1
|
Tham L, Bulcock BW, Sala S, Nealon GL, Flematti GR, Moggach SA, Piggott MJ. Total Synthesis and Structural Reassignment of the Molt-Inhibiting Marine Alkaloid Erebusinone. JOURNAL OF NATURAL PRODUCTS 2024; 87:2499-2506. [PMID: 39365948 DOI: 10.1021/acs.jnatprod.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The marine alkaloid erebusinone is a secondary metabolite isolated from the Antarctic sponge Isodictya erinacea. Initial biological assays have shown that erebusinone increases amphipod mortality, probably by inhibition of the biosynthesis of molting hormone (ecdysone). Herein, we report the first total synthesis of the proposed structure of erebusinone and a structural revision.
Collapse
Affiliation(s)
- Louisa Tham
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Brodie W Bulcock
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Samuele Sala
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Gareth L Nealon
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA 6009, Australia
| | - Gavin R Flematti
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Stephen A Moggach
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Matthew J Piggott
- Chemistry, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huihui Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hengrui Cai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xu Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
An enhanced toluene dioxygenase platform for the production of cis-1,2-dihydrocatechol in Escherichia coli BW25113 lacking glycerol dehydrogenase activity. J Biotechnol 2020; 325:380-388. [PMID: 32946884 DOI: 10.1016/j.jbiotec.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022]
Abstract
The compound cis-1,2-dihydrocatechol (DHC) is highly valuable since it finds wide application in the production of fine chemicals and bioactive compounds with medical relevance. The biotechnological process to generate DHC involves a dearomatizing dihydroxylation reaction catalyzed by toluene dioxygenase (TDO) from P. putida F1, employing benzene as substrate. We aimed to enhance the biotechnological E. coli BW25113 platform for DHC production by identifying the key operational parameters positively influencing the final isolated yield. Thereby, we observed an unreported downstream reaction, generating catechol from DHC, affecting, in a negative manner, the final titer for the product. Expression temperature for the TDO-system showed to have the highest influence in terms of final isolated yield. A KEIO-collection-based screening approach highlighted glycerol dehydrogenase (GldA) as the main responsible enzyme for the undesired reaction. We transferred the TDO-system to E. coli BW25113 ΔgldA and applied the enhanced operational set-up on it. This enhanced platform enabled the production of 1.41 g L-1 DHC in isolated yield, which represents a two-fold increase compared with the starting working conditions. To our knowledge, this is the highest DHC production accomplished in recombinant E. coli at semi-preparative scale, providing a robust and accessible biotechnological platform for DHC synthesis.
Collapse
|
4
|
A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 2015; 178:224-50. [DOI: 10.1007/s12010-015-1881-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
5
|
Metabolism of Doubly para-Substituted Hydroxychlorobiphenyls by Bacterial Biphenyl Dioxygenases. Appl Environ Microbiol 2015; 81:4860-72. [PMID: 25956777 DOI: 10.1128/aem.00786-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022] Open
Abstract
In this work, we examined the profile of metabolites produced from the doubly para-substituted biphenyl analogs 4,4'-dihydroxybiphenyl, 4-hydroxy-4'-chlorobiphenyl, 3-hydroxy-4,4'-dichlorobiphenyl, and 3,3'-dihydroxy-4,4'-chlorobiphenyl by biphenyl-induced Pandoraea pnomenusa B356 and by its biphenyl dioxygenase (BPDO). 4-Hydroxy-4'-chlorobiphenyl was hydroxylated principally through a 2,3-dioxygenation of the hydroxylated ring to generate 2,3-dihydro-2,3,4-trihydroxy-4'-chlorobiphenyl and 3,4-dihydroxy-4'-chlorobiphenyl after the removal of water. The former was further oxidized by the biphenyl dioxygenase to produce ultimately 3,4,5-trihydroxy-4'-chlorobiphenyl, a dead-end metabolite. 3-Hydroxy-4,4'-dichlorobiphenyl was oxygenated on both rings. Hydroxylation of the nonhydroxylated ring generated 2,3,3'-trihydroxy-4'-chlorobiphenyl with concomitant dechlorination, and 2,3,3'-trihydroxy-4'-chlorobiphenyl was ultimately metabolized to 2-hydroxy-4-chlorobenzoate, but hydroxylation of the hydroxylated ring generated dead-end metabolites. 3,3'-Dihydroxy-4,4'-dichlorobiphenyl was principally metabolized through a 2,3-dioxygenation to generate 2,3-dihydro-2,3,3'-trihydroxy-4,4'-dichlorobiphenyl, which was ultimately converted to 3-hydroxy-4-chlorobenzoate. Similar metabolites were produced when the biphenyl dioxygenase of Burkholderia xenovorans LB400 was used to catalyze the reactions, except that for the three substrates used, the BPDO of LB400 was less efficient than that of B356, and unlike that of B356, it was unable to further oxidize the initial reaction products. Together the data show that BPDO oxidation of doubly para-substituted hydroxychlorobiphenyls may generate nonnegligible amounts of dead-end metabolites. Therefore, biphenyl dioxygenase could produce metabolites other than those expected, corresponding to dihydrodihydroxy metabolites from initial doubly para-substituted substrates. This finding shows that a clear picture of the fate of polychlorinated biphenyls in contaminated sites will require more insights into the bacterial metabolism of hydroxychlorobiphenyls and the chemistry of the dihydrodihydroxylated metabolites derived from them.
Collapse
|
6
|
Kumar P, Mohammadi M, Dhindwal S, Pham TTM, Bolin JT, Sylvestre M. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase. Biochem Biophys Res Commun 2012; 421:757-62. [DOI: 10.1016/j.bbrc.2012.04.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/14/2012] [Indexed: 11/16/2022]
|
7
|
Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl Environ Microbiol 2012; 78:3560-70. [PMID: 22427498 DOI: 10.1128/aem.00225-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many investigations have provided evidence that plant secondary metabolites, especially flavonoids, may serve as signal molecules to trigger the abilities of bacteria to degrade chlorobiphenyls in soil. However, the bases for this interaction are largely unknown. In this work, we found that BphAE(B356), the biphenyl/chlorobiphenyl dioxygenase from Pandoraea pnomenusa B356, is significantly better fitted to metabolize flavone, isoflavone, and flavanone than BphAE(LB400) from Burkholderia xenovorans LB400. Unlike those of BphAE(LB400), the kinetic parameters of BphAE(B356) toward these flavonoids were in the same range as for biphenyl. In addition, remarkably, the biphenyl catabolic pathway of strain B356 was strongly induced by isoflavone, whereas none of the three flavonoids induced the catabolic pathway of strain LB400. Docking experiments that replaced biphenyl in the biphenyl-bound form of the enzymes with flavone, isoflavone, or flavanone showed that the superior ability of BphAE(B356) over BphAE(LB400) is principally attributable to the replacement of Phe336 of BphAE(LB400) by Ile334 and of Thr335 of BphAE(LB400) by Gly333 of BphAE(B356). However, biochemical and structural comparison of BphAE(B356) with BphAE(p4), a mutant of BphAE(LB400) which was obtained in a previous work by the double substitution Phe336Met Thr335Ala of BphAE(LB400), provided evidence that other residues or structural features of BphAE(B356) whose precise identification the docking experiment did not allow are also responsible for the superior catalytic abilities of BphAE(B356). Together, these data provide supporting evidence that the biphenyl catabolic pathways have evolved divergently among proteobacteria, where some of them may serve ecological functions related to the metabolism of plant secondary metabolites in soil.
Collapse
|
8
|
Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran. Biochem Biophys Res Commun 2012; 419:362-7. [PMID: 22342725 DOI: 10.1016/j.bbrc.2012.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/23/2022]
|
9
|
Bioconversion of substituted naphthalenes and β-eudesmol with the cytochrome P450 BM3 variant F87V. Appl Microbiol Biotechnol 2010; 90:147-57. [DOI: 10.1007/s00253-010-3064-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
10
|
Bhujbal NN, Bande OP, Dhavale DD. Catechuic acid and ethyl 2,4,5-trihydroxybenzoate from D-glucose. Carbohydr Res 2009; 344:734-8. [PMID: 19268918 DOI: 10.1016/j.carres.2009.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 11/17/2022]
Abstract
Synthesis of catechuic acid (1) and ethyl 2,4,5-trihydroxybenzoate (2) from D-glucose-derived beta-ketoester is described. The polyhydroxylated beta-ketoester obtained from the hydrolysis of sugar beta-ketoester 3 was subjected to an aldol-type condensation to get 4 that on enolization, dehydration, and hydrogenation afforded ethyl 2,4,5-trihydroxybenzoate (2). On the other hand, hydrogenation of aldol product 4 afforded polyhydroxylated keto-carbasugar 6, which on mild acid treatment and ester hydrolysis in basic media led to catechuic acid 1. Intermediate 4 is co-related to 3-dehydroshikimic acid, a biochemical intermediate from D-glucose in the synthesis of pro-catechuic acid.
Collapse
Affiliation(s)
- Namdeo N Bhujbal
- Garware Research Centre, Department of Chemistry, University of Pune, Pune 411007, India
| | | | | |
Collapse
|
11
|
Boyd DR, Sharma ND, Malone JF, Allen CCR. New families of enantiopure cyclohexenone cis-diol, o-quinol dimer and hydrate metabolites from dioxygenase-catalysed dihydroxylation of phenols. Chem Commun (Camb) 2009:3633-5. [DOI: 10.1039/b905940g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Kagami O, Shindo K, Kyojima A, Takeda K, Ikenaga H, Furukawa K, Misawa N. Protein engineering on biphenyl dioxygenase for conferring activity to convert 7-hydroxyflavone and 5,7-dihydroxyflavone (chrysin). J Biosci Bioeng 2008; 106:121-7. [PMID: 18804053 DOI: 10.1263/jbb.106.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 04/28/2008] [Indexed: 11/17/2022]
Abstract
A central part (amino-acid position 268-397 of 458 amino-acid residues) of the biphenyl dioxygenase large (alpha) subunit, BphA1, from Pseudomonas pseudoalcaligenes strain KF707 was exchanged with the corresponding part of BphA1 from another biphenyl-degrading bacterium, Pseudomonas putida strain KF715, to construct hybrid BphA1, BphA1 (715-707). When expressed in Escherichia coli together with the bphA2A3A4BC genes from strain KF707, this enzyme was shown to possess activity for degrading both 1-phenylnaphthalene and 2-phenylnaphthalene. Between central parts of BphA1 from strains KF707 and KF715, the difference of amino-acid residues resided only in position 324-325. An attempt was made to improve the substrate preference of BphA1 by applying random amino-acid substitutions at these positions to BphA1 (715-707). After screening the mutant library to bioconvert several flavonoids, BphA1 (1-22; T324A and I325L) and BphA1 (2-2; T324L and I325I) were selected. When expressed in E. coli together with bphA2A3A4B from strain KF707, both BphA1 (1-22) and BphA1 (2-2) bioconverted the refractory flavonoids, 7-hydroxyflavone and 5,7-dihydroxyflavone (chrysin), which were hardly converted by any unmodified and artificially-modified shuffled biphenyl dioxygeneses, into their vicinal diol forms, i.e., 2-(2,3-dihydroxyphenyl)-7-hydroxy-chromen-4-one and 2-(2,3-dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one, respectively. In addition, trans-chalcone was converted into 3-(2,3-dihydroxyphenyl)-1-phenylpropan-1-one and further into 1,3-bis-(2,3-dihydroxyphenyl)-propan-1-one. The antioxidative activity of these generated compounds was markedly higher than that of the original substrates used.
Collapse
Affiliation(s)
- Osamu Kagami
- Marine Biotechnology Institute, Kamaishi, Iwate, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
14
|
Shindo K, Shindo Y, Hasegawa T, Osawa A, Kagami O, Furukawa K, Misawa N. Synthesis of highly hydroxylated aromatics by evolved biphenyl dioxygenase and subsequent dihydrodiol dehydrogenase. Appl Microbiol Biotechnol 2007; 75:1063-9. [PMID: 17401562 DOI: 10.1007/s00253-007-0928-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/28/2022]
Abstract
The evolved bphA1 (2049) gene, in which nine amino acids from the Pseudomonas pseudoalcaligenes KF707 BphA1 were changed to those from the Burkholderia xenovorans LB400 BphA1 (M247I, H255Q, V258I, G268A, D303E, -313G, S324T, V325I, and T376N), was expressed in Escherichia coli along with the bphA2A3A4 and bphB genes derived from strain KF707. This recombinant E. coli cells converted biphenyl and several heterocyclic aromatic compounds into the highly hydroxylated products such as biphenyl-2,3,2',3'-tetraol (from biphenyl), 2-(2,3-dihydroxyphenyl)benzoxazole-4,5-diol (from 2-phenylbenzoxazole), and 2-(2,5-dihydroxyphenyl)benzoxazole-4,5-diol [from 2-(2-hydroxyphenyl)benzoxazole]. The antioxidative activity of these generated compounds was markedly higher than that of the original substrate used.
Collapse
Affiliation(s)
- Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Berberian V, Allen C, Sharma N, Boyd D, Hardacre C. A Comparative Study of the Synthesis of 3-Substituted Catechols using an Enzymatic and a Chemoenzymatic Method. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200600437] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Ouyang SP, Sun SY, Liu Q, Chen J, Chen GQ. Microbial transformation of benzene to cis-3,5-cyclohexadien-1,2-diols by recombinant bacteria harboring toluene dioxygenase gene tod. Appl Microbiol Biotechnol 2007; 74:43-9. [PMID: 17021870 DOI: 10.1007/s00253-006-0637-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/14/2006] [Accepted: 08/16/2006] [Indexed: 11/30/2022]
Abstract
Toluene dioxygenase (TDO) catalyzes asymmetric cis-dihydroxylation of aromatic compounds. To achieve high efficient biotransformation of benzene to benzene cis-diols, Pseudomonas putida KT2442, Pseudomonas stutzeri 1317, and Aeromonas hydrophila 4AK4 were used as hosts to express TDO gene tod. Plasmid pSPM01, a derivative of broad-host plasmid pBBR1MCS-2 harboring tod from plasmid pKST11, was constructed and introduced into the above three strains. Their abilities to catalyze the biotransformation of benzene to benzene cis-diols, namely, cis-3,5-cyclohexadien-1,2-diols abbreviated as DHCD, were examined. In shake-flask cultivation under optimized culture media and growth condition, benzene cis-diols production by recombinant P. putida KT2442 (pSPM01), P. stutzeri 1317 (pSPM01), and A. hydrophila 4AK4 (pSPM01) were 2.68, 2.13, and 1.17 g/l, respectively. In comparison, Escherichia coli JM109 (pSPM01) and E. coli JM109 (pKST11) produced 0.45 and 0.53 g/l of DHCD, respectively. When biotransformation was run in a 6-l fermenter, DHCD production in P. putida KT2442 (pSPM01) was approximately 60 g/l; this is the highest DHCD production yield reported so far.
Collapse
Affiliation(s)
- Shao-Ping Ouyang
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|