1
|
Lei Z, Jia M. Rational design of metal-based nanocomposite catalysts for enhancing their stability in solid acid catalysis. Chem Commun (Camb) 2024; 60:10838-10853. [PMID: 39233633 DOI: 10.1039/d4cc03414g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of supported metal-based heterogeneous catalysts is very ubiquitous in the modern chemical industry. Although high reactivity has been achieved, conventional supported metal-based heterogeneous catalysts commonly face the problem of rapid deactivation, generally involving leaching, poisoning or sintering of the active metal species, which is particularly serious in various solid acid catalysis processes. To overcome these drawbacks, different strategies have been adopted, including strengthening metal-support interactions, confining metal species in various porous materials, or coating the active metal nanoparticles with thin shells, which may generate effective metal-based nanocomposite catalysts with enhanced stability. In this feature article, we summarize our recent work on the design of some metal-based nanocomposites possessing yolk-shell, core-shell or other confined structures for enhanced catalytic applications in several important acid catalysis reactions, such as cycloaddition of CO2, epoxidation of olefins, acylation of aromatic compounds, and transesterification/carbonylation synthesis of organic carbonates. More attention is paid to the design and preparation strategy of metal-based nanocomposite catalysts, which can generate unique catalytically active and stable metal sites for meeting the tough requirements of a specific catalytic reaction. Finally, the existing challenges and the future directions for metal-based nanocomposite catalysts with respect to the preparation strategies and catalytic application prospects are proposed.
Collapse
Affiliation(s)
- Zhenyu Lei
- Department of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Mingjun Jia
- Department of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
The Fabrication of PMo11Fe Cluster Supporting on SBA-15 and Catalytic Epoxidation of Cyclooctene with H2O2 as Oxidant. Catal Letters 2022. [DOI: 10.1007/s10562-022-03950-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Patel A, Patel J. Fe Exchanged Supported Phosphomolybdic Acid: Synthesis, Characterization and Low Temperature Water Mediated Hydrogenation of Cyclohexene. Catal Letters 2021. [DOI: 10.1007/s10562-021-03838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Hu D, Song X, Zhang H, Chang X, Zhao C, Jia M. Aerobic epoxidation of styrene over Zr-based metal-organic framework encapsulated transition metal substituted phosphomolybdic acid. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Solvothermal synthesis of Co-substituted phosphomolybdate acid encapsulated in the UiO-66 framework for catalytic application in olefin epoxidation. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63665-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Yang J, Feng L, Wang JX. Preparation of phosphorus based hyper cross-linked polymers and adsorption of salicylic acid from aqueous solution. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Yaremenko IA, Radulov PS, Belyakova YY, Demina AA, Fomenkov DI, Barsukov DV, Subbotina IR, Fleury F, Terent'ev AO. Catalyst Development for the Synthesis of Ozonides and Tetraoxanes Under Heterogeneous Conditions: Disclosure of an Unprecedented Class of Fungicides for Agricultural Application. Chemistry 2020; 26:4734-4751. [PMID: 31774931 DOI: 10.1002/chem.201904555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Indexed: 01/31/2023]
Abstract
The catalyst H3+x PMo12-x +6 Mox +5 O40 supported on SiO2 was developed for peroxidation of 1,3- and 1,5-diketones with hydrogen peroxide with the formation of bridged 1,2,4,5-tetraoxanes and bridged 1,2,4-trioxolanes (ozonides) with high yield based on isolated products (up to 86 and 90 %, respectively) under heterogeneous conditions. Synthesis of peroxides under heterogeneous conditions is a rare process and represents a challenge for this field of chemistry, because peroxides tend to decompose on the surface of a catalyst . A new class of antifungal agents for crop protection, that is, cyclic peroxides: bridged 1,2,4,5-tetraoxanes and bridged ozonides, was discovered. Some ozonides and tetraoxanes exhibit a very high antifungal activity and are superior to commercial fungicides, such as Triadimefon and Kresoxim-methyl. It is important to note that none of the fungicides used in agricultural chemistry contains a peroxide fragment.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Peter S Radulov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| | - Yulia Y Belyakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Arina A Demina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, 119991, Russia
| | - Dmitriy I Fomenkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
| | - Denis V Barsukov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Irina R Subbotina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP CNRS UMR 6286 Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia.,Faculty of Chemical and Pharmaceutical Technology and, Biomedical Products, D.I. Mendeleev University of, Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia.,All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia
| |
Collapse
|
8
|
Ahadi E, Hosseini-Monfared H, Spieß A, Janiak C. Photocatalytic asymmetric epoxidation of trans-stilbene with manganese–porphyrin/graphene-oxide nanocomposite and molecular oxygen: axial ligand effect. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00441c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient, visible light-driven manganese–porphyrin photocatalyst was developed for the asymmetric epoxidation of trans-stilbene by molecular oxygen under mild conditions.
Collapse
Affiliation(s)
- Elahe Ahadi
- Department of Chemistry
- University of Zanjan
- Zanjan
- Iran
| | | | - Alex Spieß
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| |
Collapse
|
9
|
Yan W, Wang J, Ding J, Sun P, Zhang S, Shen J, Jin X. Catalytic epoxidation of olefins in liquid phase over manganese based magnetic nanoparticles. Dalton Trans 2019; 48:16827-16843. [PMID: 31646315 DOI: 10.1039/c9dt03456k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epoxidation of olefins stands out as a crucial class of reactions and is of great interest in academic research and industry due to the production of various important fine chemicals and intermediates. Manganese complexes have the potential to catalyze the epoxidation of olefins with high efficiency. Magnetic nanocatalysts have attracted significant attention for immobilizing homogeneous transition metal complexes. Easy separation by external magnetic fields, nontoxicity, and a core shell structure are the main advantages of magnetic nanocatalysts over other heterogeneous catalysts. The method of functionalizing magnetic nanoparticles and of anchoring homogeneous metal complexes has significant effects on catalytic performance. Therefore, a critical review of recent research progress on manganese complexes' immobilization on magnetic nanoparticles for liquid phase olefin epoxidation is necessary. In this work, magnetic nanoparticles are categorized according to their preparation procedures and structures. The physical/chemical properties, catalytic performance for olefin epoxidation, reusability and plausible reaction mechanisms will be discussed, in an attempt to unravel the structure-function relationship and to guide the future study of MNPs' design for olefin epoxidations.
Collapse
Affiliation(s)
- Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jie Ding
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Puhua Sun
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Shuxia Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, Shandong Province 266580, China.
| |
Collapse
|
10
|
Yan W, Liu M, Wang J, Shen J, Zhang S, Xu X, Wang S, Ding J, Jin X. Recent Advances in Facile Liquid Phase Epoxidation of Light Olefins over Heterogeneous Molybdenum Catalysts. CHEM REC 2019; 20:230-251. [PMID: 31441593 DOI: 10.1002/tcr.201900037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/18/2019] [Indexed: 12/29/2022]
Abstract
Molybdenum complexes are versatile and efficient for liquid phase olefin epoxidation reactions. Rational design of catalysts is critical to achieve high atom efficiency during epoxidation processes. Although liquid phase epoxidation has been a popular topic for decades, three key issues, (a) rational control of morphology of molybdenum nanoparticles, (b) manipulating metal-support interaction and (c) altering electronic configuration at molybdenum center remains unsolved in this area. Therefore, in this paper, we have critically revised recent research progress on heterogeneous molybdenum catalysts for facile liquid phase olefin epoxidation in terms of catalyst synthesis, surface characterization, catalytic performance and structure-function relationship. Furthermore, plausible reaction mechanisms will be systematically discussed with the aim to provide insights into fundamental understanding on novel epoxidation chemistry.
Collapse
Affiliation(s)
- Wenjuan Yan
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Mengyuan Liu
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Jinyao Wang
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Shuxia Zhang
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Xiaoqiang Xu
- Oil Production Group#2, Huabei Oil Field Company at PetroChina, Hebei Province, 065709, China
| | - Shuaishuai Wang
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Jie Ding
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Xin Jin
- Center for Chemical Engineering Experimental Teaching, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| |
Collapse
|
11
|
Maurya A, Kesharwani N, Kachhap P, Mishra VK, Chaudhary N, Haldar C. Polymer‐anchored mononuclear and binuclear Cu
II
Schiff‐base complexes: Impact of heterogenization on liquid phase catalytic oxidation of a series of alkenes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abhishek Maurya
- Department of ChemistryIndian Institute of Technology (Indian School of Mines) Dhanbad 826004 Jharkhand India
| | - Neha Kesharwani
- Department of ChemistryIndian Institute of Technology (Indian School of Mines) Dhanbad 826004 Jharkhand India
| | - Payal Kachhap
- Department of ChemistryIndian Institute of Technology (Indian School of Mines) Dhanbad 826004 Jharkhand India
| | - Vivek Kumar Mishra
- Department of ChemistryIndian Institute of Technology (Indian School of Mines) Dhanbad 826004 Jharkhand India
| | - Nikita Chaudhary
- Department of Chemistry and Polymer ScienceStellenbosch University Matieland 7602 Stellenbosch South Africa
| | - Chanchal Haldar
- Department of ChemistryIndian Institute of Technology (Indian School of Mines) Dhanbad 826004 Jharkhand India
| |
Collapse
|
12
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
13
|
Yu D, Gao W, Xing S, Lian L, Zhang H, Wang X, Lou D. Fe-doped H 3PMo 12O 40 immobilized on covalent organic frameworks (Fe/PMA@COFs): a heterogeneous catalyst for the epoxidation of cyclooctene with H 2O 2. RSC Adv 2019; 9:4884-4891. [PMID: 35514611 PMCID: PMC9060704 DOI: 10.1039/c8ra10388g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 11/21/2022] Open
Abstract
Covalent organic frameworks (COFs) have arisen as one kind of devisable porous organic polymer that has attracted immense attention in catalytic applications. In this work, we prepared cost-effective imine-based COFs (COF-300, COF-LZU1 and CIN-1) via a reaction kettle operated in place of a traditional sealed Pyrex tube. Then, phosphomolybdic acid (PMA) and iron ions were immobilized on the COF supports by impregnation; the resulting frameworks were denoted as Fe/PMA@COFs (Fe/PMA@COF-LZU1, Fe/PMA@CIN-1 and Fe/PMA@COF-300). A series of characterization results demonstrated that the PMA and iron ions were uniformly dispersed on the surface/cavities of the COFs. The catalytic properties of the obtained Fe/PMA@COFs were investigated in the epoxidation of cyclooctene with H2O2 as the oxidant. The experimental results show that the Fe/PMA@CIN-1 composite can act as an efficient heterogeneous catalyst for the epoxidation of cyclooctene. The intramolecular charge transfer between the COFs and the dual sites (PMA and Fe ions), the spatial structure and the nitrogen content of the COFs played critical roles in dispersing and stabilizing the active species, which are closely connected with the activity and stability of the catalysts. A novel efficient heterogeneous catalyst for the epoxidation of olefins via a simple and cost-effective process is provided, and this experiment demonstrates the notable application prospects of the covalent organic skeleton as a catalyst support.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology 45 Chengde Street Jilin 132022 P. R. China
- Department of Physical Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Wenxiu Gao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology 45 Chengde Street Jilin 132022 P. R. China
| | - Shuyu Xing
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology 45 Chengde Street Jilin 132022 P. R. China
- Department of Physical Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology 45 Chengde Street Jilin 132022 P. R. China
| | - Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology 45 Chengde Street Jilin 132022 P. R. China
| | - Xiyue Wang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology 45 Chengde Street Jilin 132022 P. R. China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology 45 Chengde Street Jilin 132022 P. R. China
| |
Collapse
|
14
|
Wang Q, Zhang L, Hao L, Wang C, Wu Q, Wang Z. Phosphorous-enriched knitting aryl network polymer for the rapid and effective adsorption of aromatic compounds. J Chromatogr A 2018; 1575:18-25. [DOI: 10.1016/j.chroma.2018.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/08/2018] [Accepted: 09/15/2018] [Indexed: 11/25/2022]
|
15
|
Tan L, Tan B. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 2018; 46:3322-3356. [PMID: 28224148 DOI: 10.1039/c6cs00851h] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypercrosslinked polymers (HCPs) are a series of permanent microporous polymer materials initially reported by Davankov, and have received an increasing level of research interest. In recent years, HCPs have experienced rapid growth due to their remarkable advantages such as diverse synthetic methods, easy functionalization, high surface area, low cost reagents and mild operating conditions. Judicious selection of monomers, appropriate length crosslinkers and optimized reaction conditions yielded a well-developed polymer framework with an adjusted porous topology. Post fabrication of the as developed network facilitates the incorporation of various chemical functionalities that may lead to interesting properties and enhance the selection toward a specific application. To date, numerous HCPs have been prepared by post-crosslinking polystyrene-based precursors, one-step self-polycondensation or external crosslinking strategies. The advent of these methodologies has prompted researchers to construct well-defined porous polymer networks with customized micromorphology and functionalities. In this review, we describe not only the basic synthetic principles and strategies of HCPs, but also the advancements in the structural and morphological study as well as the frontiers of potential applications in energy and environmental fields such as gas storage, carbon capture, removal of pollutants, molecular separation, catalysis, drug delivery, sensing etc.
Collapse
Affiliation(s)
- Liangxiao Tan
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology, Wuhan 430074, China.
| | | |
Collapse
|
16
|
Akbari Z, Ghiaci M. Heterogenization of a Green Homogeneous Catalyst: Synthesis and Characterization of Imidazolium Ionene/Br–Cl–@SiO2 as an Efficient Catalyst for the Cycloaddition of CO2 with Epoxides. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Akbari
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mehran Ghiaci
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| |
Collapse
|
17
|
A practical heteropolyacid nanocatalyst supported on nano-sized ceramic for the chemoselective oxidation of sulfides to sulfoxides through an experimental design approach. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0246-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Udalova LI, Adonin SA, Abramov PA, Korolkov IV, Sokolov MN. Zn-containing double complex salts formed by Keggin type polyoxotungstates: Synthesis and crystal structure. RUSS J COORD CHEM+ 2017. [DOI: 10.1134/s1070328417050086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|