1
|
Yue X, Fu Y, Li Z, Zou Y, Dai Y. Network pharmacology and untargeted metabolomic-based investigation of anti-osteoporotic effects of viscozyme-assisted polysaccharide from Portulaca oleracea L. J Pharm Biomed Anal 2024; 243:116104. [PMID: 38513501 DOI: 10.1016/j.jpba.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Osteoporosis is a metabolic bone disease closely associated with oxidative stress. We had previously confirmed that the Viscozyme-assisted polysaccharide from Portulaca oleracea L (VPOP1) protects against antioxidant stress and evaluated the structure of VPOP1. In this study, we aimed to explore the anti-osteoporotic effects of VPOP1 on H2O2-induced osteoblast apoptosis. In addition, untargeted zebrafish metabolomics based on UPLC-Q-Orbitrap-HRMS was used to investigate the potential anti-osteoporotic mechanisms of VPOP1. The levels of Bcl-2 decreased significantly and those of caspase-3, Bax, and cytochrome C increased after treatment with H2O2. VPOP1 inhibited apoptosis in H2O2-induced MC3T3 cells. Metabolomic analyses showed that 28 potential biomarkers were gradually restored to normal levels after treatment with VPOP1 compared with that in the model group. Among them, leukotrienes D4 and A4, L-dopa, and L-tyrosine are important biomarkers and therapeutic targets. Pathway analysis revealed that arachidonic acid, tyrosine, phenylalanine, and sphingolipid metabolism were the major intervening pathways. Collectively, these results help us understand the protective activity of large molecular weight compounds, such as VPOP1, against osteoporosis.
Collapse
Affiliation(s)
- Xitao Yue
- School of Medical Information, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yunhua Fu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhuoran Li
- School of Medical Information, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuanjun Zou
- School of Medical Information, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
2
|
Mao X, Chen J, Yao Y, Liu D, Wang H, Chen Y. Progress in phosphorylation of natural products. Mol Biol Rep 2024; 51:697. [PMID: 38802698 DOI: 10.1007/s11033-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Natural medicines are a valuable resource for the development of new drugs. However, factors such as low solubility and poor bioavailability of certain constituents have hindered their efficacy and potential as pharmaceuticals. Structural modification of natural products has emerged as an important research area for drug development. Phosphorylation groups, as crucial endogenous active groups, have been extensively utilized for structural modification and development of new drugs based on natural molecules. Incorporating phosphate groups into natural molecules not only enhances their stability, bioavailability, and pharmacological properties, but also improves their biological activity by altering their charge, hydrogen bonding, and spatial structure. This review summarizes the phosphorylation mechanism, modification approaches, and biological activity enhancement of natural medicines. Notably, compounds such as polysaccharides, flavonoids, terpenoids, anthraquinones, and coumarins exhibit increased antioxidation, anticancer, antiviral, immune regulatory, Antiaging, enzyme inhibition, bacteriostasis, liver protection, and lipid-lowering effects following phosphorylation modification.
Collapse
Affiliation(s)
- Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Defu Liu
- Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Haiying Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Tang Y, Zhu Y, Wang X, Peng H, Wang Z, Yue C, Wang L, Bai Z, Li P, Luo D. Study of the structural characterization, physicochemical properties and antioxidant activities of phosphorylated long-chain inulin with different degrees of substitution. Int J Biol Macromol 2024; 263:130139. [PMID: 38354927 DOI: 10.1016/j.ijbiomac.2024.130139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, phosphorylated derivatives of long-chain inulin with different substitution degrees were prepared. The synthesized samples were named PFXL-1, PFXL-2, PFXL-3, and PFXL-4 according to their degree of substitution (from low to high). The structures of FXL and PFXL were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy, and the results indicated the successful introduction of phosphate groups. FXL and PFXL were composed of two types of sugar, fructose and glucose, with a molar ratio of 0.977:0.023. The SEM results showed that phosphorylation changed the morphology of FXL from an irregular mass to small spherical aggregates. The XRD pattern showed that the crystallinity was reduced by the introduction of phosphate groups. The Mw of FXL was 2649 g/mol, and the Mw of PFXL-4 increased the most (2965 g/mol). Additionally, PFXL was more stable and uniform, and the absolute value of the PFXL potential reached 7.83 mV. Phosphorylation decreased the weight loss rate of FXL and improved the viscoelastic properties and antioxidant activity of FXL. This study presents a method for the modification of FXL, demonstrating that phosphorylation can enhance its physicochemical properties and physiological activity and suggesting its potential as a functional food and quality modifier.
Collapse
Affiliation(s)
- Yu Tang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Zhu
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaojing Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Huainan Peng
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziyu Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chonghui Yue
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China.
| | - Libo Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Zhouya Bai
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Peiyan Li
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Denglin Luo
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
4
|
Yin K, Sheng J, Chen J, Gao F, Miao C, Liu D. Protective effect of phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide on vascular endothelial cells in vitro and in vivo. Chem Biol Drug Des 2023; 102:1213-1230. [PMID: 37550016 DOI: 10.1111/cbdd.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The purpose of this study was to prepare phosphorylated Athyrium multidentatum (Doll.) Ching polysaccharide (PPS) and investigate its protective effect on vascular endothelial cells (VECs) in vitro and in vivo and the underlying mechanisms. Sodium tripolyphosphate (STPP) and sodium trimetaphosphate (STMP) were used as phosphorylation reagents and PPS was characterized by Fourier transform infrared (FT-IR), 13 C nuclear magnetic resonance (13 C NMR) and 31 P nuclear magnetic resonance (31 P NMR) spectra. Chemical analysis demonstrated that PPS was composed of mannose, glucosamine, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose with a molar ratio of 11.36:0.42:4.03:1.12:1.81:0.26:33.25:24.12:6.85:14.46:2.32 and a molecular weight of 28,837 Da. Results from in vitro and in vivo assays revealed that PPS protected human umbilical vein endothelial cells (HUVECs) against H2 O2 -induced oxidative injury and attenuated D-galactose-induced VECs damage in mice. RNA sequencing (RNA-seq) analysis identified 18 differentially expressed genes (DEGs) between D-galactose-treated and PPS-pretreated mice abdominal aorta. A deep analysis of these DEGs disclosed that PPS regulated the expression of genes involved in the functions of vascular endothelium repairment, cell growth and proliferation, cell survival and apoptosis, inflammation, angiogenesis and antioxidant, indicating that these biological processes might play crucial roles in the protective actions of PPS on VECs.
Collapse
Affiliation(s)
- Kaiyue Yin
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiwen Sheng
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Jiyu Chen
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Changqing Miao
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Dongmei Liu
- Department of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
5
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Li N, Wang C, Georgiev MI, Bajpai VK, Tundis R, Simal-Gandara J, Lu X, Xiao J, Tang X, Qiao X. Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci Technol 2021; 111:360-377. [DOI: 10.1016/j.tifs.2021.03.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Mzoughi Z, Majdoub H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. Int J Biol Macromol 2021; 173:554-579. [PMID: 33508358 DOI: 10.1016/j.ijbiomac.2021.01.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.
Collapse
Affiliation(s)
- Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia.
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
9
|
Liu H, Li F, Luo P. Effect of Carboxymethylation and Phosphorylation on the Properties of Polysaccharides from Sepia esculenta Ink: Antioxidation and Anticoagulation in Vitro. Mar Drugs 2019; 17:md17110626. [PMID: 31683929 PMCID: PMC6891342 DOI: 10.3390/md17110626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
To investigate the effect of carboxymethylation and phosphorylation modification on Sepia esculenta ink polysaccharide (SIP) properties, this study prepared carboxymethyl SIP (CSIP) with the chloracetic acid method, and phosphorylated SIP (PSIP) with the sodium trimetaphosphate (STMP)/sodium tripolyphosphate (STPP) method, on the basis of an orthogonal experiment. The in vitro antioxidant and anticoagulant activities of the derivatives were determined by assessing the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals, which activated the partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). The results showed that SIP was modified successfully to be CSIP and PSIP, and degrees of substitution (DSs) of the two products were 0.9913 and 0.0828, respectively. Phosphorylation efficiently improved the antioxidant property of SIP, and the IC50 values of PSIP on DPPH and hydroxyl radicals decreased by 63.25% and 13.77%, respectively. But carboxymethylation reduced antioxidant activity of the native polysaccharide, IC50 values of CSIP on the DPPH and hydroxyl radicals increased by 16.74% and 6.89%, respectively. SIP significantly prolonged the APTT, PT, and TT in a dose-dependent fashion, suggesting that SIP played an anticoagulant action through intrinsic, extrinsic, and common coagulation pathways. CSIP and PSIP both possessed a stronger anticoagulant capacity than SIP via the same pathways; moreover, CSIP was observed to be more effective in prolonging APTT and PT than PSIP.
Collapse
Affiliation(s)
- Huazhong Liu
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fangping Li
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ping Luo
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
10
|
Ma X, Wang H, Boyd WW, Cheng M, Yao C, Lei G. Thermal stability enhancement of guar‐based hydraulic fracturing fluids by phosphate treatment. J Appl Polym Sci 2019. [DOI: 10.1002/app.47119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- X. Ma
- School of Petroleum EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
- Department of Chemical & Biomolecular EngineeringUniversity of Connecticut Storrs Connecticut 06269
| | - H. Wang
- School of Petroleum EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - W. W. Boyd
- Department of Chemical & Biomolecular EngineeringUniversity of Connecticut Storrs Connecticut 06269
| | - M. Cheng
- Department of Resources and EnvironmentBinzhou University Binzhou Shandong 256600 China
| | - C. Yao
- School of Petroleum EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - G. Lei
- School of Petroleum EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| |
Collapse
|
11
|
Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydr Polym 2018; 181:19-26. [DOI: 10.1016/j.carbpol.2017.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023]
|
12
|
Gupta P, Diwan B. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2017; 13:58-71. [PMID: 28352564 PMCID: PMC5361134 DOI: 10.1016/j.btre.2016.12.006] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic) biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS) released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms - mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.
Collapse
|
13
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Zhao R, Zhang T, Ma B, Li X. Antitumor Activity ofPortulaca OleraceaL. Polysaccharide on HeLa Cells Through Inducing TLR4/NF-κB Signaling. Nutr Cancer 2016; 69:131-139. [DOI: 10.1080/01635581.2017.1248294] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5692852. [PMID: 26682009 PMCID: PMC4670676 DOI: 10.1155/2016/5692852] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022]
Abstract
It is widely acknowledged that the excessive reactive oxygen species (ROS) or reactive nitrogen species (RNS) induced oxidative stress will cause significant damage to cell structure and biomolecular function, directly or indirectly leading to a number of diseases. The overproduction of ROS/RNS will be balanced by nonenzymatic antioxidants and antioxidant enzymes. Polysaccharide or glycoconjugates derived from natural products are of considerable interest from the viewpoint of potent in vivo and in vitro antioxidant activities recently. Particularly, with regard to the in vitro antioxidant systems, polysaccharides are considered as effective free radical scavenger, reducing agent, and ferrous chelator in most of the reports. However, the underlying mechanisms of these antioxidant actions have not been illustrated systematically and sometimes controversial results appeared among various literatures. To address this issue, we summarized the latest discoveries and advancements in the study of antioxidative polysaccharides and gave a detailed description of the possible mechanisms.
Collapse
|
16
|
Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J, Yan Y, Cao M, Lu L, Guan J, Zhang D, Lin Y. Molecular Modification of Polysaccharides and Resulting Bioactivities. Compr Rev Food Sci Food Saf 2015; 15:237-250. [DOI: 10.1111/1541-4337.12161] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Shijie Li
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
- Affiliated Huaian Hospital; Xuzhou Medical College; Huaian 223002 Jiangsu PR China
| | - Qingping Xiong
- College of Life Science and Chemical Engineering; Huaiyin Inst. of Technology; Huaian 223003 Jiangsu PR China
| | - Xiaoping Lai
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
- Research Inst. of Mathematical Engineering; Guangzhou Univ. of Chinese Medicine in Dongguan; Dongguan 523808 Guangdong PR China
| | - Xia Li
- College of Life Science and Chemical Engineering; Huaiyin Inst. of Technology; Huaian 223003 Jiangsu PR China
| | - Mianjie Wan
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Jingnian Zhang
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Yajuan Yan
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Man Cao
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Lun Lu
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Jiemin Guan
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
- Research Inst. of Mathematical Engineering; Guangzhou Univ. of Chinese Medicine in Dongguan; Dongguan 523808 Guangdong PR China
| | - Danyan Zhang
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| | - Ying Lin
- School of Chinese Materia Medica; Guangzhou Univ. of Chinese Medicine; Guangzhou 510006 Guangdong PR China
| |
Collapse
|
17
|
Lei Y, Lei H, Huo J. Innovative controllable photocatalytic degradation of polystyrene with hindered amine modified aromatic polyamide dendrimer/ polystyrene-grafted-TiO2 photocatalyst under solar light irradiation. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Zhao R, Zhang T, Zhao H, Cai Y. Effects of Portulaca oleracea L. Polysaccharides on Phenotypic and Functional Maturation of Murine Bone Marrow Derived Dendritic Cells. Nutr Cancer 2015. [PMID: 26219397 DOI: 10.1080/01635581.2015.1060352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Portulaca oleracea L. is an annual plant widely distributed from the temperate to the tropical zones. POL-P3b, a polysaccharide fraction purified from Portulaca oleracea L., is able to enhance immunity and inhibit tumor formation. Induction of antitumor immunity by dendritic-tumor fusion cells can be modulated by their activation status. Mature dendritic cells are significantly better than immature dendritic cells at cytotoxic T-lymphocyte induction. In this study, we analyzed the effects of POL-P3b on the maturation and function of murine bone-marrow-derived dendritic cells (DCs) and relevant mechanisms. The phenotypic maturation of DCs was confirmed by flow cytometry. We found that POL-P3b upregulated the expression of CD80, CD86, CD83, and major histocompatibility complex class II molecules on DCs, stimulated production of more interleukin (IL)-12, tumor necrosis factor-α, and less IL-10. Also, DCs pulsed POL-P3b and freeze-thaw antigen increased DCs-driven T cells' proliferation and promoted U14 cells' apoptosis. Furthermore, the expression of TLR-4 was significantly increased on DCs treated by POL-P3b. These results suggested that POL-P3b may induce DCs maturation through TLR-4. Taken together, our results may have important implications for the molecular mechanisms of immunopotentiation of POL-P3b, and provide direct evidence to suggest that POL-P3b should be considered as a potent adjuvant nutrient supplement for DC-based vaccines.
Collapse
Affiliation(s)
- Rui Zhao
- a Department of Pharmaceutical Engineering , College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University , Daqing , China
| | | | | | | |
Collapse
|
19
|
Wang J, Yang T, Tian J, Zeng T, Wang X, Yao J, Zhang J, Lei Z. Synthesis and characterization of phosphorylated galactomannan: The effect of DS on solution conformation and antioxidant activities. Carbohydr Polym 2014; 113:325-35. [DOI: 10.1016/j.carbpol.2014.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
|
20
|
He Y, Ye M, Jing L, Du Z, Surhio MM, Xu H, Li J. Preparation, characterization and bioactivities of derivatives of an exopolysaccharide from Lachnum. Carbohydr Polym 2014; 117:788-796. [PMID: 25498701 DOI: 10.1016/j.carbpol.2014.10.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 11/16/2022]
Abstract
An exopolysaccharide, obtained previously LEP-2b from Lachnum YM405, was phosphated and sulfated successfully. The derivatives named PLEP-2b and SLEP-2b, respectively, and their respective degree of substitution were 0.174 and 0.431. Phosphate groups -PO3H2 substituted at C-6 of 1,4-β-D-mannopyranose, C-5 of 2,6-β-d-1-OMe-mannofuranoside, C-3 of 1,6-β-D-galactopyranose, C-2 of 1-β-D-glucopyranose, and C-6 of 1,2-α-D-rhampyranose, while sulfate groups SO3H were mainly at C-6 of 1,4-β-D-Manp, C-6 of 1-β-D-Glcp and C-6 of 1,2-α-D-Rhap. Compared with LEP-2b, the scavenging effects of the derivatives, on hydroxyl radical and superoxide anion were significantly increased after the modifications, except for reducing power. Meanwhile, phosphorylated and sulfated modifications remarkably strengthened the inhibiting effect of LEP-2b on the proliferation of CT-26 murine colon carcinoma, Lewis lung carcinoma and human hepatocellular carcinoma HepG2 cells. The derivatives significantly enhanced the antioxidant and antitumor activities in vitro. Compared with sulfation, phosphorylation improved the inhibitory effect more contraposingly on some specific tumor cells.
Collapse
Affiliation(s)
- Yunlong He
- Microbial Resources and Application Laboratory, College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Ming Ye
- Microbial Resources and Application Laboratory, College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
| | - Lianyan Jing
- Microbial Resources and Application Laboratory, College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhanzhan Du
- Microbial Resources and Application Laboratory, College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Maheen Mahwish Surhio
- Microbial Resources and Application Laboratory, College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Hongmei Xu
- College of Medical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Jie Li
- Microbial Resources and Application Laboratory, College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| |
Collapse
|
21
|
|
22
|
Guo Y, Pan D, Sun Y, Xin L, Li H, Zeng X. Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis subsp. lactis. Carbohydr Polym 2013; 97:849-54. [DOI: 10.1016/j.carbpol.2013.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 01/15/2023]
|
23
|
Zhao R, Gao X, Cai Y, Shao X, Jia G, Huang Y, Qin X, Wang J, Zheng X. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr Polym 2013; 96:376-83. [PMID: 23768576 DOI: 10.1016/j.carbpol.2013.04.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 11/17/2022]
Abstract
Portulaca oleracea L. has been used as folk medicine in different countries to treat different ailments in humans. P. oleracea L. polysaccharide (POL-P), extracted from P. oleracea L., is found to have bioactivities such as hypoglycemic and hypolipidemic activities, antioxidant and antitumor activities. In our study, a water-soluble polysaccharide (POL-P3b) was successfully purified from Galium verum L. by DEAE cellulose and Sephadex G-200 column chromatography. To evaluate the anticancer efficacy and associated mechanisms of POL-P3b on cervical cancer in vitro and in vivo, we showed that treatment of HeLa cell with POL-P3b inhibited cell proliferation. In addition, POL-P3b significantly inhibited tumor growth in U14-bearing mice. Further analysis indicated that POL-P3b possesses the activity of inhibiting cervical cancer cell growth in vitro and in vivo at a concentration- and time-dependent manner, and the mechanisms were associated with Sub-G1 phase cell cycle arrest, triggering DNA damage and inducing apoptosis.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, 163319, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|