1
|
Chenxi Y, Haiou Z, Jian W, Yingguo W. Facile fabrication of sulfonated porous yeast carbon microspheres through a hydrothermal method and their application for the removal of cationic dye. Sci Rep 2024; 14:11326. [PMID: 38760428 PMCID: PMC11101640 DOI: 10.1038/s41598-024-62283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024] Open
Abstract
Water pollution containing dyes become increasingly serious environmental problem with the acceleration of urbanization and industrialization process. Renewable adsorbents for cationic dye wastewater treatment are becoming an obstacle because of the difficulty of desorbing the dye from the adsorbent surface after adsorption. To overcome this dilemma, herein, we report a hydrothermal method to fabricate sulfonic acid modified yeast carbon microspheres (SA/YCM). Different characterization techniques like scanning electron microscopy, FTIR spectroscopy, and X-ray diffraction have been used to test the SA/YCM. Decorated with sulfonic acid group, the modified yeast carbon microspheres possess excellent ability of adsorbing positively charged materials. The removal rate of Methyl blue (MB) by renewable adsorbent SA/YCM can reach 85.3% when the concentration is 500 mg/L. The SA/YCM regenerated by HCl showed excellent regeneration adsorption capacity (78.1%) after five cycles of adsorption-desorption regeneration experiment. Adsorption isotherm and kinetic behaviors of SA/YCM for methylene blue dyes removal were studied and fitted to different existing models. Owing to the numerous sulfonic acid groups on the surface, the SA/YCM showed prominent reusability after regeneration under acidic conditions, which could withstand repeated adsorption-desorption cycles as well as multiple practical applications.
Collapse
Affiliation(s)
- Yang Chenxi
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China.
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China.
| | - Zhang Haiou
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Wang Jian
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Wang Yingguo
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, 710075, China
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources. Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| |
Collapse
|
2
|
Zabed HM, Akter S, Dar MA, Tuly JA, Kumar Aswathi M, Yun J, Li J, Qi X. Enhanced fermentable sugar production in lignocellulosic biorefinery by exploring a novel corn stover and configuring high-solid pretreatment conditions. BIORESOURCE TECHNOLOGY 2023; 386:129498. [PMID: 37463614 DOI: 10.1016/j.biortech.2023.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to produce enhanced fermentable sugars from a novel stover system through the bioprocessing of its soluble sugars and insoluble carbohydrates. The pretreatment conditions were optimized for this high sugar-containing stover (HSS) to control inhibitor formation and obtain enhanced fermentable sugar concentrations. The optimum temperature, acid loading, and reaction time for the pretreatment were 155 °C, 0.5%, and 30 min, respectively, providing up to 97.15% sugar yield and 76.51 g/L total sugars at 10% solid-load. Sugar concentration further increased to 126.9 g/L at 20% solid-load, generating 3.89 g/L acetate, 0.92 g/L 5-hydroxymethyl furfural, 0.82 g/L furfural, and 3.75 g/L total phenolics as inhibitors. To determine the effects of soluble sugars in HSS on fermentable sugar yield and inhibitor formation, sugar-removed HSS was further studied under the optimum conditions. Although prior removal of sugars exhibited a reduction in inhibitor generation, it also decreased total fermentable sugar production to 115.45 g/L.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mudasir A Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jamila A Tuly
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mukesh Kumar Aswathi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Junhua Yun
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Wu H, Zhang R, Zhai Y, Song X, Xiong J, Li X, Qiao Y, Lu X, Yu Z. Solvent Effects Enable Efficient Tandem Conversion of Cellulose and Its Monosaccharides Towards 5-Hydroxymethylfurfural. CHEMSUSCHEM 2023; 16:e202201809. [PMID: 36289573 DOI: 10.1002/cssc.202201809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The biomass-derived platform compound 5-hydroxymethylfurfural (HMF) has been hailed as the "Sleeping Giant" due to its promising applications, and it occupies a critical spot in the biomass upgrading roadmap. HMF is typically produced from cellulose and its monosaccharides via a complex tandem conversion with multiple steps (i. e., cellulose depolymerization, glucose isomerization, fructose dehydration, etc.). Previous investigations have confirmed the irreplaceable contribution of solvents in regulating the tandem conversion of cellulose and its monosaccharides to HMF. However, the potential effects of solvents in contributing to this multi-step tandem process have not yet been clearly elucidated. In this context, this Review aims to provide in-depth insights into the intrinsic interactions between solvent system and substrate conversion (cellulose and its monosaccharides conversion), reaction regulation (reaction activity and selectivity regulation), as well as product acquisition (humins formation inhibition and product purification). It attempts to elucidate specific solvent effects to promote a more efficient tandem conversion of cellulose and its monosaccharides towards HMF. The insights provided in this Review may contribute to a more sustainable HMF production from biomass feedstocks and a further development of greener solvent systems.
Collapse
Affiliation(s)
- Han Wu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Yunqi Zhai
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Xishang Song
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Jian Xiong
- School of Science, Tibet University, 850000, Lhasa, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, 510275, Guangzhou, Guangdong, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, 850000, Lhasa, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, 300350, Tianjin, P. R. China
| |
Collapse
|
4
|
Chen L, Xiong Y, Qin H, Qi Z. Advances of Ionic Liquids and Deep Eutectic Solvents in Green Processes of Biomass-Derived 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102635. [PMID: 35088547 DOI: 10.1002/cssc.202102635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is identified as an important bio-based platform chemical to bridge petroleum-based and biomass-based resources. It can be obtained through dehydration of various carbohydrates as well as converted to value-added fuels and chemicals. As designer solvents, ionic liquids (ILs) and deep eutectic solvents (DESs) have been widely used in catalytic transformation of biomass derivatives to various chemicals. This Review summarizes recent progress in experimental and theoretical studies on dehydration of carbohydrates such as fructose, glucose, sucrose, cellobiose, chitosan, cellulose, inulin, and even raw biomass to generate HMF using ILs and DESs as catalysts/cocatalysts and/or solvents/cosolvents. It also gives an overview of IL and DES-involved catalytic transformation of HMF to downstream products via oxidation, reduction, esterification, decarboxylation, and so forth. Challenges and prospects of ILs and DESs are also proposed for further production of HMF and HMF derivatives from biomass in green and sustainable processes.
Collapse
Affiliation(s)
- Lifang Chen
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yuhang Xiong
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hao Qin
- Chair for Process Systems Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106, Magdeburg, Germany
| | - Zhiwen Qi
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
Sustainable Catalytic Synthesis of 2,5-Diformylfuran from Various Carbohydrates. Catalysts 2022. [DOI: 10.3390/catal12040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Versatile homogeneous and heterogeneous catalysts that convert carbohydrates to 2,5-diformylfuran (DFF) are essential for the development of sustainable processes for producing high-value chemicals from biomass-derived carbohydrates. An efficient catalytic system consisting of Br−, disulfide, and dimethylsulfoxide (DMSO) promoted the sustainable and selective synthesis of DFF in modest-to-good yields from various carbohydrates, such as fructose, glucose, mannose, galactose, and sucrose. Heterogeneous catalysts containing Br− also facilitated this reaction with recyclable high yields.
Collapse
|
6
|
Lopes ES, Leal Silva JF, Nascimento LAD, Bohórquez JFC, Lopes MS, Tovar LP, Maciel Filho R. Feasibility of the Conversion of Sugarcane Molasses to Levulinic Acid: Reaction Optimization and Techno-Economic Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emília Savioli Lopes
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil
| | | | | | | | - Melina Savioli Lopes
- Department of Chemical Engineering, Federal University of Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| | - Laura Plazas Tovar
- Department of Chemical Engineering, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Rubens Maciel Filho
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil
| |
Collapse
|
7
|
Wang Q, Su K, Li Z. Performance of [Emim]Br, [Bmim]Br and 2,5-furandicarboxylic acid in fructose conversion to 5-hydroxymethyfurfural. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jia S, He Y, Wang G. Dimethylsulfoxide/Water Mixed Solvent Mediated Synthesis of 5‐Hydroxymethylfurfural from Galactose with Aluminum Salt Catalyst. ChemistrySelect 2017. [DOI: 10.1002/slct.201700156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Songyan Jia
- College of Chemical EngineeringShenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang, Liaoning Province 110142 PR China
| | - Yangdong He
- College of Chemical EngineeringShenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang, Liaoning Province 110142 PR China
| | - Guosheng Wang
- College of Chemical EngineeringShenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang, Liaoning Province 110142 PR China
| |
Collapse
|
9
|
Assanosi A, Farah MM, Wood J, Al-Duri B. Fructose dehydration to 5HMF in a green self-catalysed DES composed of N,N-diethylethanolammonium chloride and p-toluenesulfonic acid monohydrate (p-TSA). CR CHIM 2016. [DOI: 10.1016/j.crci.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Shen Y, Zhang Y, Zhu E, Chen Y, Jin P, Liu M, Yan Y, Li C. Facile synthesis of hierarchical pore foam catalysts with Brønsted–Lewis acid sites for the one-pot conversion of cellulose to 5-hydroxymethylfurfural. RSC Adv 2016. [DOI: 10.1039/c6ra14615e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Whole process of synthesis of HPFCs by Pickering high internal phase emulsions and application in conversion of cellulose to HMF.
Collapse
Affiliation(s)
- Yating Shen
- Institute of Green Chemistry and Chemical Technology
- China
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Yunlei Zhang
- Institute of Green Chemistry and Chemical Technology
- China
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Enwei Zhu
- Institute of Green Chemistry and Chemical Technology
- China
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Yao Chen
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Pei Jin
- Institute of Green Chemistry and Chemical Technology
- China
| | - Meng Liu
- Institute of Green Chemistry and Chemical Technology
- China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology
- China
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology
- China
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| |
Collapse
|
11
|
Zhang M, Su K, Song H, Li Z, Cheng B. The excellent performance of amorphous Cr2O3, SnO2, SrO and graphene oxide–ferric oxide in glucose conversion into 5-HMF. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Kavousi P, Mirhosseini H, Ghazali H, Ariffin AA. Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition. Food Chem 2015; 182:164-70. [PMID: 25842323 DOI: 10.1016/j.foodchem.2015.02.135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 11/27/2022]
Abstract
5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH.
Collapse
Affiliation(s)
- Parviz Kavousi
- Department of Food Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Teckno Azma, Accredited Laboratory in Fats and Oils, Tehran, Iran
| | - Hamed Mirhosseini
- Department of Food Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hasanah Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Azis Ariffin
- Department of Food Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
Shi XL, Zhang M, Lin H, Tao M, Li Y, Zhang W. Bifunctional Polyacrylonitrile Fiber-Mediated Conversion of Sucrose to 5-Hydroxymethylfurfural in Mixed-Aqueous Systems. Chem Asian J 2015; 10:752-8. [DOI: 10.1002/asia.201403338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 11/09/2022]
|