitive) control strain in bc(1) and cytochrome c oxidase genes. It is hypothesized that the observed differential expression of these and other key genes offsets the fitness cost resulting from reduced bc(1) activity.
Collapse
Affiliation(s)
- Nicholas Fisher
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and
| | - Roslaini Abd Majid
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and
| | - Thomas Antoine
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and
| | - Mohammed Al-Helal
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and
| | - Ashley J Warman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and
| | - David J Johnson
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and
| | | | - Hilary Ranson
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and.
| | - Giancarlo A Biagini
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom and.
| |
Collapse
|
37
|
Rodrigues T, Prudêncio M, Moreira R, Mota MM, Lopes F. Targeting the liver stage of malaria parasites: a yet unmet goal. J Med Chem 2011; 55:995-1012. [PMID: 22122518 DOI: 10.1021/jm201095h] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiago Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-019 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
38
|
Mitochondria and Trypanosomatids: Targets and Drugs. Pharm Res 2011; 28:2758-70. [DOI: 10.1007/s11095-011-0586-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/07/2011] [Indexed: 01/20/2023]
|