1
|
Wu Y, Li T, Tan S, Song R, Song K, Zhou J, Xiao X, Wang K, Zhang H, Tan S. NINJ1: A NOVEL SEPSIS SEVERITY AND MORTALITY BIOMARKER. Shock 2025; 63:527-532. [PMID: 39193891 DOI: 10.1097/shk.0000000000002460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Background : Multiple cell death modalities are implicated in sepsis pathobiology. However, the clinical relevance of NINJ1, a key mediator of plasma membrane rupture during lytic cell death, in sepsis progression and outcomes has remained poorly explored. Methods: Circulating NINJ1 levels were measured in 116 septic intensive care unit (ICU) patients, 16 nonseptic ICU controls, and 16 healthy controls. Comparative analysis of serum NINJ1 across these groups was performed. Correlations between NINJ1 and clinical disease severity scores (Sequential Organ Failure Assessment [SOFA], Acute Physiology and Chronic Health Evaluation [APACHE II]) as well as laboratory parameters were examined in the sepsis cohort. Furthermore, we assessed the prognostic performance of NINJ1 for predicting 28-day mortality in septic patients using receiver operating characteristic (ROC) analyses. Results: Circulating NINJ1 levels were elevated in septic patients and positively correlated with sepsis severity scores. NINJ1 also showed positive correlations with liver injury markers (aspartate transaminase/alanine aminotransferase) and coagulation parameters (D-dimer, activated partial thromboplastin time, prothrombin time, thrombin time) in sepsis. Further analysis using the International Society on Thrombosis and Hemostasis overt disseminated intravascular coagulation scoring system revealed an association between NINJ1 and sepsis-induced coagulopathy. ROC analysis demonstrated that NINJ1 outperformed traditional inflammatory biomarkers procalcitonin and C-reactive protein in predicting 28-day sepsis mortality, although its prognostic accuracy was lower than SOFA and APACHE II scores. Combining NINJ1 with SOFA improved mortality prediction from an area under the curve of 0.6843 to 0.773. Conclusions: Circulating NINJ1 serves as a novel sepsis biomarker indicative of disease severity, coagulopathy and mortality risk, and its integration with SOFA and APACHE II scores substantially enhances prognostic risk stratification. These findings highlight the prospective clinical utility of NINJ1 for sepsis prognostication and monitoring, warranting further validation studies to facilitate implementation.
Collapse
Affiliation(s)
| | - Tao Li
- Department of Pathophysiology, Medical College of Jiaying University, Meizhou, Guangdong 514031, People's Republic of China
| | - Sichuang Tan
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | | | | | - Jiankang Zhou
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | | | | | | | | |
Collapse
|
2
|
Bizoń A, Chojdak-Łukasiewicz J, Budrewicz S, Pokryszko-Dragan A, Piwowar A. Exploring the Relationship between Antioxidant Enzymes, Oxidative Stress Markers, and Clinical Profile in Relapsing-Remitting Multiple Sclerosis. Antioxidants (Basel) 2023; 12:1638. [PMID: 37627633 PMCID: PMC10451869 DOI: 10.3390/antiox12081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
We aimed to investigate the extent of alterations in the pro/antioxidant balance in the blood of patients with relapsing-remitting multiple sclerosis (RRMS) in relation to drug-modified therapy, gender, disability score, and disease duration. 161 patients (67 men and 94 women, aged 24-69 years, median 43.0) and 29 healthy individuals (9 men and 20 women, aged 25-68 years, median 41.0) were included in the study. We measured the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) as well as the concentration of interleukin-6 (IL-6), lipid peroxidation parameters (LPO), total oxidant status (TOS), and total antioxidant capacity (TAS). The activity of SOD did not show any significant differences between patients with RRMS and the control group in our study. In contrast, significant decreased GPx activity and increased CAT activity was observed in the blood of patients with RRMS compared to the control group. Additionally, the activity of CAT was influenced by gender and the use of disease-modifying therapies. Disease-modifying therapies also affected the concentration of TOS, TAS, and LPO. Our studies indicated that enhancing GPx activity may be more beneficial to providing potential therapeutic strategies aimed at modulating antioxidant defenses to mitigate oxidative stress in this disease.
Collapse
Affiliation(s)
- Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Justyna Chojdak-Łukasiewicz
- Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (J.C.-Ł.); (S.B.); (A.P.-D.)
| | - Sławomir Budrewicz
- Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (J.C.-Ł.); (S.B.); (A.P.-D.)
| | - Anna Pokryszko-Dragan
- Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (J.C.-Ł.); (S.B.); (A.P.-D.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
3
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Alsaleh NB, Alasmari AF, Al-Hamamah MA, Alanazi A, Alshamrani AA, Bakheet SA, Harisa GI. The small molecule Erk1/2 signaling pathway inhibitor PD98059 improves DNA repair in an experimental autoimmune encephalomyelitis SJL/J mouse model of multiple sclerosis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503650. [PMID: 37491119 DOI: 10.1016/j.mrgentox.2023.503650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder in which the myelin sheath covering the central nervous system axons is damaged or lost, disrupting action potential conduction and leading to various neurological complications. The pathogenesis of MS remains unclear, and no effective therapies are currently available. MS is triggered by environmental factors in genetically susceptible individuals. DNA damage and DNA repair failure have been proposed as MS genetic risk factors; however, inconsistent evidence has been found in multiple studies. Therefore, more investigations are needed to ascertain whether DNA damage/repair is altered in this disorder. In this context, therapies that prevent DNA damage or enhance DNA repair could be effective strategies for MS treatment. The overactivation of the extracellular-signal-related kinase 1 and 2 (Erk1/2) pathway can lead to DNA damage and has been linked to MS pathogenesis. In our study, we observed substantially elevated oxidative DNA damage and slower DNA repair rates in an experimentally autoimmune encephalomyelitis animal model of MS (EAE). Moreover, statistical decreases in oxidative DNA strand breaks and faster repair rates were observed in EAE animals injected with the Erk1/2 inhibitor PD98059 (PD). Moreover, the expression of several genes associated with DNA strand breaks and repair changed in EAE mice at both the mRNA and protein levels, as revealed by the RT2 Profiler PCR array and verified by RT-PCR and protein analyses. The treatment with PD mitigated these changes and improved DNA repair gene expression. Our results demonstrate clear associations between Erk1/2 activation, DNA damage/repair, and MS pathology, and further suggest that PD therapy may be a promising adjuvant therapeutic strategy.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - N B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - G I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
An Analysis of Transcriptomic Burden Identifies Biological Progression Roadmaps for Hematological Malignancies and Solid Tumors. Biomedicines 2022; 10:biomedicines10112720. [DOI: 10.3390/biomedicines10112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Biological paths of tumor progression are difficult to predict without time-series data. Using median shift and abacus transformation in the analysis of RNA sequencing data sets, natural patient stratifications were found based on their transcriptomic burden (TcB). Using gene-behavior analysis, TcB groups were evaluated further to discover biological courses of tumor progression. We found that solid tumors and hematological malignancies (n = 4179) share conserved biological patterns, and biological network complexity decreases at increasing TcB levels. An analysis of gene expression datasets including pediatric leukemia patients revealed TcB patterns with biological directionality and survival implications. A prospective interventional study with PI3K targeted therapy in canine lymphomas proved that directional biological responses are dynamic. To conclude, TcB-enriched biological mechanisms detected the existence of biological trajectories within tumors. Using this prognostic informative novel informatics method, which can be applied to tumor transcriptomes and progressive diseases inspires the design of progression-specific therapeutic approaches.
Collapse
|
5
|
Elkjaer ML, Röttger R, Baumbach J, Illes Z. A Systematic Review of Tissue and Single Cell Transcriptome/Proteome Studies of the Brain in Multiple Sclerosis. Front Immunol 2022; 13:761225. [PMID: 35309325 PMCID: PMC8924618 DOI: 10.3389/fimmu.2022.761225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating and degenerative disease of the central nervous system (CNS). Although inflammatory responses are efficiently treated, therapies for progression are scarce and suboptimal, and biomarkers to predict the disease course are insufficient. Cure or preventive measures for MS require knowledge of core pathological events at the site of the tissue damage. Novelties in systems biology have emerged and paved the way for a more fine-grained understanding of key pathological pathways within the CNS, but they have also raised questions still without answers. Here, we systemically review the power of tissue and single-cell/nucleus CNS omics and discuss major gaps of integration into the clinical practice. Systemic search identified 49 transcriptome and 11 proteome studies of the CNS from 1997 till October 2021. Pioneering molecular discoveries indicate that MS affects the whole brain and all resident cell types. Despite inconsistency of results, studies imply increase in transcripts/proteins of semaphorins, heat shock proteins, myelin proteins, apolipoproteins and HLAs. Different lesions are characterized by distinct astrocytic and microglial polarization, altered oligodendrogenesis, and changes in specific neuronal subtypes. In all white matter lesion types, CXCL12, SCD, CD163 are highly expressed, and STAT6- and TGFβ-signaling are increased. In the grey matter lesions, TNF-signaling seems to drive cell death, and especially CUX2-expressing neurons may be susceptible to neurodegeneration. The vast heterogeneity at both cellular and lesional levels may underlie the clinical heterogeneity of MS, and it may be more complex than the current disease phenotyping in the clinical practice. Systems biology has not solved the mystery of MS, but it has discovered multiple molecules and networks potentially contributing to the pathogenesis. However, these results are mostly descriptive; focused functional studies of the molecular changes may open up for a better interpretation. Guidelines for acceptable quality or awareness of results from low quality data, and standardized computational and biological pipelines may help to overcome limited tissue availability and the “snap shot” problem of omics. These may help in identifying core pathological events and point in directions for focus in clinical prevention.
Collapse
Affiliation(s)
- Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Abstract
Amyloids are organized suprastructural polypeptide arrangements. The prevalence of amyloid-related processes of pathophysiological relevance has been linked to aging-related degenerative diseases. Besides the role of genetic polymorphisms on the relative risk of amyloid diseases, the contributions of nongenetic ontogenic cluster of factors remain elusive. In recent decades, mounting evidences have been suggesting the role of essential micronutrients, in particular transition metals, in the regulation of amyloidogenic processes, both directly (such as binding to amyloid proteins) or indirectly (such as regulating regulatory partners, processing enzymes, and membrane transporters). The features of transition metals as regulatory cofactors of amyloid proteins and the consequences of metal dyshomeostasis in triggering amyloidogenic processes, as well as the evidences showing amelioration of symptoms by dietary supplementation, suggest an exaptative role of metals in regulating amyloid pathways. The self- and cross-talk replicative nature of these amyloid processes along with their systemic distribution support the concept of their metastatic nature. The role of amyloidosis as nutrient sensors would act as intra- and transgenerational epigenetic metabolic programming factors determining health span and life span, viability, which could participate as an evolutive selective pressure.
Collapse
Affiliation(s)
- Luís Maurício T R Lima
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for Macromolecules (LAMAC-DIMAV), National Institute of Metrology, Quality and Technology - INMETRO, Duque de Caxias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Dopaminergic Receptors as Neuroimmune Mediators in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2021; 58:5971-5985. [PMID: 34432265 DOI: 10.1007/s12035-021-02507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
The dopaminergic system plays an essential role in maintaining homeostasis between the central nervous system (CNS) and the immune system. Previous studies have associated imbalances in the dopaminergic system to the pathogenesis of multiple sclerosis (MS). Here, we examined the protein levels of dopaminergic receptors (D1R and D2R) in different phases of the experimental autoimmune encephalomyelitis (EAE) model. We also investigated if the treatment with pramipexole (PPX)-a dopamine D2/D3 receptor-preferring agonist-would be able to prevent EAE-induced motor and mood dysfunction, as well as its underlying mechanisms of action. We report that D2R immunocontent is upregulated in the spinal cord of EAE mice 14 days post-induction. Moreover, D1R and D2R immunocontents in lymph nodes and the oxidative damage in the spinal cord and striatum of EAE animals were significantly increased during the chronic phase. Also, during the pre-symptomatic phase, axonal damage in the spinal cord of EAE mice could already be found. Surprisingly, therapeutic treatment with PPX failed to inhibit the progression of EAE. Of note, PPX treatment inhibited EAE-induced depressive-like while failed to inhibit anhedonic-like behaviors. We observed that PPX treatment downregulated IL-1β levels and increased BNDF content in the spinal cord after EAE induction. Herein, we show that a D2/D3 receptor-preferred agonist mitigated EAE-induced depressive-like behavior, which could serve as a new possibility for further clinical trials on treating depressive symptoms in MS patients. Thus, we infer that D2R participates in the crosstalk between CNS and immune system during autoimmune and neuroinflammatory response induced by EAE, mainly in the acute and chronic phase of the disease.
Collapse
|
8
|
Ivanova M, Voronkova A, Sukhorukov V, Zakharova M. Different neuroinflammatory gene expression profiles in highly active and benign multiple sclerosis. J Neuroimmunol 2021; 358:577650. [PMID: 34274720 DOI: 10.1016/j.jneuroim.2021.577650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/28/2021] [Accepted: 06/27/2021] [Indexed: 01/31/2023]
Abstract
In this study, we aimed to explore the expression of genes associated with neuroinflammation in patients with benign and highly active multiple sclerosis (MS) and healthy controls, to define gene signatures associated with MS as well as disease activity and progression. We identified differences in the expression of 89 genes in benign and highly active MS patients and in healthy controls (q < 0.05). Twenty-eight genes related to myeloid cells function, the innate immune response, apoptosis, and autophagy were differentially expressed in patients with benign and highly active MS. Time to second relapse and expanded disability status scale (EDSS) scores were correlated with the expression of genes associated with myeloid cells function, innate immunity, and apoptosis. Our results could indicate the importance of innate immunity-associated pathways in maintaining high disease activity in MS and their crucial role in disease progression.
Collapse
|
9
|
Redox Imbalance in CD4+ T Cells of Relapsing-Remitting Multiple Sclerosis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8860813. [PMID: 33354282 PMCID: PMC7735833 DOI: 10.1155/2020/8860813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 11/17/2022]
Abstract
As a prevalent autoimmune disease of the central nervous system in young adults, multiple sclerosis (MS) is mediated by T cells, particularly CD4+ subsets. Given the evidence that the perturbation in reactive oxygen species (ROS) production has a pivotal role in the onset and progression of MS, its regulation through the antioxidant molecules is too important. Here, we investigated the level of the redox system components in lymphocytes and CD4+ T cells of MS patients. The study was performed on relapsing-remitting MS (RRMS) patients (n = 29) and age- and sex-matched healthy controls (n = 15). Peripheral blood mononuclear cells (PBMCs) were cultured and stimulated by anti-CD3/CD28. The level of ROS, anion superoxide (O2 -), and L-𝛾-glutamyl-Lcysteinylglycine (GSH) was measured by flow cytometry in lymphocytes/CD4+ T cells. The gene expression level of gp91phox, catalase, superoxide dismutase 1/2 (SOD), and nuclear factor-E2-related factor (Nrf2) was also measured by real-time PCR. We found that lymphocytes/CD4+ T cells of RRMS patients at the relapse phase significantly produced higher levels of ROS and O2 - compared to patients at the remission phase (P value < 0.001) and healthy controls (P value < 0.001 and P value < 0.05, respectively). Interestingly, the gene expression level of gp91phox, known as the catalytic subunit of the NADPH oxidase, significantly increased in MS patients at the relapse phase (P value < 0.05). Furthermore, the catalase expression augmented in patients at the acute phase (P value < 0.05), while an increased expression of SOD1 and Nrf2 was found in RRMS patients at relapse and remission phases (P value < 0.05). The increased production of ROS in CD4+ T cells of RRMS patients highlights the importance of amplifying antioxidant components as an efficient approach to ameliorate disease activity in MS patients.
Collapse
|
10
|
Frisch T, Elkjaer ML, Reynolds R, Michel TM, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Z. Multiple Sclerosis Atlas: A Molecular Map of Brain Lesion Stages in Progressive Multiple Sclerosis. NETWORK AND SYSTEMS MEDICINE 2020; 3:122-129. [PMID: 32954379 PMCID: PMC7500075 DOI: 10.1089/nsm.2020.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is a chronic disorder of the central nervous system with an untreatable late progressive phase. Molecular maps of different stages of brain lesion evolution in patients with progressive multiple sclerosis (PMS) are missing but critical for understanding disease development and to identify novel targets to halt progression. Materials and Methods: The MS Atlas database comprises comprehensive high-quality transcriptomic profiles of 98 white matter (WM) brain samples of different lesion types (normal-appearing WM [NAWM], active, chronic active, inactive, remyelinating) from ten progressive MS patients and 25 WM areas from five non-neurological diseased cases. Results: We introduce the first MS brain lesion atlas (msatlas.dk), developed to address the current challenges of understanding mechanisms driving the fate on a lesion basis. The MS Atlas gives means for testing research hypotheses, validating biomarkers and drug targets. It comes with a user-friendly web interface, and it fosters bioinformatic methods for de novo network enrichment to extract mechanistic markers for specific lesion types and pathway-based lesion type comparison. We describe examples of how the MS Atlas can be used to extract systems medicine signatures and demonstrate the interface of MS Atlas. Conclusion: This compendium of mechanistic PMS WM lesion profiles is an invaluable resource to fuel future MS research and a new basis for treatment development.
Collapse
Affiliation(s)
- Tobias Frisch
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Maria L Elkjaer
- Neurology Research Unit, Department of Neurology, Odense University Hopsital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Reynolds
- Division of Brain Science, Imperial College, London, United Kingdom
| | - Tanja Maria Michel
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| | - Tim Kacprowski
- Research Group Computational Systems Medicine, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Mark Burton
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Zsolt Illes
- Neurology Research Unit, Department of Neurology, Odense University Hopsital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Jäkel S, Williams A. What Have Advances in Transcriptomic Technologies Taught us About Human White Matter Pathologies? Front Cell Neurosci 2020; 14:238. [PMID: 32848627 PMCID: PMC7418269 DOI: 10.3389/fncel.2020.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
For a long time, post-mortem analysis of human brain pathologies has been purely descriptive, limiting insight into the pathological mechanisms. However, starting in the early 2000s, next-generation sequencing (NGS) and the routine application of bulk RNA-sequencing and microarray technologies have revolutionized the usefulness of post-mortem human brain tissue. This has allowed many studies to provide novel mechanistic insights into certain brain pathologies, albeit at a still unsatisfying resolution, with masking of lowly expressed genes and regulatory elements in different cell types. The recent rapid evolution of single-cell technologies has now allowed researchers to shed light on human pathologies at a previously unreached resolution revealing further insights into pathological mechanisms that will open the way for the development of new strategies for therapies. In this review article, we will give an overview of the incremental information that single-cell technologies have given us for human white matter (WM) pathologies, summarize which single-cell technologies are available, and speculate where these novel approaches may lead us for pathological assessment in the future.
Collapse
Affiliation(s)
- Sarah Jäkel
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
12
|
The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020; 2020:5793817. [PMID: 32789026 PMCID: PMC7334772 DOI: 10.1155/2020/5793817] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.
Collapse
|
13
|
Kamenarska Z, Hristova M, Dodova R, Vinkov A, Kaneva R, Pozharashka J, Dourmishev L. XRCC1 variants do not represent a risk for dermatomyositis and systemic lupus erythematosus in Bulgarian patients. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Combinatory Multifactor Treatment Effects on Primary Nanofiber Oligodendrocyte Cultures. Cells 2019; 8:cells8111422. [PMID: 31726669 PMCID: PMC6912369 DOI: 10.3390/cells8111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system. Neurological deficits are attributed to inflammatory demyelination, which compromises axonal function and survival. These are mitigated in experimental models by rapid and often complete remyelination of affected axons, but in MS this endogenous repair mechanism frequently fails, leaving axons increasingly vulnerable to the detrimental effects of inflammatory and metabolic stress. Understanding the molecular basis of remyelination and remyelination failure is essential to develop improved therapies for this devastating disease. However, recent studies suggest that this is not due to a single dominant mechanism, but rather represents the biological outcome of multiple changes in the lesion microenvironment that combine to disrupt oligodendrocyte differentiation. This identifies a pressing need to develop technical platforms to investigate combinatory and/or synergistic effects of factors differentially expressed in MS lesions on oligodendrocyte proliferation and differentiation. Here we describe protocols using primary oligodendrocyte cultures from Bl6 mice on 384-well nanofiber plates to model changes affecting oligodendrogenesis and differentiation in the complex signaling environment associated with multiple sclerosis lesions. Using platelet-derived growth factor (PDGF–AA), fibroblast growth factor 2 (FGF2), bone morphogenetic protein 2 (BMP2) and bone morphogenetic protein 4 (BMP4) as representative targets, we demonstrate that we can assess their combinatory effects across a wide range of concentrations in a single experiment. This in vitro model is ideal for assessing the combinatory effects of changes in availability of multiple factors, thus more closely modelling the situation in vivo and furthering high-throughput screening possibilities.
Collapse
|
15
|
Perianes-Cachero A, Lobo MVT, Hernández-Pinto AM, Busto R, Lasunción-Ripa MA, Arilla-Ferreiro E, Puebla-Jiménez L. Oxidative Stress and Lymphocyte Alterations in Chronic Relapsing Experimental Allergic Encephalomyelitis in the Rat Hippocampus and Protective Effects of an Ethanolamine Phosphate Salt. Mol Neurobiol 2019; 57:860-878. [DOI: 10.1007/s12035-019-01774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/01/2019] [Indexed: 01/20/2023]
|
16
|
Hendrickx DAE, van Scheppingen J, van der Poel M, Bossers K, Schuurman KG, van Eden CG, Hol EM, Hamann J, Huitinga I. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions. Front Immunol 2017; 8:1810. [PMID: 29312322 PMCID: PMC5742619 DOI: 10.3389/fimmu.2017.01810] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
In multiple sclerosis (MS), activated microglia and infiltrating macrophages phagocytose myelin focally in (chronic) active lesions. These demyelinating sites expand in time, but at some point turn inactive into a sclerotic scar. To identify molecular mechanisms underlying lesion activity and halt, we analyzed genome-wide gene expression in rim and peri-lesional regions of chronic active and inactive MS lesions, as well as in control tissue. Gene clustering revealed patterns of gene expression specifically associated with MS and with the presumed, subsequent stages of lesion development. Next to genes involved in immune functions, we found regulation of novel genes in and around the rim of chronic active lesions, such as NPY, KANK4, NCAN, TKTL1, and ANO4. Of note, the presence of many foamy macrophages in active rims was accompanied by a congruent upregulation of genes related to lipid binding, such as MSR1, CD68, CXCL16, and OLR1, and lipid uptake, such as CHIT1, GPNMB, and CCL18. Except CCL18, these genes were already upregulated in regions around active MS lesions, showing that such lesions are indeed expanding. In vitro downregulation of the scavenger receptors MSR1 and CXCL16 reduced myelin uptake. In conclusion, this study provides the gene expression profile of different aspects of MS pathology and indicates that early demyelination, mediated by scavenger receptors, is already present in regions around active MS lesions. Genes involved in early demyelination events in regions surrounding chronic active MS lesions might be promising therapeutic targets to stop lesion expansion.
Collapse
Affiliation(s)
- Debbie A E Hendrickx
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Jackelien van Scheppingen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Koen Bossers
- Neurodegeneration Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Karianne G Schuurman
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Corbert G van Eden
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Elly M Hol
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
17
|
Adiele RC, Adiele CA. Metabolic defects in multiple sclerosis. Mitochondrion 2017; 44:7-14. [PMID: 29246870 DOI: 10.1016/j.mito.2017.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/12/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Brain injuries in multiple sclerosis (MS) involve immunopathological, structural and metabolic defects on myelin sheath, oligodendrocytes (OLs), axons and neurons suggesting that different cellular mechanisms ultimately result in the formation of MS plaques, demyelination, inflammation and brain damage. Bioenergetics, oxygen and ion metabolism dominate the metabolic and biochemical pathways that maintain neuronal viability and impulse transmission which directly or indirectly point to mitochondrial integrity and adenosine triphosphate (ATP) availability indicating the involvement of mitochondria in the pathogenesis of MS. Loss of myelin proteins including myelin basic protein (MBP), proteolipid protein (PLP), myelin associated glycoprotein (MAG), myelin oligodendrocyte glycoproetin (MOG), 2, 3,-cyclic nucleotide phosphodiestarase (CNPase); microglia and microphage activation, oligodendrocyte apoptosis as well as expression of inducible nitric oxide synthase (i-NOS) and myeloperoxidase activities have been implicated in a subset of Balo's type and relapsing remitting MS (RRMS) lesions indicating the involvement of metabolic defects and oxidative stress in MS. Here, we provide an insighting review of defects in cellular metabolism including energy, oxygen and metal metabolism in MS as well as the relevance of animal models of MS in understanding the molecular, biochemical and cellular mechanisms of MS pathogenesis. Additionally, we also discussed the potential for mitochondrial targets and antioxidant protection for therapeutic benefits in MS.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Center, Saskatoon City Hospital, Saskatoon, SK, Canada; Department of Public Health, Concordia University of Edmonton, Edmonton, AB, Canada.
| | - Chiedukam A Adiele
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
18
|
Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration? Antioxidants (Basel) 2017; 6:antiox6030065. [PMID: 28820437 PMCID: PMC5618093 DOI: 10.3390/antiox6030065] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates hundreds of antioxidant genes, and is activated in response to oxidative stress. Given that many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and multiple sclerosis are characterised by oxidative stress, Nrf2 is commonly activated in these diseases. Evidence demonstrates that Nrf2 activity is repressed in neurons in vitro, and only cultured astrocytes respond strongly to Nrf2 inducers, leading to the interpretation that Nrf2 signalling is largely restricted to astrocytes. However, Nrf2 activity can be observed in neurons in post-mortem brain tissue and animal models of disease. Thus this interpretation may be false, and a detailed analysis of the cell type expression of Nrf2 in neurodegenerative diseases is required. This review describes the evidence for Nrf2 activation in each cell type in prominent neurodegenerative diseases and normal aging in human brain and animal models of neurodegeneration, the response to pharmacological and genetic modulation of Nrf2, and clinical trials involving Nrf2-modifying drugs.
Collapse
|
19
|
Manipulation of Oxygen and Endoplasmic Reticulum Stress Factors as Possible Interventions for Treatment of Multiple Sclerosis: Evidence for and Against. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:11-27. [DOI: 10.1007/978-3-319-47861-6_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Jahantigh D, Moghtaderi A, Narooie-Nejad M, Mousavi M, Moossavi M, Salimi S, Mohammadoo-Khorasani M. Carriage of 2R allele at VNTR polymorphous site of XRCC5 gene increases risk of multiple sclerosis in an Iranian population. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541612005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
|
22
|
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:49-103. [PMID: 28069137 DOI: 10.1016/bs.ircmb.2016.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria, the organelles that function as the powerhouse of the cell, have been increasingly linked to the pathogenesis of many neurological disorders, including multiple sclerosis (MS). MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and a leading cause of neurological disability in young adults in the western world. Its etiology remains unknown, and while the inflammatory component of MS has been heavily investigated and targeted for therapeutic intervention, the failure of remyelination and the process of axonal degeneration are still poorly understood. Recent studies suggest a role of mitochondrial dysfunction in the neurodegenerative aspects of MS. This review is focused on mitochondrial functions under physiological conditions and the consequences of mitochondrial alterations in various CNS disorders. Moreover, we summarize recent findings linking mitochondrial dysfunction to MS and discuss novel therapeutic strategies targeting mitochondria-related pathways as well as emerging experimental approaches for modeling mitochondrial disease.
Collapse
Affiliation(s)
- S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - V Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - T Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
23
|
Kemp K, Redondo J, Hares K, Rice C, Scolding N, Wilkins A. Oxidative injury in multiple sclerosis cerebellar grey matter. Brain Res 2016; 1642:452-460. [PMID: 27086975 DOI: 10.1016/j.brainres.2016.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/16/2023]
Abstract
Cerebellar dysfunction is a significant contributor to disability in multiple sclerosis (MS). Both white matter (WM) and grey matter (GM) injury occurs within MS cerebellum and, within GM, demyelination, inflammatory cell infiltration and neuronal injury contribute to on-going pathology. The precise nature of cerebellar GM injury is, however, unknown. Oxidative stress pathways with ultimate lipid peroxidation and cell membrane injury occur extensively in MS and the purpose of this study was to investigate these processes in MS cerebellar GM. Post-mortem human cerebellar GM from MS and control subjects was analysed immunohistochemically, followed by semi-quantitative analysis of markers of cellular injury, lipid peroxidation and anti-oxidant enzyme expression. We have shown evidence for reduction in myelin and neuronal markers in MS GM, coupled to an increase in expression of a microglial marker. We also show that the lipid peroxidation product 4-hydroxynonenal co-localises with myelin and its levels negatively correlate to myelin basic protein levels. Furthermore, superoxide dismutase (SOD1 and 2) enzymes, localised within cerebellar neurons, are up-regulated, yet the activation of subsequent enzymes responsible for the detoxification of hydrogen peroxide, catalase and glutathione peroxidase are relatively deficient. These studies provide evidence for oxidative injury in MS cerebellar GM and further help define disease mechanisms within the MS brain.
Collapse
Affiliation(s)
- Kevin Kemp
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK.
| | - Juliana Redondo
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| | - Kelly Hares
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| | - Claire Rice
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| | - Neil Scolding
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| | - Alastair Wilkins
- Multiple Sclerosis and Stem Cell Group, School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, UK
| |
Collapse
|
24
|
van Noort JM, Bsibsi M, Nacken PJ, Verbeek R, Venneker EH. Therapeutic Intervention in Multiple Sclerosis with Alpha B-Crystallin: A Randomized Controlled Phase IIa Trial. PLoS One 2015; 10:e0143366. [PMID: 26599332 PMCID: PMC4657879 DOI: 10.1371/journal.pone.0143366] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
As a molecular chaperone and activator of Toll-like receptor 2-mediated protective responses by microglia and macrophages, the small heat shock protein alpha B-crystallin (HspB5) exerts therapeutic effects in different animal models for neuroinflammation, including the model for multiple sclerosis (MS). Yet, HspB5 can also stimulate human antigen-specific memory T cells to release IFN-γ, a cytokine with well-documented detrimental effects during MS. In this study, we explored in a Phase IIa randomized clinical trial the therapeutic application of HspB5 in relapsing-remitting MS (RR-MS), using intravenous doses sufficient to support its protective effects, but too low to trigger pathogenic memory T-cell responses. These sub-immunogenic doses were selected based on in vitro analysis of the dose-response profile of human T cells and macrophages to HspB5, and on the immunological effects of HspB5 in healthy humans as established in a preparatory Phase I study. In a 48-week randomized, placebo-controlled, double-blind Phase IIa trial, three bimonthly intravenous injections of 7.5, 12.5 or 17.5 mg HspB5 were found to be safe and well tolerated in RR-MS patients. While predefined clinical endpoints did not differ significantly between the relatively small groups of MS patients treated with either HspB5 or placebo, repeated administration especially of the lower doses of HspB5 led to a progressive decline in MS lesion activity as monitored by magnetic resonance imaging (MRI), which was not seen in the placebo group. Exploratory linear regression analysis revealed this decline to be significant in the combined group receiving either of the two lower doses, and to result in a 76% reduction in both number and total volumes of active MRI lesions at 9 months into the study. These data provide the first indication for clinical benefit resulting from intervention in RR-MS with HspB5. Trial Registration: ClinicalTrials.gov Phase I: NCT02442557; Phase IIa: NCT02442570
Collapse
|
25
|
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 2015; 11:711-24. [PMID: 26585978 DOI: 10.1038/nrneurol.2015.222] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS-importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.
Collapse
Affiliation(s)
- Georgia Mandolesi
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Antonietta Gentile
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Fresegna
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- IRCCS Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Girolama A Marfia
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
26
|
Mathur D, Urena-Peralta JR, Lopez-Rodas G, Casanova B, Coret-Ferrer F, Burgal-Marti M. Bypassing hazard of housekeeping genes: their evaluation in rat granule neurons treated with cerebrospinal fluid of multiple sclerosis subjects. Front Cell Neurosci 2015; 9:375. [PMID: 26441545 PMCID: PMC4585208 DOI: 10.3389/fncel.2015.00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023] Open
Abstract
Gene expression studies employing real-time PCR has become an intrinsic part of biomedical research. Appropriate normalization of target gene transcript(s) based on stably expressed housekeeping genes is crucial in individual experimental conditions to obtain accurate results. In multiple sclerosis (MS), several gene expression studies have been undertaken, however, the suitability of housekeeping genes to express stably in this disease is not yet explored. Recent research suggests that their expression level may vary under different experimental conditions. Hence it is indispensible to evaluate their expression stability to accurately normalize target gene transcripts. The present study aims to evaluate the expression stability of seven housekeeping genes in rat granule neurons treated with cerebrospinal fluid of MS patients. The selected reference genes were quantified by real time PCR and their expression stability was assessed using GeNorm and NormFinder algorithms. GeNorm identified transferrin receptor (Tfrc) and microglobulin beta-2 (B2m) the most stable genes followed by ribosomal protein L19 (Rpl19) whereas β-actin (ActB) and glyceraldehyde-3-phosphate-dehydrogenase (Gapdh) the most fluctuated ones in these neurons. NormFinder identified Tfrc as the best invariable gene followed by B2m and Rpl19. ActB and Gapdh were the least stable genes as analyzed by NormFinder algorithm. Both methods reported Tfrc and B2m the most stably expressed genes and Gapdh the least stable one. Altogether our data demonstrate the significance of pre-validation of housekeeping genes for accurate normalization and indicates Tfrc and B2m as best endogenous controls in MS. ActB and Gapdh are not recommended in gene expression studies related to current one.
Collapse
Affiliation(s)
- Deepali Mathur
- Department of Functional Biology, University of Valencia Valencia, Spain ; Multiple Sclerosis Laboratory, Department of Biomedicine, Prince Felipe Research Center Valencia, Spain
| | - Juan R Urena-Peralta
- Multiple Sclerosis Laboratory, Department of Biomedicine, Prince Felipe Research Center Valencia, Spain
| | - Gerardo Lopez-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia and INCLIVA Biomedical Research Institute Valencia, Spain
| | - Bonaventura Casanova
- CSUR-Esclerosi Múltiple, Hospital Universitari i Politècnic La Fe, Unitat Mixta d'Esclerosi Múltiple i Neurorregeneració de l'IIS-La Fe València, Spain
| | | | - Maria Burgal-Marti
- Multiple Sclerosis Laboratory, Department of Biomedicine, Prince Felipe Research Center Valencia, Spain
| |
Collapse
|
27
|
Crystallins and neuroinflammation: The glial side of the story. Biochim Biophys Acta Gen Subj 2015; 1860:278-86. [PMID: 26049079 DOI: 10.1016/j.bbagen.2015.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is an abundance of evidence to support the association of damaging neuroinflammation and neurodegeneration across a multitude of diseases. One of the links between these pathological phenomena is the role of chaperone proteins as both neuroprotective and immune-regulatory agents. SCOPE OF REVIEW Chaperone proteins are highly expressed at sites of neuroinflammation both in glial cells and in the injured neurons that initiate the immune response. For this reason, the use of chaperones as treatment for various diseases associated with neuroinflammation is a highly active area of investigation. This review explores the various ways that the small heat shock protein chaperones, α-crystallins, can affect glial cell function with a specific focus on their implication in the inflammatory response associated with neurodegenerative disorders, and their potential as therapeutic treatment. MAJOR CONCLUSIONS Although the mechanisms are still under investigation, a clear link has now been established between alpha-crystallins and neuroinflammation, especially through their roles in microglial and macroglial cells. Interestingly, similar to inflammation in itself, crystallins can have a beneficial or detrimental impact on the CNS based on the context and duration of the condition. GENERAL SIGNIFICANCE Overall this review points out the novel roles that chaperones such as alpha-crystallins can play outside of the classical protein folding pathways, and their potential in the development of new therapies for the treatment of neuroinflammatory/neurodegenerative diseases. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
|
28
|
Talla V, Koilkonda R, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, Guy J. Complex I subunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE. Invest Ophthalmol Vis Sci 2015; 56:1129-40. [PMID: 25613946 DOI: 10.1167/iovs.14-15950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To address the permanent disability induced by mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE). METHODS Mice sensitized for EAE were rescued by intravitreal injection of adeno-associated viral vector serotype 2 with the complex I subunit gene scAAV-NDUFA6Flag. Controls were injected with a mitochondrially targeted red fluorescent protein (scAAV-COX8-cherry). Another group received scAAV-COX8-cherry, but was not sensitized for EAE. Serial pattern electroretinograms (PERGs) and optical coherent tomography (OCT) evaluated visual function and structure of the retina at 1, 3, and 6 months post injection (MPI). Treated mice were killed 6 MPI for histopathology. Immunodetection of cleaved caspase 3 gauged apoptosis. Complex I activity was assessed spectrophotometrically. Expression of NDUFA6Flag in the retina and optic nerve were evaluated between 1 week to 1 month post injection by RT-PCR, immunofluorescence and immunoblotting. RESULTS Reverse transcription-PCR and immunoblotting confirmed NDUFA6Flag overexpression with immunoprecipitation and blue native PAGE showing integration into murine complex I. Overexpression of NDUFA6Flag in the visual system of EAE mice rescued retinal complex I activity completely, axonal loss by 73%, and retinal ganglion cell (RGC) loss by 88%, RGC apoptosis by 66%, and restored the 33% loss of complex I activity in EAE to normal levels; thereby, preventing loss of vision indicated by the 43% reduction in the PERG amplitudes of EAE mice. CONCLUSIONS NDUFA6 gene therapy provided long-term suppression of neurodegeneration in the EAE animal model suggesting that it may also ameliorate the mitochondrial dysfunction associated with permanent disability in optic neuritis and MS patients.
Collapse
Affiliation(s)
- Venu Talla
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| | - Rajeshwari Koilkonda
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| | - Vince Chiodo
- Departments of Ophthalmology, University of Florida, College of Medicine, Gainesville, Florida, United States
| | - Sanford L Boye
- Departments of Ophthalmology, University of Florida, College of Medicine, Gainesville, Florida, United States
| | - William W Hauswirth
- Departments of Ophthalmology, University of Florida, College of Medicine, Gainesville, Florida, United States
| | - John Guy
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
29
|
Guerau-de-Arellano M, Liu Y, Meisen WH, Pitt D, Racke MK, Lovett-Racke AE. Analysis of miRNA in Normal Appearing White Matter to Identify Altered CNS Pathways in Multiple Sclerosis. ACTA ACUST UNITED AC 2015; 1. [PMID: 26894232 DOI: 10.21767/2471-8153.100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genetic studies suggest that the immune system is the greatest genetic contributor to multiple sclerosis (MS) susceptibility. Yet, these immune-related genes do not explain why inflammation is limited to the CNS in MS. We hypothesize that there is an underlying dysregulation in the CNS of MS patients that makes them more vulnerable to CNS inflammation. The sparsity of CNS-related genes associated with MS suggests that epigenetic changes in the CNS may play a role. Thus, a miRNA profiling study was performed in NAWM of MS patients and control subjects to determine if specific CNS pathways can be identified that may be altered due to miRNA-mediated post-transcriptional dysregulation. There were 15 differentially expressed miRNAs found in the MS patients' NAWM. Pathway analysis indicated that the MAPK pathway and pathways associated with the blood-brain barrier were predicted to be significantly affected by these miRNAs. Using target predication and mRNA analysis, an inverse relationship was found between miR-191 and BDNF, SOX4, FZD5 and WSB1. The pathway and target analysis of the MS-associated miRNAs suggests that MS patients' CNS is more prone to inflammation and less capable of repair, yet enriched in neuroprotective mechanisms.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Walter H Meisen
- Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT.; Department of Neurology, The Ohio State University Wexner MedicalCenter, Columbus, OH, USA
| | - Michael K Racke
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurology, The Ohio State University Wexner MedicalCenter, Columbus, OH, USA
| | - Amy E Lovett-Racke
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
30
|
Agúndez JAG, García-Martín E, Martínez C, Benito-León J, Millán-Pascual J, Díaz-Sánchez M, Calleja P, Pisa D, Turpín-Fenoll L, Alonso-Navarro H, Ayuso-Peralta L, Torrecillas D, García-Albea E, Plaza-Nieto JF, Jiménez-Jiménez FJ. The GSTP1 gene variant rs1695 is not associated with an increased risk of multiple sclerosis. Cell Mol Immunol 2014; 12:777-9. [PMID: 25531394 DOI: 10.1038/cmi.2014.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- José A G Agúndez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
| | - Elena García-Martín
- Department of Biochemistry and Molecular Biology, University of Extremadura, Cáceres, Spain
| | - Carmen Martínez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
| | - Julián Benito-León
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain.,Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain.,Department of Medicine, University Complutense, Madrid, Spain
| | - Jorge Millán-Pascual
- Section of Neurology, Hospital La Mancha-Centro, Alcázar de San Juan (Ciudad Real), Spain
| | - María Díaz-Sánchez
- Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain.,Department of Medicine, University Complutense, Madrid, Spain
| | - Patricia Calleja
- Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain.,Department of Medicine, University Complutense, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Laura Turpín-Fenoll
- Section of Neurology, Hospital La Mancha-Centro, Alcázar de San Juan (Ciudad Real), Spain
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital La Mancha-Centro, Alcázar de San Juan (Ciudad Real), Spain.,Department of Medicine-Neurology, Hospital 'Príncipe de Asturias', Universidad de Alcalá, Alcalá de Henares (Madrid), Spain.,Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey (Madrid), Spain
| | - Lucía Ayuso-Peralta
- Department of Medicine-Neurology, Hospital 'Príncipe de Asturias', Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Dolores Torrecillas
- Department of Medicine-Neurology, Hospital 'Príncipe de Asturias', Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Esteban García-Albea
- Department of Medicine-Neurology, Hospital 'Príncipe de Asturias', Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | | | - Félix Javier Jiménez-Jiménez
- Department of Medicine-Neurology, Hospital 'Príncipe de Asturias', Universidad de Alcalá, Alcalá de Henares (Madrid), Spain.,Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey (Madrid), Spain
| |
Collapse
|
31
|
Ljubisavljevic S. Oxidative Stress and Neurobiology of Demyelination. Mol Neurobiol 2014; 53:744-758. [PMID: 25502298 DOI: 10.1007/s12035-014-9041-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/30/2014] [Indexed: 12/25/2022]
Abstract
Despite a large amount of research which aims at defining the pathophysiology of human demyelination (i.e., multiple sclerosis), etiological bases of disease have been unknown so far. The point of intersection of all assumed etiological factors, which are mainly based upon immunological cascades, is neuroinflammation. The precise definition of the place and role of all pathogenetic factors in the occurrence and development of the disease is of crucial importance for understanding the clinical nature and for finding more effective therapeutic options. There are few studies whose results give more precise data about the role and the importance of other factors in neuroinflammation, besides immunological ones, with regard to clinical and paraclinical correlates of the disease. The review integrates results found in previously performed studies which have evaluated oxidative stress participation in early and late neuroinflammation. The largest number of studies indicates that the use of antioxidants affects the change of neuroinflammation course under experimental conditions, which is reflected in the reduction of the severity and the total reversibility in clinical presentation of the disease, the faster achieving of remission, and the delayed and slow course of neuroinflammation. Therapies based on the knowledge of redox biology targeting free radical generation hold great promise in modulation of the neuroinflammation and its clinical presentations.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, Nis, 18000, Serbia.
- Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, Nis, 18000, Serbia.
| |
Collapse
|
32
|
Nicholas JA, Boster AL, Imitola J, O'Connell C, Racke MK. Design of oral agents for the management of multiple sclerosis: benefit and risk assessment for dimethyl fumarate. Drug Des Devel Ther 2014; 8:897-908. [PMID: 25045248 PMCID: PMC4094574 DOI: 10.2147/dddt.s50962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is the most recent oral disease-modifying therapy approved by the US Food and Drug Administration and is indicated for the treatment of relapsing forms of multiple sclerosis (MS). Prior to approval for use in MS, DMF and its active metabolite, monomethyl fumarate, had been used for decades as two of the fumaric acid esters in Fumaderm, a medication used in Europe for the treatment of psoriasis. The unique mechanism of action of DMF remains under evaluation; however, it has been shown to act through multiple pathways leading to shifts away from the Th1 proinflammatory response to the less inflammatory Th2 response. Preliminary data suggest that DMF may induce neuroprotective effects in central nervous system white matter, although further studies are needed to demonstrate these effects on inflammatory demyelination. The DMF Phase III clinical trials demonstrated its efficacy with regard to a reduction in the annualized relapse rate and reductions in new or enlarging T2 lesions and numbers of gadolinium-enhancing lesions on magnetic resonance imaging. DMF has a well-defined safety profile, given the experience with its use in the treatment of psoriasis, and more recently from the DMF clinical trials program and post-marketing era for treatment of MS. The safety profile and oral mode of administration of DMF place it as an attractive first-line therapy option for the treatment of relapsing forms of MS. Long-term observational studies will be needed to determine the effects of DMF on progression of disability in MS.
Collapse
Affiliation(s)
- Jacqueline Ann Nicholas
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Lee Boster
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA
| | - Jaime Imitola
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA ; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Colleen O'Connell
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA
| | - Michael Karl Racke
- Department of Neurology and Multiple Sclerosis Center, The Ohio State University, Columbus, OH, USA ; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
33
|
Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J. Glutathione in multiple sclerosis: More than just an antioxidant? Mult Scler 2014; 20:1425-31. [DOI: 10.1177/1352458514533400] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidative stress has been strongly implicated in both the inflammatory and neurodegenerative pathological mechanisms in multiple sclerosis (MS). In response to oxidative stress, cells increase and activate their cellular antioxidant mechanisms. Glutathione (GSH) is the major antioxidant in the brain, and as such plays a pivotal role in the detoxification of reactive oxidants. Previous research has shown that GSH homeostasis is altered in MS. In this review, we provide a comprehensive overview on GSH metabolism in brain cells, with a focus on its involvement in MS. The potential of GSH as an in vivo biomarker in MS is discussed, along with a short overview of improvements in imaging methods that allow non-invasive quantification of GSH in the brain. These methods might be instrumental in providing real-time measures of GSH, allowing the assessment of the oxidative state in MS patients and the monitoring of disease progression. Finally, the therapeutic potential of GSH in MS is discussed.
Collapse
Affiliation(s)
- Andreia N Carvalho
- Vrije Universiteit (VU) University Medical Center Amsterdam, The Netherlands
| | - Jamie L Lim
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Philip G Nijland
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Maarten E Witte
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Jack Van Horssen
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Alexoudi A, Zachaki S, Stavropoulou C, Chatzi I, Koumbi D, Stavropoulou K, Kollia P, Karageorgiou CE, Sambani C. CombinedGSTP1andNQO1germline polymorphisms in the susceptibility to Multiple Sclerosis. Int J Neurosci 2014; 125:32-7. [DOI: 10.3109/00207454.2014.899597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Evangelidou M, Karamita M, Vamvakas SS, Szymkowski DE, Probert L. Altered expression of oligodendrocyte and neuronal marker genes predicts the clinical onset of autoimmune encephalomyelitis and indicates the effectiveness of multiple sclerosis-directed therapeutics. THE JOURNAL OF IMMUNOLOGY 2014; 192:4122-33. [PMID: 24683189 DOI: 10.4049/jimmunol.1300633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a valuable model for studying immunopathology in multiple sclerosis (MS) and for exploring the interface between autoimmune responses and CNS tissue that ultimately leads to lesion development. In this study, we measured gene expression in mouse spinal cord during myelin oligodendrocyte gp35-55 peptide-induced EAE, using quantitative RT-PCR, to identify gene markers that monitor individual hallmark pathological processes. We defined a small panel of genes whose longitudinal expression patterns provided insight into the timing, interrelationships, and mechanisms of individual disease processes and the efficacy of therapeutics for the treatment of MS. Earliest transcriptional changes were upregulation of Il17a and sharp downregulation of neuronal and oligodendrocyte marker genes preceding clinical disease onset, whereas neuroinflammatory markers progressively increased as symptoms and tissue lesions developed. EAE-induced gene-expression changes were not altered in mice deficient in IKKβ in cells of the myeloid lineage compared with controls, but the administration of a selective inhibitor of soluble TNF to mice from the day of immunization delayed changes in the expression of innate inflammation, myelin, and neuron markers from the presymptomatic phase. Proof of principle that the gene panel shows drug screening potential was obtained using a well-established MS therapeutic, glatiramer acetate. Prophylactic treatment of mice with glatiramer acetate normalized gene marker expression, and this correlated with the level of therapeutic success. These results show that neurons and oligodendrocytes are highly sensitive to CNS-directed autoimmunity before the development of clinical symptoms and immunopathology and reveal a role for soluble TNF in mediating the earliest changes in gene expression.
Collapse
Affiliation(s)
- Maria Evangelidou
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | |
Collapse
|
36
|
Gray E, Kemp K, Hares K, Redondo J, Rice C, Scolding N, Wilkins A. Increased microglial catalase activity in multiple sclerosis grey matter. Brain Res 2014; 1559:55-64. [PMID: 24602691 DOI: 10.1016/j.brainres.2014.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS.
Collapse
Affiliation(s)
- Elizabeth Gray
- MS Labs, Burden Centre, University of Bristol, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1JB Bristol, UK
| | - Kevin Kemp
- MS Labs, Burden Centre, University of Bristol, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1JB Bristol, UK
| | - Kelly Hares
- MS Labs, Burden Centre, University of Bristol, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1JB Bristol, UK
| | - Julianna Redondo
- MS Labs, Burden Centre, University of Bristol, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1JB Bristol, UK
| | - Claire Rice
- MS Labs, Burden Centre, University of Bristol, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1JB Bristol, UK
| | - Neil Scolding
- MS Labs, Burden Centre, University of Bristol, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1JB Bristol, UK
| | - Alastair Wilkins
- MS Labs, Burden Centre, University of Bristol, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1JB Bristol, UK.
| |
Collapse
|
37
|
Raddatz BBR, Hansmann F, Spitzbarth I, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R. Transcriptomic meta-analysis of multiple sclerosis and its experimental models. PLoS One 2014; 9:e86643. [PMID: 24475162 PMCID: PMC3903571 DOI: 10.1371/journal.pone.0086643] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022] Open
Abstract
Background Multiple microarray analyses of multiple sclerosis (MS) and its experimental models have been published in the last years. Objective Meta-analyses integrate the information from multiple studies and are suggested to be a powerful approach in detecting highly relevant and commonly affected pathways. Data sources ArrayExpress, Gene Expression Omnibus and PubMed databases were screened for microarray gene expression profiling studies of MS and its experimental animal models. Study eligibility criteria Studies comparing central nervous system (CNS) samples of diseased versus healthy individuals with n >1 per group and publically available raw data were selected. Material and Methods Included conditions for re-analysis of differentially expressed genes (DEGs) were MS, myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) in rats, proteolipid protein-induced EAE in mice, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and a transgenic tumor necrosis factor-overexpressing mouse model (TNFtg). Since solely a single MS raw data set fulfilled the inclusion criteria, a merged list containing the DEGs from two MS-studies was additionally included. Cross-study analysis was performed employing list comparisons of DEGs and alternatively Gene Set Enrichment Analysis (GSEA). Results The intersection of DEGs in MS, EAE, TMEV-IDD, and TNFtg contained 12 genes related to macrophage functions. The intersection of EAE, TMEV-IDD and TNFtg comprised 40 DEGs, functionally related to positive regulation of immune response. Over and above, GSEA identified substantially more differentially regulated pathways including coagulation and JAK/STAT-signaling. Conclusion A meta-analysis based on a simple comparison of DEGs is over-conservative. In contrast, the more experimental GSEA approach identified both, a priori anticipated as well as promising new candidate pathways.
Collapse
Affiliation(s)
- Barbara B. R. Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
38
|
Lindberg RLP, Kappos L. Transcriptional profiling of multiple sclerosis: towards improved diagnosis and treatment. Expert Rev Mol Diagn 2014; 6:843-55. [PMID: 17140371 DOI: 10.1586/14737159.6.6.843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of high-throughput techniques, for example cDNA and oligonucleotide microarrays, for simultaneous analysis of the transcriptional expression of thousands of genes, even the entire genome, has provided new possibilities to get better insights into the pathogenesis of various diseases. This technology has also been applied to define biomarkers and, most importantly, possible new candidate targets for novel treatments. In multiple sclerosis, microarray studies have been performed on brain autopsy and biopsy specimens and peripheral blood. The effects of current treatments for multiple sclerosis, especially interferon-beta and glatiramer acetate, on transcriptional profiles, have also been investigated. We review the main findings revealed from these studies. The emerging potential of microarray technology to define gene signatures, diagnostic and prognostic markers for disease course, and treatment response in multiple sclerosis will be discussed.
Collapse
Affiliation(s)
- Raija L P Lindberg
- Outpatient Clinic Neurology-Neurosurgery and Department of Research, Pharmazentrum University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | | |
Collapse
|
39
|
Chen YT, Chen SY, Lin YJ, Huang CM, Chang YY, Tsai FJ. Association between XRCC3 Thr241Met SNP and systemic lupus erythematosus in Han Chinese patients in Taiwan, and a meta-analysis of healthy populations. J Clin Lab Anal 2014; 28:118-23. [PMID: 24395651 DOI: 10.1002/jcla.21654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND X-ray repair cross-complementing group 3 (XRCC3) plays a crucial role in mammalian DNA repair processes. The polymorphism of XRCC3, rs861539 (Thr > Met at codon 241), is common in populations worldwide. This study analyzed the relationship between this functional single nucleotide polymorphism and systemic lupus erythematosus (SLE) in the Han Chinese population in Taiwan (HC-TW). METHODS Genotyping was performed using polymerase chain reaction restriction fragment length polymorphism on 163 SLE patients and 191 healthy participants in the control group. RESULTS The data showed that the genotype frequency at codon 241 did not differ significantly between the SLE patients and the healthy participants in the control group; however, the allele frequency analysis indicated a significant difference between these groups. In addition, we used the genotype and allele frequencies of 191 healthy HC-TW participants for comparison with HapMap populations. The results indicated a significant difference of XRCC3 Thr241Met allele and genotype frequencies between the HC-TW population and HapMap populations, except for the other Han Chinese populations. A prior study showed that Thr241 > Met substitution in XRCC3 protein was positive as damaging and functional consequences as well. CONCLUSION This is the first study to demonstrate the difference of XRCC3 Thr241 > Met variant between the HC-TW population and HapMap population.
Collapse
Affiliation(s)
- Yng-Tay Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Dagley LF, Croft NP, Isserlin R, Olsen JB, Fong V, Emili A, Purcell AW. Discovery of novel disease-specific and membrane-associated candidate markers in a mouse model of multiple sclerosis. Mol Cell Proteomics 2013; 13:679-700. [PMID: 24361864 DOI: 10.1074/mcp.m113.033340] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis is a chronic demyelinating disorder characterized by the infiltration of auto-reactive immune cells from the periphery into the central nervous system resulting in axonal injury and neuronal cell death. Experimental autoimmune encephalomyelitis represents the best characterized animal model as common clinical, histological, and immunological features are recapitulated. A label-free mass spectrometric proteomics approach was used to detect differences in protein abundance within specific fractions of disease-affected tissues including the soluble lysate derived from the spinal cord and membrane protein-enriched peripheral blood mononuclear cells. Tissues were harvested from actively induced experimental autoimmune encephalomyelitis mice and sham-induced ("vehicle" control) counterparts at the disease peak followed by subsequent analysis by nanoflow liquid chromatography tandem mass spectrometry. Relative protein quantitation was performed using both intensity- and fragmentation-based approaches. After statistical evaluation of the data, over 500 and 250 differentially abundant proteins were identified in the spinal cord and peripheral blood mononuclear cell data sets, respectively. More than half of these observations have not previously been linked to the disease. The biological significance of all candidate disease markers has been elucidated through rigorous literature searches, pathway analysis, and validation studies. Results from comprehensive targeted mass spectrometry analyses have confirmed the differential abundance of ∼ 200 candidate markers (≥ twofold dysregulated expression) at a 70% success rate. This study is, to our knowledge, the first to examine the cell-surface proteome of peripheral blood mononuclear cells in experimental autoimmune encephalomyelitis. These data provide a unique mechanistic insight into the dynamics of peripheral immune cell infiltration into CNS-privileged sites at a molecular level and has identified several candidate markers, which represent promising targets for future multiple sclerosis therapies. The mass spectrometry proteomics data associated with this manuscript have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000255.
Collapse
Affiliation(s)
- Laura F Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Khalili M, Eghtesadi S, Mirshafiey A, Eskandari G, Sanoobar M, Sahraian MA, Motevalian A, Norouzi A, Moftakhar S, Azimi A. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci 2013; 17:16-20. [PMID: 23485514 DOI: 10.1179/1476830513y.0000000060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Multiple sclerosis is a neurodegenerative and demyelinating disease of central nervous system. High levels of oxidative stress are associated with inflammation and play an important role in pathogenesis of multiple sclerosis. This double-blind, randomized controlled clinical study was carried out to determine the effect of daily consumption of lipoic acid on oxidative stress among multiple sclerosis patients. METHODS A total of 52 relapsing-remitting multiple sclerosis patients, aged 18-50 years with Expanded Disability Status Scale ≤5.5 were assigned to consume either lipoic acid (1200 mg/day) or placebo capsules for 12 weeks. Fasting blood samples were collected before the first dose taken and 12 hours after the last. Dietary intakes were obtained by using 3-day dietary records. RESULTS Consumption of lipoic acid resulted in a significant improvement of total antioxidant capacity (TAC) in comparison to the placebo group (P = 0.004). Although a significant change of TAC (-1511 mmol/L, P = 0.001) was found within lipoic acid group, other markers of oxidative stress including superoxide dismutase activity, glutathione peroxidase activity, and malondialdehyde levels were not affected by lipoic acid consumption. DISCUSSION These results suggest that 1200 mg of lipoic acid improves serum TAC among multiple sclerosis patients but does not affect other markers of oxidative stress.
Collapse
|
42
|
Ljubisavljevic S, Stojanovic I, Cvetkovic T, Vojinovic S, Stojanov D, Stojanovic D, Stefanovic N, Pavlovic D. Erythrocytes' antioxidative capacity as a potential marker of oxidative stress intensity in neuroinflammation. J Neurol Sci 2013; 337:8-13. [PMID: 24269090 DOI: 10.1016/j.jns.2013.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 11/25/2022]
Abstract
The study is designed to assess the oxidative stress intensity in erythrocytes obtained from patients in different clinical phenotypes of neuroinflammation, defined as clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis (RRMS). Advanced oxidation protein products (AOPP), malondialdehyde (MDA) and superoxide dismutase (SOD) activity were measured and compared with patients' clinical severity (expanded disability status scale-EDSS), radiological findings (gadolinium enhancement lesion volume-Gd+) and disease duration (DD). AOPP, MDA values and SOD activity were significantly higher in both study patients than in the control group (p < 0.05). While AOPP and MDA approached higher values in RRMS, compared to the CIS group (p > 0.05, p < 0.05, respectively), SOD activity showed higher values in CIS than in RRMS patients (p < 0.05). Both study patients with higher EDSS, higher number of total radiological lesions and longer DD, had higher AOPP and MDA content (p < 0.05, p > 0.05). SOD activity was lower in both study patients with higher EDSS, higher number of total radiological lesions and longer DD (p < 0.05, p > 0.05). There were positive correlations between AOPP and DD and EDSS in CIS patients (p < 0.01), and MDA levels and DD, EDSS and Gd+ in CIS, as well as with EDSS in RRMS patients (p < 0.01). There were negative correlations between SOD activity and DD and EDSS in both study patients (p < 0.01), as well as, between SOD activity and Gd+ in CIS patients (p < 0.01). The measured erythrocytes' biomarkers might represent one of the important biomarkers for the evaluation of the oxidative status of neuroinflammation and disease severity, especially in its early phase, defined as CIS.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, 18000 Nis, Serbia; Institute for Pathophysiology, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia.
| | - Ivana Stojanovic
- Institute for Biochemistry, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Tatjana Cvetkovic
- Institute for Biochemistry, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Slobodan Vojinovic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, 18000 Nis, Serbia
| | - Dragan Stojanov
- Center for Radiology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, 18000 Nis, Serbia
| | - Dijana Stojanovic
- Institute for Pathophysiology, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Nikola Stefanovic
- Department for Pharmacy, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Dusica Pavlovic
- Institute for Biochemistry, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| |
Collapse
|
43
|
Benjamins JA. Direct effects of secretory products of immune cells on neurons and glia. J Neurol Sci 2013; 333:30-6. [DOI: 10.1016/j.jns.2013.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022]
|
44
|
Ljubisavljevic S, Stojanovic I, Vojinovic S, Stojanov D, Stojanovic S, Kocic G, Savic D, Cvetkovic T, Pavlovic D. Cerebrospinal fluid and plasma oxidative stress biomarkers in different clinical phenotypes of neuroinflammatory acute attacks. Conceptual accession: from fundamental to clinic. Cell Mol Neurobiol 2013; 33:767-77. [PMID: 23677512 PMCID: PMC11497912 DOI: 10.1007/s10571-013-9944-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/05/2013] [Indexed: 12/18/2022]
Abstract
Oxidative stress is revealed as the main contributor in the pathophysiology of neuroinflammation. Analyzing plasma and cerebrospinal fluid (CSF) of patients with different clinical phenotypes of neuroinflammation, defined as clinically isolated syndrome (CIS), and those defined as relapsing remitting multiples sclerosis (RRMS), we tested peripheral and CNS oxidative stress intensity in these neuroinflammatory acute attacks. All obtained values changes were assessed regarding clinical and radiological features of CNS inflammation. The obtained results revealed an increase in malondialdehyde levels in plasma and CSF in CIS and RRMS patients compared to control values (p < 0.05). The obtained values were most prevailed in both study group, CIS and RRMS, in patients with severe clinical presentation (p < 0.05). Measured activities of catalase and total superoxide dismutase were higher in CIS and RRMS patients in plasma compared to control values (p < 0.05), parallel with an increased catalase activity and decrease in superoxide dismutase activity in CSF regarding values obtained in control group (p < 0.05). The positive correlations regarding clinical score were obtained for all tested biomarkers (p < 0.01). Although the positive correlations were observed in MDA levels in plasma and CSF, for both study patients, and their radiological findings (p < 0.01), and a negative correlation in plasma SOD activity and CIS patients' radiological findings (p < 0.01), no other similar correlations were obtained. These findings might be useful in providing the earliest antioxidative treatment in neuroinflammation aimed to preserve total and CNS antioxidative capacity parallel with delaying irreversible, later neurological disabilities.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Centre Nis, Bul. Dr Zorana Djindjica 48, 18000, Nis, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Borjabad A, Volsky DJ. Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer's disease, and Multiple Sclerosis. J Neuroimmune Pharmacol 2012; 7:914-26. [PMID: 23065460 PMCID: PMC3515772 DOI: 10.1007/s11481-012-9409-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/26/2012] [Indexed: 01/01/2023]
Abstract
HIV-Associated Neurocognitive Disorders (HAND) is a common manifestation of HIV infection that afflicts about 50 % of HIV-positive individuals. As people with access to antiretroviral treatments live longer, HAND can be found in increasing segments of populations at risk for other chronic, neurodegenerative conditions such as Alzheimer's disease (AD) and Multiple Sclerosis (MS). If brain diseases of diverse etiologies utilize similar biological pathways in the brain, they may coexist in a patient and possibly exacerbate neuropathogenesis and morbidity. To test this proposition, we conducted comparative meta-analysis of selected publicly available microarray datasets from brain tissues of patients with HAND, AD, and MS. In pair-wise and three-way analyses, we found a large number of dysregulated genes and biological processes common to either HAND and AD or HAND and MS, or to all three diseases. The common characteristic of all three diseases was up-regulation of broadly ranging immune responses in the brain. In addition, HAND and AD share down-modulation of processes involved, among others, in synaptic transmission and cell-cell signaling while HAND and MS share defective processes of neurogenesis and calcium/calmodulin-dependent protein kinase activity. Our approach could provide insight into the identification of common disease mechanisms and better intervention strategies for complex neurocognitive disorders.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University, New York, NY 10019, USA.
| | | |
Collapse
|
46
|
Systemic treatment with the inhibitory neurotransmitter γ-aminobutyric acid aggravates experimental autoimmune encephalomyelitis by affecting proinflammatory immune responses. J Neuroimmunol 2012. [PMID: 23194644 DOI: 10.1016/j.jneuroim.2012.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptomic and proteomic analyses of multiple sclerosis (MS) lesions indicate alterations in the gamma-aminobutyric acid (GABA) inhibitory system, suggesting its involvement in the disease process. To further elucidate the role of GABA in central nervous system (CNS) inflammation in vivo, the chronic myelin oligodendrocyte glycoprotein (MOG)(35-55) experimental autoimmune encephalomyelitis (EAE) model was used. Daily GABA injections (200mg/kg) from day 3 onwards significantly augmented disease severity, which was associated with increased CNS mRNA expression levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. GABA-treated mice showed enhanced MOG-dependent proliferation and were skewed towards a T helper 1 phenotype. Moreover, in vitro, the lipopolysaccharide (LPS)-induced increase in interleukin (IL)-6 production by macrophages was enhanced at low GABA concentrations (0.03-0.3mM). In sharp contrast to exogenous GABA administration, endogenous GABA increment by systemic treatment with the GABA-transaminase inhibitor vigabatrin (250mg/kg) had prophylactic as well as therapeutic potential in EAE. Together, these results indicate an immune amplifying role of GABA in neuroinflammatory diseases like MS.
Collapse
|
47
|
Evaluation of serum oxidant/antioxidant balance in multiple sclerosis. Acta Neurol Belg 2012; 112:275-80. [PMID: 22450709 DOI: 10.1007/s13760-012-0059-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/02/2011] [Indexed: 01/26/2023]
Abstract
The total oxidative status (TOS)/total anti-oxidative status (TAS) ratio can provide information on an individual's absolute oxidative stress index (OSI). We investigated the alterations in the oxidant-antioxidant balance by measuring the oxidant parameters OSI, TOS, and malondialdehyde (MDA) together with the antioxidant parameters such as TAS, and superoxide dismutase (SOD) in patients with relapsing remitting multiple sclerosis (MS). To our knowledge, this is the first study to evaluate OSI in patients with relapsing remitting MS. 35 ambulatory patients with relapsing-remitting MS (35.8 ± 8.7 years) and 32 age- and activity-matched healthy control subjects (35.1 ± 3.7 years) that participated in the study. Serum TAS and TOS levels were determined using new automated methods. MS patients had higher concentrations of MDA (151.5 ± 51.1 vs. 111.3 ± 27.4 nmol/g protein, respectively; p < 0.001), TOS (148.1 ± 162.5 vs. 48.3 ± 46.4 mmol H(2)O(2) Equiv./g protein, respectively; p = 0.002), OSI (21124 ± 32543 vs. 5294 ± 5562, respectively; p = 0.008), and SOD (4.5 ± 0.7 vs. 3.4 ± 0.6 U/L, respectively; p < 0.001) compared with healthy controls. On the other hand, MS patients had lower concentrations of NO (12.3 ± 6.9 vs. 17.4 ± 2.5 μmol/g protein, respectively; p < 0.001) and TAS (0.82 ± 0.27 vs. 0.26 ± 0.15, respectively; p = 0.011) compared with healthy controls. In conclusion, these findings indicate that the oxidative stress plays an important role in the pathogenesis of MS.
Collapse
|
48
|
Sánchez-Pla A, Reverter F, Ruíz de Villa MC, Comabella M. Transcriptomics: mRNA and alternative splicing. J Neuroimmunol 2012; 248:23-31. [PMID: 22626445 DOI: 10.1016/j.jneuroim.2012.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/27/2022]
Abstract
Transcriptomics has emerged as a powerful approach for biomarker discovery. In the present review, the two main types of high throughput transcriptomic technologies - microarrays and next generation sequencing - that can be used to identify candidate biomarkers are briefly described. Microarrays, the mainstream technology of the last decade, have provided hundreds of valuable datasets in a wide variety of diseases including multiple sclerosis (MS), in which this approach has been used to disentangle different aspects of its complex pathogenesis. RNA-seq, the current next generation sequencing approach, is expected to provide similar power as microarrays but extending their capabilities to aspects up to now more difficult to analyse such as alternative splicing and discovery of novel transcripts.
Collapse
|
49
|
Guevara-Lora I. Kinin-mediated inflammation in neurodegenerative disorders. Neurochem Int 2012; 61:72-8. [PMID: 22554400 DOI: 10.1016/j.neuint.2012.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/01/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023]
Abstract
The mediatory role of kinins in both acute and chronic inflammation within nervous tissues has been widely described. Bradykinin, the major representative of these bioactive peptides, is one of a few mediators of inflammation that directly stimulates afferent nerves due to the broad expression of specific kinin receptors in cell types in these tissues. Moreover, kinins may be delivered to a site of injury not only after their production at the endothelium surface but also following their local production through the enzymatic degradation of kininogens at the surface of nerve cells. A strong correlation between inflammatory processes and neurodegeneration has been established. The activation of nerve cells, particularly microglia, in response to injury, trauma or infection initiates a number of reactions in the neuronal neighborhood that can lead to cell death after the prolonged action of inflammatory substances. In recent years, there has been a growing interest in the effects of kinins on neuronal destruction. In these studies, the overexpression of proteins involved in kinin generation or of kinin receptors has been observed in several neurologic disorders including neurodegenerative diseases such Alzheimer's disease and multiple sclerosis as well as disorders associated with a deficiency in cell communication such as epilepsy. This review is focused on recent findings that provide reliable evidence of the mediatory role of kinins in the inflammatory responses associated with different neurological disorders. A deeper understanding of the role of kinins in neurodegenerative diseases is likely to promote the future development of new therapeutic strategies for the control of these disorders. An example of this could be the prospective use of kinin receptor antagonists.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
50
|
Shyu HY, Shieh JC, Ji-Ho L, Wang HW, Cheng CW. Polymorphisms of DNA repair pathway genes and cigarette smoking in relation to susceptibility to large artery atherosclerotic stroke among ethnic Chinese in Taiwan. J Atheroscler Thromb 2012; 19:316-25. [PMID: 22277767 DOI: 10.5551/jat.10967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Cigarette-smoking induced oxidative DNA damage to endothelial cells has been reported to play an etiological role in atherosclerosis development. Individual vulnerability to oxidative stress through smoking exposure and the ability to repair DNA damage, which plays a critical role in modifying the risk susceptibility of large artery atherosclerotic (LAA) stroke, is hypothesized. Thus, we examined the effect of genetic polymorphisms of DNA repair pathway genes and cigarette smoking in relation to risk susceptibility of LAA stroke. METHODS We enrolled 116 LAA stroke patients and 315 healthy controls from the Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan. Genotyping of polymorphisms of the OGG1 (Ser326Cys), XRCC1 (Arg399Gln), ERCC2 (Lys751Gln), and ERCC5 (Asp1104His) genes was performed and used to evaluate LAA stroke susceptibility. RESULTS Of those non-synonymous polymorphisms, the ERCC2 Lys751Gln variant was found to be associated with LAA stroke risk (OR: 1.69, 95%CI: 1.02-2.86), and this association was more pronounced in smokers, manifesting a 2.73-fold increased risk of LAA stroke (p=0.027). A joint effect on risk elevation of LAA stroke was seen in those patients with OGG1 and ERCC2 polymorphisms (OR: 2.75, 95%CI: 1.26-6.00). Moreover, among smokers carrying the OGG1 Ser326Cys polymorphism, there was a tendency toward an increased risk of LAA stroke in those patients who had a greater number of high-risk genotypes of XRCC1, ERCC2, and ERCC5 polymorphisms (p(trend)=0.010). CONCLUSION The susceptible polymorphisms of DNA repair pathway genes may have a modifying effect on the elevated risk of LAA stroke in smokers among ethnic Chinese in Taiwan.
Collapse
Affiliation(s)
- Hann-Yeh Shyu
- Section of Neurology, Department of Internal Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|