1
|
Bongiorni Galego G, Tasca T. Infinity war: Trichomonas vaginalis and interactions with host immune response. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:103-116. [PMID: 37125086 PMCID: PMC10140678 DOI: 10.15698/mic2023.05.796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023]
Abstract
Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.
Collapse
Affiliation(s)
- Giulia Bongiorni Galego
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
- * Corresponding Author: Tiana Tasca, Avenida Ipiranga, 2752. 90610-000. Porto Alegre, Rio Grande do Sul, Brazil; Tel: +555133085325;
| |
Collapse
|
2
|
Stockman BJ, Ventura CA, Deykina VS, Khayan Lontscharitsch N, Saljanin E, Gil A, Canestrari M, Mahmood M. Direct Measurement of Nucleoside Ribohydrolase Enzyme Activities in Trichomonas vaginalis Cells Using 19F and 13C-Edited 1H NMR Spectroscopy. Anal Chem 2023; 95:5300-5306. [PMID: 36917470 PMCID: PMC10825731 DOI: 10.1021/acs.analchem.2c05330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Trichomoniasis is the most common nonviral sexually transmitted infection, affecting an estimated 275 million people worldwide. The causative agent is the parasitic protozoan Trichomonas vaginalis. Although the disease itself is typically mild, individuals with trichomonal infections have a higher susceptibility to more serious conditions. The emergence of parasite strains resistant to current therapies necessitates the need for novel treatment strategies. Since T. vaginalis is an obligate parasite that requires nucleoside salvage pathways, essential nucleoside ribohydrolase enzymes are promising new drug targets. Fragment screening and X-ray crystallography have enabled structure-guided design of inhibitors for two of these enyzmes. Linkage of enzymatic and antiprotozoal activity would be a transformative step toward designing novel, mechanism-based therapeutic agents. While a correlation with inhibition of purified enzyme would be mechanistically suggestive, a correlation with inhibition of in-cell enzyme activity would definitively establish this linkage. To demonstrate this linkage, we have translated our NMR-based activity assays that measure the activity of purified enzymes for use in T. vaginalis cells. The 19F NMR-based activity assay for the pyrimidine-specific enzyme translated directly to in-cell assays. However, the 1H NMR-based activity assay for the purine-specific enzyme required a switch from adenosine to guanosine substrate and the use of 13C-editing to resolve the substrate 1H signals from cell and growth media background signals. The in-cell NMR assays are robust and have been demonstrated to provide inhibition data on test compounds. The results described here represent the first direct measurement of enzyme activity in protozoan parasite cells.
Collapse
Affiliation(s)
- Brian J Stockman
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Carlos A Ventura
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Valerie S Deykina
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | | | - Edina Saljanin
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Ari Gil
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Madison Canestrari
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | - Maham Mahmood
- Department of Chemistry, Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
3
|
Natto MJ, Miyamoto Y, Munday JC, AlSiari TA, Al-Salabi MI, Quashie NB, Eze AA, Eckmann L, De Koning HP. Comprehensive characterization of purine and pyrimidine transport activities in Trichomonas vaginalis and functional cloning of a trichomonad nucleoside transporter. Mol Microbiol 2021; 116:1489-1511. [PMID: 34738285 PMCID: PMC8688338 DOI: 10.1111/mmi.14840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Trichomoniasis is a common and widespread sexually-transmitted infection, caused by the protozoan parasite Trichomonas vaginalis. T. vaginalis lacks the biosynthetic pathways for purines and pyrimidines, making nucleoside metabolism a drug target. Here we report the first comprehensive investigation into purine and pyrimidine uptake by T. vaginalis. Multiple carriers were identified and characterized with regard to substrate selectivity and affinity. For nucleobases, a high-affinity adenine transporter, a possible guanine transporter and a low affinity uracil transporter were found. Nucleoside transporters included two high affinity adenosine/guanosine/uridine/cytidine transporters distinguished by different affinities to inosine, a lower affinity adenosine transporter, and a thymidine transporter. Nine Equilibrative Nucleoside Transporter (ENT) genes were identified in the T. vaginalis genome. All were expressed equally in metronidazole-resistant and -sensitive strains. Only TvagENT2 was significantly upregulated in the presence of extracellular purines; expression was not affected by co-culture with human cervical epithelial cells. All TvagENTs were cloned and separately expressed in Trypanosoma brucei. We identified the main broad specificity nucleoside carrier, with high affinity for uridine and cytidine as well as purine nucleosides including inosine, as TvagENT3. The in-depth characterization of purine and pyrimidine transporters provides a critical foundation for the development of new anti-trichomonal nucleoside analogues.
Collapse
Affiliation(s)
- Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tahani A. AlSiari
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mohammed I. Al-Salabi
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neils B. Quashie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana
| | - Anthonius A. Eze
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Current affiliation: Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Ferla M, Tasca T. The Role of Purinergic Signaling in Trichomonas vaginalis Infection. Curr Top Med Chem 2021; 21:181-192. [PMID: 32888270 DOI: 10.2174/1568026620999200904122212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/25/2020] [Accepted: 08/14/2020] [Indexed: 11/22/2022]
Abstract
Trichomoniasis, one of the most common non-viral sexually transmitted infections worldwide, is caused by the parasite Trichomonas vaginalis. The pathogen colonizes the human urogenital tract, and the infection is associated with complications such as adverse pregnancy outcomes, cervical cancer, and an increase in HIV transmission. The mechanisms of pathogenicity are multifactorial, and controlling immune responses is essential for infection maintenance. Extracellular purine nucleotides are released by cells in physiological and pathological conditions, and they are hydrolyzed by enzymes called ecto-nucleotidases. The cellular effects of nucleotides and nucleosides occur via binding to purinoceptors, or through the uptake by nucleoside transporters. Altogether, enzymes, receptors and transporters constitute the purinergic signaling, a cellular network that regulates several effects in practically all systems including mammals, helminths, protozoa, bacteria, and fungi. In this context, this review updates the data on purinergic signaling involved in T. vaginalis biology and interaction with host cells, focusing on the characterization of ecto-nucleotidases and on purine salvage pathways. The implications of the final products, the nucleosides adenosine and guanosine, for human neutrophil response and vaginal epithelial cell damage reveal the purinergic signaling as a potential new mechanism for alternative drug targets.
Collapse
Affiliation(s)
- Micheli Ferla
- Research Team on Trichomonas, Pharmaceutical Sciences Graduation Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Research Team on Trichomonas, Pharmaceutical Sciences Graduation Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Adenosine reduces reactive oxygen species and interleukin-8 production by Trichomonas vaginalis-stimulated neutrophils. Purinergic Signal 2017; 13:569-577. [PMID: 28879644 DOI: 10.1007/s11302-017-9584-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Trichomonas vaginalis is a flagellated protozoan that affects the human urogenital tract causing 276.4 million new infections a year. The parasite elicits a vaginal mucosal infiltration of immune cells, especially neutrophils which are considered to be primarily responsible for cytological change observed at the infection site as well as the major contributor in the inflammatory response against the parasite. Extracellular nucleotides and their nucleosides are signaling compounds involved in several biological processes, including inflammation and immune responses. Once in the extracellular space, the nucleotides and nucleosides can directly activate the purinergic receptors. Herein, we investigated the involvement of purinergic signaling on the production of reactive oxygen species (ROS) and cytokines by T. vaginalis-stimulated neutrophils. Parasites were able to induce an increase in ROS and IL-8 levels while they did not promote IL-6 secretion or neutrophil elastase activity. Adenine and guanine nucleotides or nucleosides were not able to modulate ROS and cytokine production; however, when T. vaginalis-stimulated neutrophils were incubated with adenosine and adenosine deaminase inhibitor, the levels of ROS and IL-8 were significantly reduced. These immunosuppressive effects were probably a response to the higher bioavailability of adenosine found in the supernatant as result of inhibition of enzyme activity. The involvement of P1 receptors was investigated by immunofluorescence and A1 receptor was the most abundant. Our data show that the influence of purinergic signaling, specifically those effects associated with adenosine accumulation, on the modulation of production of proinflammatory mediators by T. vaginalis-stimulated neutrophils contribute to the understanding of immunological aspects of trichomoniasis.
Collapse
|
7
|
Menezes CB, Rigo GV, Bridi H, Trentin DDS, Macedo AJ, von Poser GL, Tasca T. The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem Biol Drug Des 2017; 90:811-819. [PMID: 28390095 DOI: 10.1111/cbdd.13002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Trichomonas vaginalis causes trichomoniasis, a neglected sexually transmitted disease. Due to severe health consequences and treatment failure, new therapeutic alternatives are crucial. Phloroglucinols from southern Brazilian Hypericum species demonstrated anti-T. vaginalis and anti-Leishmania amazonensis activities. The modulation of biochemical pathways involved in the control of inflammatory response by ectonucleotidases, NTPDase, and ecto-5'-nucleotidase represents new targets for combating protozoa. This study investigated the activity of phloroglucinol derivatives of Hypericum species from southern Brazil against T. vaginalis as well as its ability on modulating parasite ectonucleotidases and, consequently, immune parameters through ATP and adenosine effects. Phloroglucinol derivatives screening revealed activity for isoaustrobrasilol B (IC50 38 μm) with no hemolytic activity. Although the most active compound induced cytotoxicity against a mammalian cell lineage, the in vivo model evidenced absence of toxicity. Isoaustrobrasilol B significantly inhibited NTPDase and ecto-5'-nucleotidase activities, and the immune modulation attributed to extracellular nucleotide accumulation was evaluated. The production of ROS and IL-6 by T. vaginalis-stimulated neutrophils was not affected by the treatment. Conversely, IL-8 levels were significantly enhanced. The associative mechanism of trophozoites death and ectonucleotidases modulation by isoaustrobrasilol B may increase the susceptibility of T. vaginalis to host innate immune cell like neutrophils consequently, contributing to parasite clearance.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Graziela Vargas Rigo
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Bridi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danielle da Silva Trentin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Menezes CB, Frasson AP, Meirelles LC, Tasca T. Adenosine, but not guanosine, protects vaginal epithelial cells from Trichomonas vaginalis cytotoxicity. Microbes Infect 2016; 19:122-131. [PMID: 27871906 DOI: 10.1016/j.micinf.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis causes the most common non-viral sexually transmitted disease worldwide. The cytoadherence and cytotoxicity upon the vaginal epithelial cells are crucial for the infection. Extracellular nucleotides are released during cell damage and, along with their nucleosides, can activate purinoceptors. The opposing effects of nucleotides versus nucleosides are regulated by ectonucleotidases. Herein we evaluated the hemolysis and cytolysis induced by T. vaginalis, as well as the extracellular nucleotide hydrolysis along with the effects mediated by nucleotides and nucleosides on cytotoxicity. In addition, the gene expression of purinoceptors in host cells was determined. The hemolysis and cytolysis exerted by all T. vaginalis isolates presented positive Pearson correlation. All T. vaginalis isolates were able to hydrolyze nucleotides, showing higher NTPDase than ecto-5'-nucleotidase activity. The most cytotoxic isolate, TV-LACM6, hydrolyzes ATP, GTP with more efficiency than AMP and GMP. The vaginal epithelial cell line (HMVII) expressed the genes for all subtypes of P1, P2X and P2Y receptors. Finally, when nucleotides and nucleosides were tested, the cytotoxic effect elicited by TV-LACM6 was increased with nucleotides. In contrast, the cytotoxicity was reversed by adenosine in presence of EHNA, but not by guanosine, contributing to the understanding of the purinergic signaling role on T. vaginalis cytotoxicity.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Domo Salute Consultoria Regulatória Ltda, Rua Cristóvão Colombo 2948/411, CEP 90560-002, Porto Alegre, RS, Brazil
| | - Lucia Collares Meirelles
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016; 39:234-243. [PMID: 27793265 PMCID: PMC6138788 DOI: 10.1016/j.bj.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|