1
|
Feng M, Chen Y, Chen J, Guo W, Zhao P, Zhang C, Shan X, Chen H, Xu M, Lu R. Stachydrine hydrochloride protects the ischemic heart by ameliorating endoplasmic reticulum stress through a SERCA2a dependent way and maintaining intracellular Ca 2+ homeostasis. Eur J Pharmacol 2024; 973:176585. [PMID: 38636799 DOI: 10.1016/j.ejphar.2024.176585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to explore the effects and mechanism of action of stachydrine hydrochloride (Sta) against myocardial infarction (MI) through sarcoplasmic/endoplasmic reticulum stress-related injury. The targets of Sta against MI were screened using network pharmacology. C57BL/6 J mice after MI were treated with saline, Sta (6 or 12 mg kg-1) for 2 weeks, and adult mouse and neonatal rat cardiomyocytes (AMCMs and NRCMs) were incubated with Sta (10-4-10-6 M) under normoxia or hypoxia for 2 or 12 h, respectively. Echocardiography, Evans blue, and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used for morphological and functional analyses. Endoplasmic reticulum stress (ERS), unfolded protein reaction (UPR), apoptosis signals, cardiomyocyte contraction, and Ca2+ flux were detected using transmission electron microscopy (TEM), western blotting, immunofluorescence, and sarcomere and Fluo-4 tracing. The ingredient-disease-pathway-target network revealed targets of Sta against MI were related to apoptosis, Ca2+ homeostasis and ERS. Both dosages of Sta improved heart function, decreased infarction size, and potentially increased the survival rate. Sta directly alleviated ERS and UPR and elicited less apoptosis in the border myocardium and hypoxic NRCMs. Furthermore, Sta upregulated sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) in both ischaemic hearts and hypoxic NRCMs, accompanied by restored sarcomere shortening, resting intracellular Ca2+, and Ca2+ reuptake time constants (Tau) in Sta-treated hypoxic ARCMs. However, 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ) (25 μM), a specific SERCA inhibitor, totally abolished the beneficial effect of Sta in hypoxic cardiomyocytes. Sta protects the heart from MI by upregulating SERCA2a to maintain intracellular Ca2+ homeostasis, thus alleviating ERS-induced apoptosis.
Collapse
Affiliation(s)
- Minghui Feng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwen Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzhi Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Su P, Li Z, Yan X, Wang B, Bai M, Li Y, Xu E. Quercetin and Kaempferol inhibit HMC-1 activation via SOCE/NFATc2 signaling and suppress hippocampal mast cell activation in lipopolysaccharide-induced depressive mice. Inflamm Res 2024; 73:945-960. [PMID: 38587532 DOI: 10.1007/s00011-024-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE AND DESIGN Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The hippocampal mast cell accumulation and activation were detected by toluidine blue staining and immunohistochemistry with β-tryptase. RESULTS In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation in LPS-induced depressive mice. CONCLUSIONS Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.
Collapse
Affiliation(s)
- Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Zibo Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Xiangli Yan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Baoying Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Pérez-Gordones MC, Ramírez-Iglesias JR, Benaim G, Mendoza M. Molecular, immunological, and physiological evidences of a sphingosine-activated plasma membrane Ca 2+-channel in Trypanosoma equiperdum. Parasitol Res 2024; 123:166. [PMID: 38506929 DOI: 10.1007/s00436-024-08188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The hemoparasite Trypanosoma equiperdum belongs to the Trypanozoon subgenus and includes several species that are pathogenic to animals and humans in tropical and subtropical areas across the world. As with all eukaryotic organisms, Ca2+ is essential for these parasites to perform cellular processes thus ensuring their survival across their life cycle. Despite the established paradigm to study proteins related to Ca2+ homeostasis as potential drug targets, so far little is known about Ca2+ entry into trypanosomes. Therefore, in the present study, the presence of a plasma membrane Ca2+-channel in T. equiperdum (TeCC), activated by sphingosine and inhibited by verapamil, is described. The TeCC was cloned and analyzed using bioinformatic resources, which confirmed the presence of several domains, motifs, and a topology similar to the Ca2+ channels found in higher eukaryotes. Biochemical and confocal microscopy assays using antibodies raised against an internal region of human L-type Ca2+ channels indicate the presence of a protein with similar predicted molar mass to the sequence analyzed, located at the plasma membrane of T. equiperdum. Physiological assays based on Fura-2 signals and Mn2+ quenching performed on whole parasites showed a unidirectional Ca2+ entry, which is activated by sphingosine and blocked by verapamil, with the distinctive feature of insensitivity to nifedipine and Bay K 8644. This suggests a second Ca2+ entry for T. equiperdum, different from the store-operated Ca2+ entry (SOCE) previously described. Moreover, the evidence presented here for the TeCC indicates molecular and pharmacological differences with their mammal counterparts, which deserve further studies to evaluate the potential of this channel as a drug target.
Collapse
Affiliation(s)
- M C Pérez-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela.
| | - J R Ramírez-Iglesias
- Group of Emerging Diseases, Epidemiology & Biodiversity, Master School of Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - G Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - M Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| |
Collapse
|
4
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
5
|
Manchola Varón NC, Dos Santos GRRM, Colli W, Alves MJM. Interaction With the Extracellular Matrix Triggers Calcium Signaling in Trypanosoma cruzi Prior to Cell Invasion. Front Cell Infect Microbiol 2021; 11:731372. [PMID: 34671568 PMCID: PMC8521164 DOI: 10.3389/fcimb.2021.731372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease in humans, infects a wide variety of vertebrates. Trypomastigotes, the parasite infective forms, invade mammalian cells by a still poorly understood mechanism. Adhesion of tissue culture- derived trypomastigotes to the extracellular matrix (ECM) prior to cell invasion has been shown to be a relevant part of the process. Changes in phosphorylation, S-nitrosylation, and nitration levels of proteins, in the late phase of the interaction (2 h), leading to the reprogramming of both trypomastigotes metabolism and the DNA binding profile of modified histones, were described by our group. Here, the involvement of calcium signaling at a very early phase of parasite interaction with ECM is described. Increments in the intracellular calcium concentrations during trypomastigotes-ECM interaction depends on the Ca2+ uptake from the extracellular medium, since it is inhibited by EGTA or Nifedipine, an inhibitor of the L-type voltage gated Ca2+ channels and sphingosine-dependent plasma membrane Ca2+ channel, but not by Vanadate, an inhibitor of the plasma membrane Ca2+-ATPase. Furthermore, Nifedipine inhibits the invasion of host cells by tissue culture- derived trypomastigotes in a dose-dependent manner, reaching 95% inhibition at 100 µM Nifedipine. These data indicate the importance of both Ca2+ uptake from the medium and parasite-ECM interaction for host-cell invasion. Previous treatment of ECM with protease abolishes the Ca2+ uptake, further reinforcing the possibility that these events may be connected. The mitochondrion plays a relevant role in Ca2+ homeostasis in trypomastigotes during their interaction with ECM, as shown by the increment of the intracellular Ca2+ concentration in the presence of Antimycin A, in contrast to other calcium homeostasis disruptors, such as Cyclopiazonic acid for endoplasmic reticulum and Bafilomycin A for acidocalcisome. Total phosphatase activity in the parasite decreases in the presence of Nifedipine, EGTA, and Okadaic acid, implying a role of calcium in the phosphorylation level of proteins that are interacting with the ECM in tissue culture- derived trypomastigotes. In summary, we describe here the increment of Ca2+ at an early phase of the trypomastigotes interaction with ECM, implicating both nifedipine-sensitive Ca2+ channels in the influx of Ca2+ and the mitochondrion as the relevant organelle in Ca2+ homeostasis. The data unravel a complex sequence of events prior to host cell invasion itself.
Collapse
Affiliation(s)
- Nubia Carolina Manchola Varón
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Walter Colli
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria Julia M Alves
- Laboratory of Biochemistry of Parasites, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|