1
|
Davies H, Belda H, Broncel M, Dalimot J, Treeck M. PerTurboID, a targeted in situ method reveals the impact of kinase deletion on its local protein environment in the cytoadhesion complex of malaria-causing parasites. eLife 2023; 12:e86367. [PMID: 37737226 PMCID: PMC10564455 DOI: 10.7554/elife.86367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the Plasmodium falciparum-exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria-causing parasite, PfEMP1. We generated independent TurboID fusions of two proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jill Dalimot
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Cell Biology of Host-Pathogen Interaction Laboratory, Gulbenkian Institute of ScienceOeirasPortugal
| |
Collapse
|
2
|
Ibrahim A, Manko E, Dombrowski JG, Campos M, Benavente ED, Nolder D, Sutherland CJ, Nosten F, Fernandez D, Vélez-Tobón G, Castaño AT, Aguiar ACC, Pereira DB, da Silva Santos S, Suarez-Mutis M, Di Santi SM, Regina de Souza Baptista A, Dantas Machado RL, Marinho CR, Clark TG, Campino S. Population-based genomic study of Plasmodium vivax malaria in seven Brazilian states and across South America. LANCET REGIONAL HEALTH. AMERICAS 2023; 18:100420. [PMID: 36844008 PMCID: PMC9950661 DOI: 10.1016/j.lana.2022.100420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Abstract
Background Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).
Collapse
Affiliation(s)
- Amy Ibrahim
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Jamille G. Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Mónica Campos
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Colin J. Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak,
Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of
Clinical Medicine Research Building, University of Oxford Old Road Campus,
Oxford, UK
| | - Diana Fernandez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | | | | | | | - Simone da Silva Santos
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | - Martha Suarez-Mutis
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Claudio R.F. Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Taane G. Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Faculty of Epidemiology & Population Health, London School of Hygiene
& Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| |
Collapse
|
3
|
Zhang H, Guo J, Li H, Guan Y. Machine learning for artemisinin resistance in malaria treatment across in vivo-in vitro platforms. iScience 2022; 25:103910. [PMID: 35243261 PMCID: PMC8873607 DOI: 10.1016/j.isci.2022.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Drug resistance has been rapidly evolving with regard to the first-line malaria treatment, artemisinin-based combination therapies. It has been an open question whether predictive models for this drug resistance status can be generalized across in vivo-in vitro transcriptomic measurements. In this study, we present a model that predicts artemisinin treatment resistance developed with transcriptomic information of Plasmodium falciparum. We demonstrated the robustness of this model across in vivo clearance rate and in vitro IC50 measurement and based on different microarray and data processing modalities. The validity of the algorithm is further supported by its first placement in the DREAM Malaria challenge. We identified transcription biomarkers to artemisinin treatment resistance that can predict artemisinin resistance and are conserved in their expression modules. This is a critical step in the research of malaria treatment, as it demonstrated the potential of a platform-robust, personalized model for artemisinin resistance using molecular biomarkers.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jiantao Guo
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
5
|
Ajibola O, Diop MF, Ghansah A, Amenga-Etego L, Golassa L, Apinjoh T, Randrianarivelojosia M, Maiga-Ascofare O, Yavo W, Bouyou-Akotet M, Oyebola KM, Andagalu B, D'Alessandro U, Ishengoma D, Djimde AA, Kamau E, Amambua-Ngwa A. In silico characterisation of putative Plasmodium falciparum vaccine candidates in African malaria populations. Sci Rep 2021; 11:16215. [PMID: 34376744 PMCID: PMC8355234 DOI: 10.1038/s41598-021-95442-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
Genetic diversity of surface exposed and stage specific Plasmodium falciparum immunogenic proteins pose a major roadblock to developing an effective malaria vaccine with broad and long-lasting immunity. We conducted a prospective genetic analysis of candidate antigens (msp1, ama1, rh5, eba175, glurp, celtos, csp, lsa3, Pfsea, trap, conserved chrom3, hyp9, hyp10, phistb, surfin8.2, and surfin14.1) for malaria vaccine development on 2375 P. falciparum sequences from 16 African countries. We described signatures of balancing selection inferred from positive values of Tajima's D for all antigens across all populations except for glurp. This could be as a result of immune selection on these antigens as positive Tajima's D values mapped to regions with putative immune epitopes. A less diverse phistb antigen was characterised with a transmembrane domain, glycophosphatidyl anchors between the N and C- terminals, and surface epitopes that could be targets of immune recognition. This study demonstrates the value of population genetic and immunoinformatic analysis for identifying and characterising new putative vaccine candidates towards improving strain transcending immunity, and vaccine efficacy across all endemic populations.
Collapse
Affiliation(s)
- O Ajibola
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- First Technical University, Ibadan, Nigeria
| | - M F Diop
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - A Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - L Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - L Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - T Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | | - O Maiga-Ascofare
- Bernhard Nocht Institute for Topical Medicine (BNITM), Hamburg, Germany
| | - W Yavo
- Unite Des Sciences Pharmaceutiques et Biologiques, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - M Bouyou-Akotet
- Faculty of Medicine, University of Health Sciences, Libreville, Gabon
| | - K M Oyebola
- Department of Zoology, University of Lagos, Lagos, Nigeria
| | - B Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | - U D'Alessandro
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - D Ishengoma
- National Institute for Medical Research (NIMR), Tanga, Tanzania
| | - A A Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - E Kamau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| | - A Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
6
|
Jonsdottir TK, Counihan NA, Modak JK, Kouskousis B, Sanders PR, Gabriela M, Bullen HE, Crabb BS, de Koning-Ward TF, Gilson PR. Characterisation of complexes formed by parasite proteins exported into the host cell compartment of Plasmodium falciparum infected red blood cells. Cell Microbiol 2021; 23:e13332. [PMID: 33774908 PMCID: PMC8365696 DOI: 10.1111/cmi.13332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
During its intraerythrocytic life cycle, the human malaria parasite Plasmodium falciparum supplements its nutritional requirements by scavenging substrates from the plasma through the new permeability pathways (NPPs) installed in the red blood cell (RBC) membrane. Parasite proteins of the RhopH complex: CLAG3, RhopH2, RhopH3, have been implicated in NPP activity. Here, we studied 13 exported proteins previously hypothesised to interact with RhopH2, to study their potential contribution to the function of NPPs. NPP activity assays revealed that the 13 proteins do not appear to be individually important for NPP function, as conditional knockdown of these proteins had no effect on sorbitol uptake. Intriguingly, reciprocal immunoprecipitation assays showed that five of the 13 proteins interact with all members of the RhopH complex, with PF3D7_1401200 showing the strongest association. Mass spectrometry‐based proteomics further identified new protein complexes; a cytoskeletal complex and a Maurer's clefts/J‐dot complex, which overall helps clarify protein–protein interactions within the infected RBC (iRBC) and is suggestive of the potential trafficking route of the RhopH complex itself to the RBC membrane.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | | | - Joyanta K Modak
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Betty Kouskousis
- Burnet Institute, Melbourne, Australia.,Monash Micro-imaging, Monash University, Melbourne, Australia
| | | | - Mikha Gabriela
- Burnet Institute, Melbourne, Australia.,School of Medicine, Deakin University, Waurn Ponds, Australia
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
7
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
8
|
Yang B, Wang X, Jiang N, Sang X, Feng Y, Chen R, Wang X, Chen Q. Interaction Analysis of a Plasmodium falciparum PHISTa-like Protein and PfEMP1 Proteins. Front Microbiol 2020; 11:611190. [PMID: 33281807 PMCID: PMC7691434 DOI: 10.3389/fmicb.2020.611190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum extensively remodels host cells by translocating numerous proteins into the cytoplasm of red blood cells (RBCs) after invasion. Among these exported proteins, members of the Plasmodium helical interspersed subtelomeric (PHIST) family are crucial for host cell remodeling and host-parasite interactions, and thereby contribute to malaria pathogenesis. Herein, we explored the function of PF3D7_1372300, a member of the PHIST/PHISTa-like subfamily. PF3D7_1372300 was highly transcribed and expressed during the blood stage of P. falciparum, and distributed throughout RBCs, but most abundant at the erythrocyte membrane. Specific interaction of PF3D7_1372300 with the cytoplasmic tail of P. falciparum erythrocyte membrane protein 1 (PfEMP1) was revealed by immunofluorescence assay, in vitro intermolecular interaction assays. The interaction sites of PF3D7_1372300 with PfEMP1 ATS domain were found involved more than 30 amino acids (aa) at several positions. The findings deepen our understanding of host-parasite interactions and malaria pathogenesis.
Collapse
Affiliation(s)
- Baoling Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,College of Food Science and Technology, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaofeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
9
|
Mutisya JM, Mobegi VA, Kinyua JK, Kivecu MN, Okoth RO, Chemwor GC, Mwakio EW, Cheruiyot AC, Yeda RA, Okello CO, Juma JA, Opot BH, Juma DW, Roth AL, Akala HM, Andagalu BM. Characterization of sulfated polysaccharide activity against virulent Plasmodium falciparum PHISTb/RLP1 protein. F1000Res 2020; 9:1268. [PMID: 35600144 PMCID: PMC9096147 DOI: 10.12688/f1000research.26756.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The emergence of artemisinin resistance in South East Asia calls for urgent discovery of new drug compounds that have antiplasmodial activity. Unlike the classical compound screening drug discovery methods, the rational approach involving targeted drug discovery is less cumbersome and therefore key for innovation of new antiplasmodial compounds. Plasmodium falciparum (Pf) utilizes the process of host erythrocyte remodeling using Plasmodium-helical interspersed sub-telomeric domain (PHIST) containing proteins, which are amenable drug targets. The aim of this study is to identify inhibitors of PHIST from sulfated polysaccharides as new antimalarials. Methods: 251 samples from an ongoing study of epidemiology of malaria and drug resistance sensitivity patterns in Kenya were sequenced for PHISTb/RLP1 gene using Sanger sequencing. The sequenced reads were mapped to the reference Pf3D7 protein sequence of PHISTb/RLP1 using CLC Main Workbench. Homology modeling of both reference and mutant protein structures was achieved using the LOMETs tool. The models were refined using ModRefiner for energy minimization. Ramachandran plot was generated by ProCheck to assess the conformation of amino acids in the protein model. Protein binding sites predictions were assessed using FT SITE software. We searched for prospective antimalarials from PubChem. Docking experiments were achieved using AutoDock Vina and analysis results visualized in PyMOL. Results: Sanger sequencing generated 86 complete sequences. Upon mapping of the sequences to the reference, 12 non-synonymous single nucleotide polymorphisms were considered for mutant protein structure analysis. Eleven drug compounds with antiplasmodial activity were identified. Both modeled PHISTb/RLP1 reference and mutant structures had a Ramachandran score of >90% of the amino acids in the favored region. Ten of the drug compounds interacted with amino acid residues in PHISTb and RESA domains, showing potential activity against these proteins. Conclusion: This research identifies inhibitors of exported proteins that can be used in in vitro tests against the Plasmodium parasite.
Collapse
Affiliation(s)
- Jennifer M. Mutisya
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Johnson K. Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Martha N. Kivecu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Redempta A. Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Charles O. Okello
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Dennis W. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Amanda L. Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Hosea M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Ben M. Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| |
Collapse
|
10
|
Mutisya JM, Mobegi VA, Kinyua JK, Kivecu MN, Okoth RO, Chemwor GC, Mwakio EW, Cheruiyot AC, Yeda RA, Okello CO, Juma JA, Opot BH, Juma DW, Roth AL, Akala HM, Andagalu BM. Characterization of sulfated polysaccharide activity against virulent Plasmodium falciparum PHISTb/RLP1 protein. F1000Res 2020; 9:1268. [PMID: 35600144 PMCID: PMC9096147 DOI: 10.12688/f1000research.26756.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 05/14/2024] Open
Abstract
Background: The emergence of artemisinin resistance in South East Asia calls for urgent discovery of new drug compounds that have antiplasmodial activity. Unlike the classical compound screening drug discovery methods, the rational approach involving targeted drug discovery is less cumbersome and therefore key for innovation of new antiplasmodial compounds. Plasmodium falciparum (Pf) utilizes the process of host erythrocyte remodeling using Plasmodium-helical interspersed sub-telomeric domain (PHIST) containing proteins, which are amenable drug targets. The aim of this study is to identify inhibitors of PHIST from sulfated polysaccharides as new antimalarials. Methods: 251 samples from an ongoing study of epidemiology of malaria and drug resistance sensitivity patterns in Kenya were sequenced for PHISTb/RLP1 gene using Sanger sequencing. The sequenced reads were mapped to the reference Pf3D7 protein sequence of PHISTb/RLP1 using CLC Main Workbench. Homology modeling of both reference and mutant protein structures was achieved using the LOMETs tool. The models were refined using ModRefiner for energy minimization. Ramachandran plot was generated by ProCheck to assess the conformation of amino acids in the protein model. Protein binding sites predictions were assessed using FT SITE software. We searched for prospective antimalarials from PubChem. Docking experiments were achieved using AutoDock Vina and analysis results visualized in PyMOL. Results: Sanger sequencing generated 86 complete sequences. Upon mapping of the sequences to the reference, 12 non-synonymous single nucleotide polymorphisms were considered for mutant protein structure analysis. Eleven drug compounds with antiplasmodial activity were identified. Both modelled PHISTb/RLP1 reference and mutant structures had a Ramachandran score of >90% of the amino acids in the favored region. Ten of the drug compounds interacted with amino acid residues in PHISTb and RESA domains, showing potential activity against these proteins. Conclusion: These interactions provide lead compounds for new anti-malarial molecules. Further in vivo testing is recommended.
Collapse
Affiliation(s)
- Jennifer M. Mutisya
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Johnson K. Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Martha N. Kivecu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Redempta A. Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Charles O. Okello
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Dennis W. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Amanda L. Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Hosea M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Ben M. Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| |
Collapse
|
11
|
Investigating a Plasmodium falciparum erythrocyte invasion phenotype switch at the whole transcriptome level. Sci Rep 2020; 10:245. [PMID: 31937828 PMCID: PMC6959351 DOI: 10.1038/s41598-019-56386-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
The central role that erythrocyte invasion plays in Plasmodium falciparum survival and reproduction makes this process an attractive target for therapeutic or vaccine development. However, multiple invasion-related genes with complementary and overlapping functions afford the parasite the plasticity to vary ligands used for invasion, leading to phenotypic variation and immune evasion. Overcoming the challenge posed by redundant ligands requires a deeper understanding of conditions that select for variant phenotypes and the molecular mediators. While host factors including receptor heterogeneity and acquired immune responses may drive parasite phenotypic variation, we have previously shown that host-independent changes in invasion phenotype can be achieved by continuous culturing of the W2mef and Dd2 P. falciparum strains in moving suspension as opposed to static conditions. Here, we have used a highly biologically replicated whole transcriptome sequencing approach to identify the molecular signatures of variation associated with the phenotype switch. The data show increased expression of particular invasion-related genes in switched parasites, as well as a large number of genes encoding proteins that are either exported or form part of the export machinery. The genes with most markedly increased expression included members of the erythrocyte binding antigens (EBA), reticulocyte binding homologues (RH), surface associated interspersed proteins (SURFIN), exported protein family 1 (EPF1) and Plasmodium Helical Interspersed Sub-Telomeric (PHIST) gene families. The data indicate changes in expression of a repertoire of genes not previously associated with erythrocyte invasion phenotypes, suggesting the possibility that moving suspension culture may also select for other traits.
Collapse
|
12
|
Warncke JD, Passecker A, Kipfer E, Brand F, Pérez-Martínez L, Proellochs NI, Kooij TWA, Butter F, Voss TS, Beck HP. The PHIST protein GEXP02 targets the host cytoskeleton during sexual development of Plasmodium falciparum. Cell Microbiol 2019; 22:e13123. [PMID: 31652487 DOI: 10.1111/cmi.13123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/27/2022]
Abstract
A hallmark of the biology of Plasmodium falciparum blood stage parasites is their extensive host cell remodelling, facilitated by parasite proteins that are exported into the erythrocyte. Although this area has received extensive attention, only a few exported parasite proteins have been analysed in detail, and much of this remodelling process remains unknown, particularly for gametocyte development. Recent advances to induce high rates of sexual commitment enable the production of large numbers of gametocytes. We used this approach to study the Plasmodium helical interspersed subtelomeric (PHIST) protein GEXP02, which is expressed during sexual development. We show by immunofluorescence that GEXP02 is exported to the gametocyte-infected host cell periphery. Co-immunoprecipitation revealed potential interactions between GEXP02 and components of the erythrocyte cytoskeleton as well as other exported parasite proteins. This indicates that GEXP02 targets the erythrocyte cytoskeleton and is likely involved in its remodelling. GEXP02 knock-out parasites show no obvious phenotype during gametocyte maturation, transmission through mosquitoes, and hepatocyte infection, suggesting auxiliary or redundant functions for this protein. In summary, we performed a detailed cellular and biochemical analysis of a sexual stage-specific exported parasite protein using a novel experimental approach that is broadly applicable to study the biology of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Jan D Warncke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Enja Kipfer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Françoise Brand
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lara Pérez-Martínez
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Nicholas I Proellochs
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Taco W A Kooij
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Falk Butter
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum. Microbiol Mol Biol Rev 2019; 83:83/4/e00013-19. [PMID: 31484690 DOI: 10.1128/mmbr.00013-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asexual intraerythrocytic development of Plasmodium falciparum, causing the most severe form of human malaria, is marked by extensive host cell remodeling. Throughout the processes of invasion, intracellular development, and egress, the erythrocyte membrane skeleton is remodeled by the parasite as required for each specific developmental stage. The remodeling is facilitated by a plethora of exported parasite proteins, and the erythrocyte membrane skeleton is the interface of most of the observed interactions between the parasite and host cell proteins. Host cell remodeling has been extensively described and there is a vast body of information on protein export or the description of parasite-induced structures such as Maurer's clefts or knobs on the host cell surface. Here we specifically review the molecular level of each host cell-remodeling step at each stage of the intraerythrocytic development of P. falciparum We describe key events, such as invasion, knob formation, and egress, and identify the interactions between exported parasite proteins and the host cell cytoskeleton. We discuss each remodeling step with respect to time and specific requirement of the developing parasite to explain host cell remodeling in a stage-specific manner. Thus, we highlight the interaction with the host membrane skeleton as a key event in parasite survival.
Collapse
|
14
|
Kumar V, Behl A, Sharma R, Sharma A, Hora R. Plasmodium helical interspersed subtelomeric family-an enigmatic piece of the Plasmodium biology puzzle. Parasitol Res 2019; 118:2753-2766. [PMID: 31418110 DOI: 10.1007/s00436-019-06420-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum (Pf) refurbishes the infected erythrocytes by exporting a myriad of parasite proteins to the host cell. A novel exported protein family 'Plasmodium Helical Interspersed Subtelomeric' (PHIST) has gained attention for its significant roles in parasite biology. Here, we have collected and analysed available information on PHIST members to enhance understanding of their functions, varied localization and structure-function correlation. Functional diversity of PHIST proteins is highlighted by their involvement in PfEMP1 (Pf erythrocyte membrane protein 1) expression, trafficking and switching. This family also contributes to cytoadherence, gametocytogenesis, host cell modification and generation of extracellular vesicles. While the PHIST domain forms the hallmark of this family, existence and functions of additional domains (LyMP, TIGR01639) and the MEC motif underscores its diversity further. Since specific PHIST proteins seem to form pairs with PfEMP1 members, we have used in silico tools to predict such potential partners in Pf. This information and our analysis of structural data on a PHIST member provide important insights into their functioning. This review overall enables readers to view the PHIST family comprehensively, while highlighting key knowledge gaps in the field.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ankita Behl
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rachana Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aanchal Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
15
|
Dantzler KW, Ma S, Ngotho P, Stone WJR, Tao D, Rijpma S, De Niz M, Nilsson Bark SK, Jore MM, Raaijmakers TK, Early AM, Ubaida-Mohien C, Lemgruber L, Campo JJ, Teng AA, Le TQ, Walker CL, Hermand P, Deterre P, Davies DH, Felgner P, Morlais I, Wirth DF, Neafsey DE, Dinglasan RR, Laufer M, Huttenhower C, Seydel K, Taylor T, Bousema T, Marti M. Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Sci Transl Med 2019; 11:eaav3963. [PMID: 31167926 PMCID: PMC6653583 DOI: 10.1126/scitranslmed.aav3963] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
The recent decline in global malaria burden has stimulated efforts toward Plasmodium falciparum elimination. Understanding the biology of malaria transmission stages may provide opportunities to reduce or prevent onward transmission to mosquitoes. Immature P. falciparum transmission stages, termed stages I to IV gametocytes, sequester in human bone marrow before release into the circulation as mature stage V gametocytes. This process likely involves interactions between host receptors and potentially immunogenic adhesins on the infected red blood cell (iRBC) surface. Here, we developed a flow cytometry assay to examine immune recognition of live gametocytes of different developmental stages by naturally exposed Malawians. We identified strong antibody recognition of the earliest immature gametocyte-iRBCs (giRBCs) but not mature stage V giRBCs. Candidate surface antigens (n = 30), most of them shared between asexual- and gametocyte-iRBCs, were identified by mass spectrometry and mouse immunizations, as well as correlations between responses by protein microarray and flow cytometry. Naturally acquired responses to a subset of candidate antigens were associated with reduced asexual and gametocyte density, and plasma samples from malaria-infected individuals were able to induce immune clearance of giRBCs in vitro. Infected RBC surface expression of select candidate antigens was validated using specific antibodies, and genetic analysis revealed a subset with minimal variation across strains. Our data demonstrate that humoral immune responses to immature giRBCs and shared iRBC antigens are naturally acquired after malaria exposure. These humoral immune responses may have consequences for malaria transmission potential by clearing developing gametocytes, which could be leveraged for malaria intervention.
Collapse
Affiliation(s)
- Kathleen W Dantzler
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Siyuan Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Priscilla Ngotho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Will J R Stone
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sanna Rijpma
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Sandra K Nilsson Bark
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthijs M Jore
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | - Tonke K Raaijmakers
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands
| | | | | | - Leandro Lemgruber
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Patricia Hermand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - Philippe Deterre
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - D Huw Davies
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Phil Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA, USA
| | - Isabelle Morlais
- UMR MIVEGEC UM1-CNRS 5290-IRD 224, Institut de Recherche pour le Développement, Montpellier Cedex, France
| | - Dyann F Wirth
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Emerging Pathogens Institute, Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Miriam Laufer
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karl Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Netherlands.
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthias Marti
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
17
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
18
|
Kumar V, Kaur J, Singh AP, Singh V, Bisht A, Panda JJ, Mishra PC, Hora R. PHIST
c protein family members localize to different subcellular organelles and bind
Plasmodium falciparum
major virulence factor
Pf
EMP
‐1. FEBS J 2017; 285:294-312. [DOI: 10.1111/febs.14340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/15/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Vikash Kumar
- Department of Molecular Biology and Biochemistry Guru Nanak Dev University Amritsar India
| | - Jasweer Kaur
- Department of Molecular Biology and Biochemistry Guru Nanak Dev University Amritsar India
| | - Amrit P. Singh
- Department of Pharmaceutical Sciences Guru Nanak Dev University Amritsar India
| | - Vineeta Singh
- National Institute of Malaria Research New Delhi India
| | - Anjali Bisht
- Institute of Nano Science and Technology Mohali India
| | | | - Prakash C. Mishra
- Department of Biotechnology Guru Nanak Dev University Amritsar India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry Guru Nanak Dev University Amritsar India
| |
Collapse
|
19
|
Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev 2017; 40:701-21. [PMID: 27587718 PMCID: PMC5007283 DOI: 10.1093/femsre/fuw016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium. To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious. In this review, we provide an overview of the different parts of the exomembrane system, describing the parasitophorous vacuole, the tubovesicular network, Maurer's clefts, the caveola-vesicle complex, J dots and other mobile compartments, and the small vesicles that have been observed in Plasmodium-infected cells. Finally, we combine the data into a simplified view of the exomembrane system and its relation to the alterations of the host erythrocyte. Plasmodium parasites remodel the host erythrocyte in various ways, including the formation of several membranous compartments, together referred to as the exomembrane system, within the erythrocyte cytosol that together are key to the sweeping changes in the host cell.
Collapse
Affiliation(s)
- Emma S Sherling
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
20
|
Armistead JS, Adams JH. Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017; 34:114-126. [PMID: 29153587 DOI: 10.1016/j.pt.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Malaria prevalence has declined in the past 10 years, especially outside of sub-Saharan Africa. However, the proportion of cases due to Plasmodium vivax is increasing, accounting for up to 90-100% of the malaria burden in endemic regions. Nonetheless, investments in malaria research and control still prioritize Plasmodium falciparum while largely neglecting P. vivax. Specific biological features of P. vivax, particularly invasion of reticulocytes, occurrence of dormant liver forms of the parasite, and the potential for transmission of sexual-stage parasites prior to onset of clinical illness, promote its persistence and hinder development of research tools and interventions. This review discusses recent advances in P. vivax research, current knowledge of its unique biology, and proposes priorities for P. vivax research and control efforts.
Collapse
Affiliation(s)
- Jennifer S Armistead
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
21
|
PFI1785w: A highly conserved protein associated with pregnancy associated malaria. PLoS One 2017; 12:e0187817. [PMID: 29121643 PMCID: PMC5679621 DOI: 10.1371/journal.pone.0187817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022] Open
Abstract
Pregnancy-associated malaria (PAM) is one of the severe forms of Plasmodium falciparum infection. The main antigen VAR2CSA is the target of vaccine development. However, the large size of VAR2CSA protein and its high degree of variability limit to the efficiency of the vaccination. Using quantitative mass spectrometry method, we detected and quantified proteotypic peptides from 5 predicted PAM associated proteins. Our results confirmed that PFI1785w is over-expressed in PAM samples. Then, we investigated PFI1785w variability among a set of parasite samples from various endemic areas. PFI1785w appear to be more conserved than VAR2CSA. PFB0115w, another PAM associated protein, seems also associated with the pathology. Further vaccination strategies could integrate other proteins in addition to the major VAR2CSA antigen to improve immune response to vaccination.
Collapse
|
22
|
Shakya B, Penn WD, Nakayasu ES, LaCount DJ. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1. Mol Biochem Parasitol 2017; 216:5-13. [PMID: 28627360 PMCID: PMC5738903 DOI: 10.1016/j.molbiopara.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.
Collapse
Affiliation(s)
- Bikash Shakya
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Wesley D Penn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Tadesse FG, Lanke K, Nebie I, Schildkraut JA, Gonçalves BP, Tiono AB, Sauerwein R, Drakeley C, Bousema T, Rijpma SR. Molecular Markers for Sensitive Detection of Plasmodium falciparum Asexual Stage Parasites and their Application in a Malaria Clinical Trial. Am J Trop Med Hyg 2017; 97:188-198. [PMID: 28719294 PMCID: PMC5508903 DOI: 10.4269/ajtmh.16-0893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum parasite life stages respond differently to antimalarial drugs. Sensitive stage-specific molecular assays may help to examine parasite dynamics at microscopically detectable and submicroscopic parasite densities in epidemiological and clinical studies. In this study, we compared the performance of skeleton-binding protein 1 (SBP1), ring-infected erythrocyte surface antigen, Hyp8, ring-exported protein 1 (REX1), and PHISTb mRNA for detecting ring-stage trophozoite-specific transcripts using quantitative reverse transcriptase polymerase chain reaction. Markers were tested on tightly synchronized in vitro parasites and clinical trial samples alongside established markers of parasite density (18S DNA and rRNA) and gametocyte density (Pfs25 mRNA). SBP1 was the most sensitive marker but showed low-level expression in mature gametocytes. Novel markers REX1 and PHISTb showed lower sensitivity but higher specificity for ring-stage trophozoites. Using in vivo clinical trial samples from gametocyte-negative patients, we observed evidence of persisting trophozoite transcripts for at least 14 days postinitiation of treatment. It is currently not clear if these transcripts represent viable parasites that may have implications for clinical treatment outcome or transmission potential.
Collapse
Affiliation(s)
- Fitsum G Tadesse
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.,Medical Biotechnology Unit, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Issa Nebie
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou,Burkina Faso
| | - Jodie A Schildkraut
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alfred B Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou,Burkina Faso
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sanna R Rijpma
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Acharya P, Garg M, Kumar P, Munjal A, Raja KD. Host-Parasite Interactions in Human Malaria: Clinical Implications of Basic Research. Front Microbiol 2017; 8:889. [PMID: 28572796 PMCID: PMC5435807 DOI: 10.3389/fmicb.2017.00889] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
The malaria parasite, Plasmodium, is one of the oldest parasites documented to infect humans and has proven particularly hard to eradicate. One of the major hurdles in designing an effective subunit vaccine against the malaria parasite is the insufficient understanding of host–parasite interactions within the human host during infections. The success of the parasite lies in its ability to evade the human immune system and recruit host responses as physiological cues to regulate its life cycle, leading to rapid acclimatization of the parasite to its immediate host environment. Hence understanding the environmental niche of the parasite is crucial in developing strategies to combat this deadly infectious disease. It has been increasingly recognized that interactions between parasite proteins and host factors are essential to establishing infection and virulence at every stage of the parasite life cycle. This review reassesses all of these interactions and discusses their clinical importance in designing therapeutic approaches such as design of novel vaccines. The interactions have been followed from the initial stages of introduction of the parasite under the human dermis until asexual and sexual blood stages which are essential for transmission of malaria. We further classify the interactions as “direct” or “indirect” depending upon their demonstrated ability to mediate direct physical interactions of the parasite with host factors or their indirect manipulation of the host immune system since both forms of interactions are known to have a crucial role during infections. We also discuss the many ways in which this understanding has been taken to the field and the success of these strategies in controlling human malaria.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Manika Garg
- Department of Biochemistry, Jamia Hamdard UniversityNew Delhi, India
| | - Praveen Kumar
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Akshay Munjal
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - K D Raja
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|
25
|
Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci Rep 2017; 7:42188. [PMID: 28218284 PMCID: PMC5316994 DOI: 10.1038/srep42188] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Malaria parasites modify their human host cell, the mature erythrocyte. This modification is mediated by a large number of parasite proteins that are exported to the host cell, and is also the underlying cause for the pathology caused by malaria infection. Amongst these proteins are many Hsp40 co-chaperones, and a single Hsp70. These proteins have been implicated in several processes in the host cell, including a potential role in protein transport, however the further molecular players in this process remain obscure. To address this, we have utilized chemical cross-linking followed by mass spectrometry and immunoblotting to isolate and characterize proteins complexes containing an exported Hsp40 (PFE55), and the only known exported Hsp70 (PfHsp70x). Our data reveal that both of these proteins are contained in high molecular weight protein complexes. These complexes are found both in the infected erythrocyte, and within the parasite-derived compartment referred to as the parasitophorous vacuole. Surprisingly, our data also reveal an association of PfHsp70x with components of PTEX, a putative protein translocon within the membrane of the parasitophorous vacuole. Our results suggest that the P. falciparum- infected human erythrocyte contains numerous high molecular weight protein complexes, which may potentially be involved in host cell modification.
Collapse
|
26
|
Abstract
The primate malaria Plasmodium knowlesi has a long-standing history as an experimental malaria model. Studies using this model parasite in combination with its various natural and experimental non-human primate hosts have led to important advances in vaccine development and in our understanding of malaria invasion, immunology and parasite-host interactions. The adaptation to long-term in vitro continuous blood stage culture in rhesus monkey, Macaca fascicularis and human red blood cells, as well as the development of various transfection methodologies has resulted in a highly versatile experimental malaria model, further increasing the potential of what was already a very powerful model. The growing evidence that P. knowlesi is an important human zoonosis in South-East Asia has added relevance to former and future studies of this parasite species.
Collapse
|
27
|
Davies HM, Thalassinos K, Osborne AR. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte. J Biol Chem 2016; 291:26188-26207. [PMID: 27777305 PMCID: PMC5207086 DOI: 10.1074/jbc.m116.761213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure.
Collapse
Affiliation(s)
- Heledd M Davies
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
28
|
Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling. Microbiol Mol Biol Rev 2016; 80:905-27. [PMID: 27582258 DOI: 10.1128/mmbr.00014-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family.
Collapse
|
29
|
de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494-507. [DOI: 10.1038/nrmicro.2016.79] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Oberli A, Zurbrügg L, Rusch S, Brand F, Butler ME, Day JL, Cutts EE, Lavstsen T, Vakonakis I, Beck HP. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton. Cell Microbiol 2016; 18:1415-28. [PMID: 26916885 PMCID: PMC5103180 DOI: 10.1111/cmi.12583] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 01/12/2023]
Abstract
Adherence of Plasmodium falciparum‐infected erythrocytes to host endothelium is conferred through the parasite‐derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.
Collapse
Affiliation(s)
- Alexander Oberli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Laura Zurbrügg
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastian Rusch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Françoise Brand
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Jemma L Day
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Erin E Cutts
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | | | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Abstract
Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.
Collapse
|
32
|
Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun 2016; 7:11078. [PMID: 27002652 PMCID: PMC4804174 DOI: 10.1038/ncomms11078] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that these parasites indeed represent distinct species, with no evidence of cross-species mating. Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of a multigene family involved in erythrocyte remodelling, and show that a short region on chromosome 4, which encodes two essential invasion genes, was horizontally transferred into a recent P. falciparum ancestor. Our results validate the selective amplification strategy for characterizing cryptic pathogen species, and reveal evolutionary events that likely predisposed the precursor of P. falciparum to colonize humans. African apes harbour six Plasmodium species, one of which gave rise to the human malaria parasite. Here, Sundaraman et al. use selective whole-genome amplification to determine genome sequences from two chimpanzee Plasmodium species, shedding light on the evolutionary origin of the human parasite.
Collapse
|
33
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
34
|
A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes. Blood 2015; 127:343-51. [PMID: 26637786 DOI: 10.1182/blood-2015-10-674002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.
Collapse
|
35
|
Spielmann T, Gilberger TW. Critical Steps in Protein Export of Plasmodium falciparum Blood Stages. Trends Parasitol 2015; 31:514-525. [DOI: 10.1016/j.pt.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
|