1
|
Babu Kothapalli R, Anusha B, Naveen Kumar M, Singh PS, Ramakrishna S, Venkata Subba Reddy U. Deracemization of Benzoin and its Derivatives via Kinetic, Dynamic Kinetic, Aerobic Oxidative Kinetic, and Reagent-mediated resolution. Chem Asian J 2025; 20:e202401693. [PMID: 39715010 DOI: 10.1002/asia.202401693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The production of enantiomerically pure compounds remains a vital and valuable objective in modern organic chemistry due to their broad applications in fields such as biosensing, optics, electronics, photonics, catalysis, nanotechnology, and drug or DNA delivery. Optically pure α-hydroxy ketones, in particular, are key structural components in many drugs and natural products with significant biological activity. Among these, benzoin type α-hydroxy ketones, which possess two adjacent functional groups, a carbonyl and a hydroxy group, are especially important. These functional groups can be easily transformed into the significant organic compounds such as 1,2 amino alcohols and 1,2 diols etc, which are important intermediates for synthesis of high profile biological active natural products. Deracemization of racemic compounds remains one of the most effective strategies for producing optically pure compounds, despite recent advances in asymmetric synthesis. Due to the importance of chiral benzoins, numerous studies have focused on their asymmetric synthesis. At the same time, many research groups have developed various methods for resolving racemic benzoins, including kinetic resolution, dynamic kinetic resolution, metal-catalyzed aerobic oxidative kinetic resolution, and reagent-mediated resolution. In this context, we aim to provide a comprehensive review of the various resolution methods applied specifically to racemic benzoins. To the best of our knowledge, no comprehensive review on the resolution of racemic benzoins has been published to date.
Collapse
Affiliation(s)
- Raveendra Babu Kothapalli
- Department of Chemistry, SCIM Govt. College, Tanuku, West Godavari (Dist. Andhra Pradesh), 5534211, India
| | - Bheemreddy Anusha
- Department of Chemistry, Silver Jubilee Govt. Degree College, Cluster, University, Kurnool, Andhra Pradesh, 518002, India
| | - Marri Naveen Kumar
- Department of Chemistry, STSN Government Degree College, Kadiri, Sri Sathya Sai (Dist. Andhra Pradesh), 515591, India
| | - P Sundar Singh
- Department of Chemistry, SCIM Govt. College, Tanuku, West Godavari (Dist. Andhra Pradesh), 5534211, India
| | - S Ramakrishna
- Department of Chemistry, Govt. Degree College for Men, Srikakulam, Andhra Pradesh, 532001, India
| | - Ummareddy Venkata Subba Reddy
- Department of Chemistry, STSN Government Degree College, Kadiri, Sri Sathya Sai (Dist. Andhra Pradesh), 515591, India
| |
Collapse
|
2
|
Sun M, Gao J, Zhao Y, Ding P, Zhang W, Cai J. Enhancing lipase enzymatic performance with dynamic covalent dextran-based hydrogels. Int J Biol Macromol 2025; 305:141254. [PMID: 39978516 DOI: 10.1016/j.ijbiomac.2025.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
How to maintain high catalytic activity and stability in the process of biocatalysis is crucial, inspiring strategies to construct an appropriate immobilized hydrogel system. Inspired by biologically relevant interactions of natural polymers, we crafted a polysaccharide-based dynamic hydrogel through imine bonds among lipase, oxidized dextrans (ODex) and carboxymethylchitosan. The successful preparation of ODex and the in situ immobilization of lipase through a Schiff base reaction were verified by FT-IR, 1H NMR, XRD, and the hydroxylamine hydrochloride method. The resultant gel endows the lipase with improved storage stability, thermal stability, reusability, and a higher degree of triacylglycerol hydrolysis. Furthermore, the immobilized lipase in the gel exhibits superior activity under harsh conditions, including high temperatures, strong bases, and exposure to organic solvents. The polysaccharide-based dynamic hydrogel represents a promising platform for enzyme immobilization, offering versatile applications in industrial biocatalysis.
Collapse
Affiliation(s)
- Meng Sun
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Gao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yingying Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Wanying Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junwen Cai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Merz A, Thelen J, Linders J, Mayer C, Hoffmann-Jacobsen K. Lipase Activation by Poly(Methyl Methacrylate) in Dispersed Solution: Mechanistic Insights by Fluorescence Spectroscopy. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05217-0. [PMID: 40163272 DOI: 10.1007/s12010-025-05217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
We investigated the mechanisms of polymer-lipase interactions that govern the catalytic activity of lipases in the presence of polymers. Using a combination of fluorescence correlation spectroscopy (FCS), activity analysis, fluorescence spectroscopy, and computational surface analysis, three model lipases-Thermomyces lanuginosus lipase (TLL), Candida antarctica lipase B (CalB), and Bacillus subtilis lipase A (BSLA), with different degrees of hydrophobic active site exposure were studied. Low-molecular-weight poly(methyl methacrylate) (PMMA), synthesized via ARGET ATRP, was employed to study the effect of unstructured polymers in dispersed solution on lipase activity. PMMA significantly enhanced TLL and BSLA hydrolytic activity, while no CalB activation was observed. FCS analysis indicated that this activation was facilitated by polymer lipase binding, a phenomenon observed with TLL and BSLA but not with CalB. Computational analysis further revealed that the surface properties of the lipases were critical for the lipases' susceptibility to activation by PMMA. Although CalB exhibited the largest total hydrophobic surface area, its homogeneous distribution prevented activation, whereas strong, localized hydrophobic interactions allowed PMMA to bind and activate TLL and BSLA. Supported by the quantitative correlation between elevated 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence in the presence of PMMA and lipase activity, the activation was attributed to locally increased hydrophobicity of the lipases upon polymer binding. These findings provide critical insights into the role of polymer interactions in lipase activation and stabilization, highlighting the potential for designing tailored polymer carriers to optimize enzyme performance in industrial and biotechnological applications.
Collapse
Affiliation(s)
- André Merz
- Chemistry Department, Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute for Physical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Jonas Thelen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jürgen Linders
- Institute for Physical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Kerstin Hoffmann-Jacobsen
- Chemistry Department, Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
4
|
Sabi GJ, de Souza L, Abellanas-Perez P, Tardioli PW, Mendes AA, Rocha-Martin J, Fernandez-Lafuente R. Enzyme loading in the support and medium composition during immobilization alter activity, specificity and stability of octyl agarose-immobilized Eversa Transform. Int J Biol Macromol 2025; 295:139667. [PMID: 39793798 DOI: 10.1016/j.ijbiomac.2025.139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Eversa Transform (ETL) was immobilized on octyl agarose beads at two different enzymes loadings (1 mg/g and 15 mg/g) under 18 different conditions, including different pH values, buffers, additives (different solvents, Ca2+, NaCl). Their activity was analyzed at pH 5 and 7 with p-nitrophenyl butyrate and at pH 5 with triacetin, determining also its stability at pH 5 and 7 (in different media). Ca2+ stabilized ETL biocatalysts while phosphate destabilized them. The overloaded biocatalysts were generally less stable and with a lower specific activity than the lowly loaded biocatalyst. Results show that enzyme activity (even by a 3 fold factor) and stability of the immobilized enzyme may be tailored by controlling the immobilization conditions, but the effects of the immobilization conditions on activity depend on the substrate and conditions of activity determination, the effects on stability depend on the inactivation conditions. Moreover, the enzyme loading of the biocatalysts defines the effects of the immobilization conditions, and there are clear interactions between immobilization conditions (e.g., immobilization pH determines the effect of the presence of NaCl). These suggest that the extrapolation of the results obtained with one substrate under one condition to other conditions can lead to wrong decisions.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Institute of Chemistry, Federal University of Alfenas, MG, 37130-001 Alfenas, Brazil
| | - Leonardo de Souza
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Graduate Program in Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rod. Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain
| | - Paulo W Tardioli
- Graduate Program in Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rod. Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, MG, 37130-001 Alfenas, Brazil
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
5
|
Waggett A, Pfaendtner J. Hydrophobic Residues Promote Interfacial Activation of Candida rugosa Lipase: A Study of Rotational Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39141441 DOI: 10.1021/acs.langmuir.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Microbial lipases constitute a class of biocatalysts with the ability to cleave ester linkages of long-chain triglycerides. This property makes them particularly attractive for industrial applications ranging from food processing to pharmaceutical preparation. Among such enzymes, Candida rugosa lipase (CRL) is one of the most frequently used in biotransformation. A notable feature of CRL, among many lipases, is its propensity for interfacial activation: these enzymes exhibit elevated catalytic rates when acting at the interface between aqueous and hydrophobic phases. Notably, this phenomenon can be attributed to the presence of a mobile lid domain, which in its closed state occludes the enzyme active site. To advance our understanding of interfacial activation, we explore the dynamics of CRL rotation at the octane-water interface in this work. To do so, we employ molecular dynamics and umbrella sampling to evaluate the free energy of rotation of the enzyme at the interface. We identify a global minimum in the rotational landscape that coincides with lid opening at the interface. Additionally, we investigate the role of surface residues outside the lid domain as they serve to instigate rotation of the lid toward the aqueous phase. In doing so, we identify a patch of leucine residues which when mutated to glycine impose a barrier to rotation that maintains the enzyme in the inactive (closed lid) state on the order of 1 μs. Importantly, this study presents a novel quantification of the rotational free energy corresponding to CRL lid opening at the octane-water interface. The accompanying mutagenesis study likewise clarifies the role of hydrophobic surface residues in the transition. As such, this work provides valuable insight into the phenomenon of interfacial activation that might open up new avenues for manipulating the microenvironment of industrially relevant lipases, affording enhanced control over the enzyme state.
Collapse
Affiliation(s)
- Ava Waggett
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Melo RLF, Freire TM, Valério RBR, Neto FS, de Castro Bizerra V, Fernandes BCC, de Sousa Junior PG, da Fonseca AM, Soares JM, Fechine PBA, Dos Santos JCS. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int J Biol Macromol 2024; 264:130730. [PMID: 38462111 DOI: 10.1016/j.ijbiomac.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60440-554, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Roberta Bussons Rodrigues Valério
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró, RN CEP 59625-900, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza, CE CEP 60455760, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró, RN CEP 59610-090, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil.
| |
Collapse
|
7
|
Sánchez-Morán H, Kaar JL, Schwartz DK. Supra-biological performance of immobilized enzymes enabled by chaperone-like specific non-covalent interactions. Nat Commun 2024; 15:2299. [PMID: 38485940 PMCID: PMC10940687 DOI: 10.1038/s41467-024-46719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Designing complex synthetic materials for enzyme immobilization could unlock the utility of biocatalysis in extreme environments. Inspired by biology, we investigate the use of random copolymer brushes as dynamic immobilization supports that enable supra-biological catalytic performance of immobilized enzymes. This is demonstrated by immobilizing Bacillus subtilis Lipase A on brushes doped with aromatic moieties, which can interact with the lipase through multiple non-covalent interactions. Incorporation of aromatic groups leads to a 50 °C increase in the optimal temperature of lipase, as well as a 50-fold enhancement in enzyme activity. Single-molecule FRET studies reveal that these supports act as biomimetic chaperones by promoting enzyme refolding and stabilizing the enzyme's folded and catalytically active state. This effect is diminished when aromatic residues are mutated out, suggesting the importance of π-stacking and π-cation interactions for stabilization. Our results underscore how unexplored enzyme-support interactions may enable uncharted opportunities for using enzymes in industrial biotransformations.
Collapse
Affiliation(s)
- Héctor Sánchez-Morán
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Campus Box 596, Boulder, CO, 80309, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Campus Box 596, Boulder, CO, 80309, USA.
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Campus Box 596, Boulder, CO, 80309, USA.
| |
Collapse
|
8
|
Al-Mashriqi HS, Sanga P, Chen J, Li X, Xiao J, Li Y, Qiu H. Green-emitting carbon dots as a "turn on" fluorescence bio-probe for highly sensitive and selective detection of lipase in human serum. Anal Bioanal Chem 2024; 416:971-981. [PMID: 38082135 DOI: 10.1007/s00216-023-05086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Abstract
Enzyme activity assays play a crucial role in numerous fields, including biotechnology, the food industry, and clinical diagnostics. Lipases are particularly important enzymes due to their widespread use in lipid metabolism and esterification reactions. Here, we present a pioneering method for the sensitive and selective determination of lipase activity using green carbon dots (G-CDs) for first time. G-CDs are a fascinating class of carbon nanomaterials with unique optical properties and biocompatibility, making them ideal candidates for enzyme activity assays. This approach eliminates the need for traditional fluorophores or chromogenic substrates, reducing costs, fast response time (1 min), and environmental impact with a quantum yield (QY) of 7.42%. As designed, the G-CDs fluorescent probe turn-on demonstrated a reliable linear detection range from 0 to 9 mg/mL under ideal conditions, with detection limit of 0.01 mg/mL and limit of quantification (LOQ) of 0.045 mg/mL, respectively. Furthermore, the G-CDs system was thoroughly evaluated in human serum samples, showing recoveries ranging from 100.0 to 105.0%. These findings highlight the promising applicability of the G-CDs probe for lipase detection, yielding highly favorable results.
Collapse
Affiliation(s)
- Haitham Saad Al-Mashriqi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Pascaline Sanga
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China.
| | - Xin Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
9
|
Singh B, Jana AK. Agri-residues and agro-industrial waste substrates bioconversion by fungal cultures to biocatalyst lipase for green chemistry: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119219. [PMID: 37852078 DOI: 10.1016/j.jenvman.2023.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Huge amounts of agri-residues generated from food crops and processing are discarded in landfills, causing environmental problems. There is an urgent need to manage them with a green technological approach. Agri-residues are rich in nutrients such as proteins, lipids, sugars, minerals etc., and provide an opportunity for bioconversion into value-added products. Considering the importance of lipase as a biocatalyst for various industrial applications and its growing need for economic production, a detailed review of bioconversion of agri-residues and agro-industrial substrate for the production of lipase from fungal species from a technological perspective has been reported for the first time. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram was used for the identification and selection of articles from ScienceDirect, Google Scholar, and Scopus databases from 2010 to 2023 (July), and 108 peer-reviewed journal articles were included based on the scope of the study. The composition of agri-residues/agro-industrial wastes, fungal species, lipase production, industrial/green chemistry applications, and the economic impact of using agri-residues on lipase costs have been discussed. Bioconversion procedure, process developments, and technology gaps required to be addressed before commercialization have also been discussed. This process expects to decrease the environmental pollution from wastes, and low-cost lipase can help in the growth of the bioeconomy.
Collapse
Affiliation(s)
- Bhim Singh
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, 144011, Punjab, India
| | - Asim Kumar Jana
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, 144011, Punjab, India.
| |
Collapse
|
10
|
Willetts A. Bicyclo[3.2.0]carbocyclic Molecules and Redox Biotransformations: The Evolution of Closed-Loop Artificial Linear Biocatalytic Cascades and Related Redox-Neutral Systems. Molecules 2023; 28:7249. [PMID: 37959669 PMCID: PMC10649493 DOI: 10.3390/molecules28217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies Ltd., Trewithen House, Helston TR13 9PQ, Cornwall, UK
| |
Collapse
|
11
|
Girelli AM, Chiappini V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. J Biotechnol 2023; 365:29-47. [PMID: 36796453 DOI: 10.1016/j.jbiotec.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
It is well-known that enzymes are molecules particularly susceptible to pH and temperature variations. Immobilization techniques may overcome this weakness besides improving the reusability of the biocatalysts. Given the strong push toward a circular economy, the use of natural lignocellulosic wastes as supports for enzyme immobilization has been increasingly attractive in recent years. This fact is mainly due to their high availability, low costs, and the possibility of reducing the environmental impact that can occur when they are improperly stored. In addition, they have physical and chemical characteristics suitable for enzyme immobilization (large surface area, high rigidity, porosity, reactive functional groups, etc.). This review aims to guide readers and provide them with the tools necessary to select the most suitable methodology for lipase immobilization on lignocellulosic wastes. The importance and the characteristics of an increasingly interesting enzyme, such as lipase, and the advantages and disadvantages of the different immobilization methods will be discussed. The various kinds of lignocellulosic wastes and the processing required to make them suitable as carriers will be also reported.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Shehata M, Ünlü A, Iglesias-Fernández J, Osuna S, Sezerman OU, Timucin E. Brave new surfactant world revisited by thermoalkalophilic lipases: computational insights into the role of SDS as a substrate analog. Phys Chem Chem Phys 2023; 25:2234-2247. [PMID: 36594810 DOI: 10.1039/d2cp05093e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-ionic surfactants were shown to stabilize the active conformation of thermoalkalophilic lipases by mimicking the lipid substrate while the catalytic interactions formed by anionic surfactants have not been well characterized. In this study, we combined μs-scale molecular dynamics (MD) simulations and lipase activity assays to analyze the effect of ionic surfactant, sodium dodecyl sulfate (SDS), on the structure and activity of thermoalkalophilic lipases. Both the open and closed lipase conformations that differ in geometry were recruited to the MD analysis to provide a broader understanding of the molecular effect of SDS on the lipase structure. Simulations at 298 K showed the potential of SDS for maintaining the active lipase through binding to the sn-1 acyl-chain binding pocket in the open conformation or transforming the closed conformation to an open-like state. Consistent with MD findings, experimental analysis showed increased lipase activity upon SDS incubation at ambient temperature. Notably, the lipase cores stayed intact throughout 2 μs regardless of an increase in the simulation temperature or SDS concentration. However, the surface structures were unfolded in the presence of SDS and at elevated temperature for both conformations. Simulations of the dimeric lipase were also carried out and showed reduced flexibility of the surface structures which were unfolded in the monomer, indicating the insulating role of dimer interactions against SDS. Taken together, this study provides insights into the possible substrate mimicry by the ionic surfactant SDS for the thermoalkalophilic lipases without temperature elevation, underscoring SDS's potential for interfacial activation at ambient temperatures.
Collapse
Affiliation(s)
- Mohamed Shehata
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul 34752, Turkey.
| | - Aişe Ünlü
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | | | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Department de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - O Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul 34752, Turkey.
| | - Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul 34752, Turkey.
| |
Collapse
|
13
|
Kaya C, Birgül K, Bülbül B. Fundamentals of chirality, resolution, and enantiopure molecule synthesis methods. Chirality 2023; 35:4-28. [PMID: 36366874 DOI: 10.1002/chir.23512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The chirality of molecules is a concept that explains the interactions in nature. We may observe the same formula but different organizations revolving around the chiral center. Since Pasteur's meticulous observation of sodium ammonium tartrate crystals' structure, scientists have discovered many features of chiral molecules. The number of newly approved single enantiomeric drugs increases every year and takes place in the market. Thus, separation or resolution methods of racemic mixtures are of continued importance in the efficacy of drugs, installation of affordable production processes, and convenient synthetic chemistry practice. This article presents the asymmetric synthesis approaches and the classification of direct resolution methods of chiral molecules.
Collapse
Affiliation(s)
- Cem Kaya
- Department of Pharmacy, Haydarpasa Numune Training and Research Hospital, İstanbul, Turkey.,Department of Pharmaceutical Chemistry, School of Pharmacy, Altınbaş University, İstanbul, Turkey
| | - Kaan Birgül
- Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, İstanbul, Turkey
| | - Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Düzce University, Düzce, Turkey
| |
Collapse
|
14
|
Zugman T, da Silva Durigon MC, Campos SK, da Silva RR, da Silva TS, de Oliveira ARM, Piovan L. Exquisite use of Selenoesters as Recyclable Acyl Donors for Lipases‐catalyzed Kinetic Resolution. ChemistrySelect 2022. [DOI: 10.1002/slct.202203883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tay Zugman
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Maria Clara da Silva Durigon
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Suelem Kluconski Campos
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Rodolfo Rodrigues da Silva
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Thiago Sabino da Silva
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Alfredo Ricardo Marques de Oliveira
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Leandro Piovan
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| |
Collapse
|
15
|
Resolution of Racemic Aryloxy-Propan-2-yl Acetates via Lipase-Catalyzed Hydrolysis: Preparation of Enantiomerically Pure/Enantioenriched Mexiletine Intermediates and Analogs. Catalysts 2022. [DOI: 10.3390/catal12121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lipase kinetic resolution (KR) of aryloxy-propan-2-yl acetates, via hydrolysis, produced enantiomerically pure/enantioenriched mexiletine intermediates and analogs. Racemic acetates rac-1-(2,6-dimethylphenoxy)propan-2-yl acetate (rac-5a), rac-1-(2,4-dimethylphenoxy)propan-2-yl acetate (rac-5b), rac-1-(o-tolyloxy)propan-2-yl acetate (rac-5c) and rac-1-(naphthalen-1-yloxy)propan-2-yl acetate (rac-5d) were used as substrates. A preliminary screening (24 h, phosphate buffer pH 7.0 with 20% acetonitrile as co-solvent, 30 °C and enzyme:substrate ratio of 2:1, m:m) was carried out with twelve lipases using acetate 5a as substrate. Two enzymes stood out in the KR of 5a, the Amano AK lipase from Pseudomonas fluorescens and lipase from Thermomyces lanuginosus (TLL) immobilized on Immobead 150. Under these conditions, both the (R)-1-(2,6-dimethylphenoxy)propan-2-ol [(R)-4a] and the remaining (S)-1-(2,6-dimethylphenoxy)propan-2-yl acetate [(S)-5a] were obtained with enantiomeric excess (ee) > 99%, 50% conversion and enantiomeric ratio (E) > 200. The KR study was expanded to racemic acetates 5b-d, leading to the corresponding chiral remaining acetates with ≥95% ee, and the alcohols 4b-d with ≥98% ee, and conversion values close to 50%. The best conditions for KRs of rac-5b-d involved the use of lipase from P. fluorescens or TLL immobilized on Immobead 150, 24 or 48 h and 30 °C. These intermediates had their absolute configurations determined using 1H NMR spectroscopy (Mosher’s method), showing that the KRs of these acetates obeyed the Kazlauskas’ rule. Molecular docking studies corroborated the experimental results, indicating a preference for the hydrolysis of (R)-5a-d.
Collapse
|
16
|
Wang H, Li H, Lee CK, Mat Nanyan NS, Tay GS. Recent Advances in the Enzymatic Synthesis of Polyester. Polymers (Basel) 2022; 14:5059. [PMID: 36501454 PMCID: PMC9740404 DOI: 10.3390/polym14235059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Polyester is a kind of polymer composed of ester bond-linked polybasic acids and polyol. This type of polymer has a wide range of applications in various industries, such as automotive, furniture, coatings, packaging, and biomedical. The traditional process of synthesizing polyester mainly uses metal catalyst polymerization under high-temperature. This condition may have problems with metal residue and undesired side reactions. As an alternative, enzyme-catalyzed polymerization is evolving rapidly due to the metal-free residue, satisfactory biocompatibility, and mild reaction conditions. This article presented the reaction modes of enzyme-catalyzed ring-opening polymerization and enzyme-catalyzed polycondensation and their combinations, respectively. In addition, the article also summarized how lipase-catalyzed the polymerization of polyester, which includes (i) the distinctive features of lipase, (ii) the lipase-catalyzed polymerization and its mechanism, and (iii) the lipase stability under organic solvent and high-temperature conditions. In addition, this article also focused on the advantages and disadvantages of enzyme-catalyzed polyester synthesis under different solvent systems, including organic solvent systems, solvent-free systems, and green solvent systems. The challenges of enzyme optimization and process equipment innovation for further industrialization of enzyme-catalyzed polyester synthesis were also discussed in this article.
Collapse
Affiliation(s)
- Hong Wang
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Hongpeng Li
- Tangshan Jinlihai Biodiesel Co. Ltd., Tangshan 063000, China
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Noreen Suliani Mat Nanyan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| |
Collapse
|
17
|
Zhang F, Du T, Jiang L, Zhu L, Tian D. A combined “AIE + ESIPT” fluorescent probe for detection of lipase activity. Bioorg Chem 2022; 128:106026. [DOI: 10.1016/j.bioorg.2022.106026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/12/2023]
|
18
|
dos Santos LA, Alnoch RC, Soares GA, Mitchell DA, Krieger N. Immobilization of Pseudomonas fluorescens lipase on chitosan crosslinked with polyaldehyde starch for kinetic resolution of sec-alcohols. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Tang CD, Zhang X, Shi HL, Liu XX, Wang HY, Lu YF, Zhang SP, Kan YC, Yao LG. Improving catalytic activity of Lactobacillus harbinensis -mandelate dehydrogenase toward -o-chloromandelic acid by laboratory evolution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Ali SR, Sultana SS, Rajak S, Tribedi P, Chakraborty SS. Serratia sp. scl1: isolation of a novel thermostable lipase producing microorganism which holds industrial importance. Antonie Van Leeuwenhoek 2022; 115:1335-1348. [PMID: 36127621 DOI: 10.1007/s10482-022-01776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Lipase being a hydrolysable enzyme plays a major role in serving various purposes of the industries. Thus, it is very important to have a sustainable and efficient source of this enzyme. In this present study, several microorganisms were isolated from medicinal effluent of a pharmaceutical industry that could produce efficient lipase activity. Among these isolates, a designated strain scl1 was isolated and based on the molecular and biochemical characterisation was tentatively assigned to the genus Serratia. Preliminary studies confirmed the strain scl1 was found to exhibit the highest production of lipase at a temperature and pH of 35 °C and 7, respectively under the incubation for 48 h. Further, the lipase activity was measured by following spectrophotometric method using pNPP as the substrate in which the Km and Vmax of the crude enzyme was found to be 3.349 × 10-3 M and 5.68 × 10-1 unit/mL, respectively. The extracellular crude lipase was found to show a temperature and pH optima of 75 °C and 8, respectively which gave a strong indication that the enzyme appeared to be highly thermostable. This study revealed the strain scl1 is able to produce a thermostable lipase which can meet the needs of the modern-day industrialization techniques. However, more work is required to purify the enzyme and get it ready for commercial applications.
Collapse
Affiliation(s)
- Shaikh Rajesh Ali
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, West Bengal, India
| | - Syeda Sagufta Sultana
- Department of Microbiology, West Bengal State University, Barasat, West Bengal, India
| | - Sisir Rajak
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, West Bengal, India
| | - Prosun Tribedi
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, India
| | | |
Collapse
|
21
|
Sánchez‐Muñoz GK, Ortega‐Rojas MA, Chavelas‐Hernández L, Razo‐Hernández RS, Valdéz‐Camacho JR, Escalante J. Solvent‐Free Lipase‐Catalyzed Transesterification of Alcohols with Methyl Esters Under Vacuum‐Assisted Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Grecia K. Sánchez‐Muñoz
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Leticia Chavelas‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Rodrigo S. Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jonathan R. Valdéz‐Camacho
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|
22
|
Efficient bioreduction of cyclohexyl phenyl ketone by Leuconostoc pseudomesenteroides N13 biocatalyst using a distance-based design-focused optimization model. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
23
|
Acoustic Characterization and Modeling of Silicone-Bonded Cocoa Crop Waste Using a Model Based on the Gaussian Support Vector Machine. FIBERS 2022. [DOI: 10.3390/fib10030025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sustainable management of waste from agricultural crops represents an urgent challenge. One possible solution considers waste as possible secondary raw materials for specific uses. Among these, the use of agricultural waste as a product for the assembly of panels for the sound absorption of living environments represents a particularly suitable solution. In this study, the acoustic properties of the cocoa pod husk were evaluated, using silicone as a binder. Different proportions of materials and thicknesses were evaluated. A Support Vector Machine (SVM)-based model with a Gaussian kernel was then used to predict the acoustic performance of composite materials. The results obtained suggest the adoption of this material for the acoustic correction of living environments and this methodology for the prediction of the acoustic behavior of materials.
Collapse
|
24
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
25
|
Fogal S, Bergantino E, Motterle R. Enzymatic Resolution of
cis
‐Dimethyl‐1‐acetylpiperidine‐2,3‐dicarboxylate for the Preparation of a Moxifloxacin Building Block. ChemistrySelect 2022. [DOI: 10.1002/slct.202104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefano Fogal
- Fabbrica Italiana Sintetici S.p.A. Viale Milano 26 36075 Alte di Montecchio Maggiore Vicenza Italy
| | | | - Riccardo Motterle
- Fabbrica Italiana Sintetici S.p.A. Viale Milano 26 36075 Alte di Montecchio Maggiore Vicenza Italy
| |
Collapse
|
26
|
Choi Y, Chang PS. Kinetic modeling of lipase-catalysed hydrolysis of triacylglycerol in a reverse micelle system for the determination of integral stereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02182f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kinetic model for lipase-catalysed stepwise hydrolysis of triacylglycerol was developed for quantification of integral stereoselectivity.
Collapse
Affiliation(s)
- Yoonseok Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Hebda P, Wiśniowska L, Szafrański PW, Cegła M. Multigram-scale enzymatic kinetic resolution of trans-2-azidocyclohexyl acetate and chiral reversed-phase HPLC analysis of trans-2-azidocyclohexanol. Chirality 2021; 34:428-437. [PMID: 34813115 DOI: 10.1002/chir.23397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
Lipase-catalyzed hydrolytic kinetic resolution is a method of obtaining optically pure chiral alcohols and amines, which requires additional tools for determining enantiomerical purity. Herein, we present a study on multigram-scale hydrolytic kinetic resolution of trans-2-azidocyclohexyl acetate using Pseudomonas cepacia lipase immobilized on Immobead support. We investigated several parameters of the preparative-scale process: temperature, organic co-solvent, and the influence of calcium ions. Moreover, we have developed an efficient fluorenylmethyloxycarbonyl chloride (Fmoc-Cl) derivatization protocol for 2-azidocyclohexanol, which enabled chiral reversed-phase high-performance liquid chromatography (RP-HPLC) determination of enantiomeric excess.
Collapse
Affiliation(s)
- Paulina Hebda
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Lilianna Wiśniowska
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Przemysław W Szafrański
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Cegła
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
28
|
Kolat SP, Patil H. Biocatalytic transformations of bioactive labdane diterpenoids from Andrographis paniculata (Burm f.) Nees: A review. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Swati P. Kolat
- Bharatiya Jain Sanghatana’s Arts, Science and Commerce College, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Harshal Patil
- Moreshwar Arts, Science and Commerce College, Bhokardan Dr. Baba Saheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
29
|
Cirujano FG, Dhakshinamoorthy A. Challenges and Opportunities for the Encapsulation of Enzymes over Porous Solids for Biodiesel Production and Cellulose Valorization into Glucose. ChemCatChem 2021. [DOI: 10.1002/cctc.202100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco G. Cirujano
- Institute of Molecular Science (ICMOL) Universidad de Valencia 46980 Paterna Valencia Spain
| | | |
Collapse
|
30
|
Maldonado MR, Alnoch RC, de Almeida JM, Santos LAD, Andretta AT, Ropaín RDPC, de Souza EM, Mitchell DA, Krieger N. Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Chavan AS, Kharat AS, Bhosle MR, Dhumal ST, Mane RA. CAL-B accelerated novel synthetic protocols for 3,3’-arylidenebis-4-hydroxycoumarins and dimethyl ((substituted phenyl) (phenylamino)methyl) phosphonates. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04535-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Galmés MA, Świderek K, Moliner V. Computational Studies Suggest Promiscuous Candida antarctica Lipase B as an Environmentally Friendly Alternative for the Production of Epoxides. J Chem Inf Model 2021; 61:3604-3614. [PMID: 34251205 DOI: 10.1021/acs.jcim.1c00425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Environmentally friendly processes are nowadays a trending topic to get highly desired chemical compounds and, in this sense, the use of enzyme-catalyzed routes is becoming a promising alternative to traditional synthetic methods. In the present paper, a hybrid quantum mechanics/molecular mechanics (QM/MM) computational study on the epoxidation of alkenes catalyzed by the Ser105Ala variant of the promiscuous Candida antarctica lipase B (CALB) is presented in an attempt to search for alternative paths to get useful intermediates in industries. The catalyzed reaction, described at the atomistic level with a model of the full solvated in a box of water molecules, is compared with the alternative epoxidation of alkenes by peroxy acids in chloroform. Free-energy profiles obtained at the density functional theory (DFT)/MM level show how Ser105Ala CALB is capable of epoxide short alkenes in a two-step process with free-energy barriers, in agreement with available experimental data, that are significantly lower than those of the single-step reaction in solution. The possible (R)-enantioselectivity dictated by the binding step, explored by means of alchemical QM/MM free-energy perturbation (FEP) methods, and the preference for the (S)-enantiomer derived from the free-energy landscape of the chemical steps would cancel out, thus predicting the lack of enantioselectivity experimentally observed. In general, our results provide general information on the molecular mechanism employed by a highly promiscuous enzyme, with potential applications in biotechnology.
Collapse
Affiliation(s)
- Miquel A Galmés
- BioComp group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Katarzyna Świderek
- BioComp group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
33
|
Kwiatkowska M, Błaszczyk J, Sieroń L, Kiełbasiński P. Enzymatic Approach to the Synthesis of Enantiomerically Pure Hydroxy Derivatives of 1,3,5-Triaza-7-phosphaadamantane. J Org Chem 2021; 86:8556-8562. [PMID: 34137610 PMCID: PMC8279493 DOI: 10.1021/acs.joc.0c02586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 11/28/2022]
Abstract
A series of enantiomerically pure derivatives of 6-(1-hydroxyalkyl)-1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane 5 were successfully synthesized for the first time. A series of hydrolytic enzymes was applied in a stereoselective acetylation performed under kinetic resolution conditions. Although the secondary alcohols: α-aryl-hydroxymethyl-PTA (phosphines) 5b-d', PTA-oxides 8b-d', and PTA-sulfides 9b-d' were found to be totally unreactive in the presence of all the enzymes and various conditions applied, the primary alcohols, i.e., the hydroxymethyl derivatives PTA oxide 8a and PTA sulfide 9a, were successfully resolved into enantiomers with moderate to good enantioselectivity (up to 95%). The absolute configurations of the products were determined by an X-ray analysis and chemical correlation.
Collapse
Affiliation(s)
- Małgorzata Kwiatkowska
- Division
of Organic Chemistry, Centre of Molecular
and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Jarosław Błaszczyk
- Division
of Organic Chemistry, Centre of Molecular
and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Lesław Sieroń
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź́, Poland
| | - Piotr Kiełbasiński
- Division
of Organic Chemistry, Centre of Molecular
and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
34
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Arana-Peña S, Rios NS, Carballares D, Gonçalves LR, Fernandez-Lafuente R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Wang HY, Xie YL, Shi X, Shi HL, Xu JH, Tang CD, Yao LG, Kan YC. Directed evolution of a D-mandelate dehydrogenase toward D-o-chloromandelic acid and insight into the molecular basis for its catalytic performance. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Psychrophilic enzymes: structural adaptation, pharmaceutical and industrial applications. Appl Microbiol Biotechnol 2021; 105:899-907. [PMID: 33427934 DOI: 10.1007/s00253-020-11074-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
Psychrophiles are cold-living microorganisms synthesizing enzymes that are permanently active at almost near-zero temperatures. Psychrozymes are supposed to be structurally more flexible than their homologous proteins. This structural flexibility enables these proteins to undergo conformational changes during catalysis and improve catalytic efficiency at low temperatures. The outstanding characteristics of the psychrophilic enzymes have attracted the attention of the scientific community to utilize them in a wide variety of industrial and pharmaceutical applications. In this review, we first highlight the current knowledge of the cold-adaptation mechanisms of the psychrophiles. In the sequel, we describe the potential applications of the enzymes in different biotechnological processes specifically, in the production of industrial and pharmaceutical products. KEY POINTS: • Methods that organisms have evolved to survive and proliferate at cold environments. • The economic benefits due to their high activity at low and moderate temperatures. • Applications of the psychrophiles in biotechnological and pharmaceutical industry.
Collapse
|
38
|
Cui H, Zhang L, Eltoukhy L, Jiang Q, Korkunç SK, Jaeger KE, Schwaneberg U, Davari MD. Enzyme Hydration Determines Resistance in Organic Cosolvents. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Lingling Zhang
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Lobna Eltoukhy
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Qianjia Jiang
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Seval Kübra Korkunç
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, Jülich 52426, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen 52074, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| |
Collapse
|
39
|
Efficient improvement of surface displayed lipase from Rhizomucor miehei in PichiaPink™ protease-deficient system. Protein Expr Purif 2020; 180:105804. [PMID: 33276128 DOI: 10.1016/j.pep.2020.105804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/25/2020] [Accepted: 11/29/2020] [Indexed: 11/23/2022]
Abstract
Lipase from Rhizomucor miehei (RML) is a promising biocatalyst used in food industry, fine chemicals, and biodiesel production. Yeast surface display allows direct application of lipase in form of whole-cell biocatalyst, avoiding purification and immobilization process, but the protease of the host cell may affect the activity of displayed lipase. Herein, we used the protease-deficient Pichia pastoris, PichiaPink™ as host to display RML efficiently. RML gene, GCW21 gene and α-factor gene were co-cloned into plasmid pPink LC/HC and transformed into protease-deficient P. pastoris. After inducution expression for 96 h, the lipase activity of displayed RML reached 121.72 U/g in proteinase-A-deficient P. pastoris harboring high-copy plasmid, which exhibited 46.7% higher than recombinant P. pastoris without protease defect. Displayed RML occurred the maximum activity at pH 8.0 and 45 °C and the optimal substrate was p-nitrophenyl octanoate. Metal ions Li+, Na+, K+, and Mg2+ of 1-10 mM had activation towards displayed RML. Displayed RML was effectively improved in PichiaPink™ protease-deficient system, which may promote the further research and development for the industrial application of RML.
Collapse
|
40
|
Shehata M, Unlu A, Sezerman U, Timucin E. Lipase and Water in a Deep Eutectic Solvent: Molecular Dynamics and Experimental Studies of the Effects of Water-In-Deep Eutectic Solvents on Lipase Stability. J Phys Chem B 2020; 124:8801-8810. [DOI: 10.1021/acs.jpcb.0c07041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mohamed Shehata
- Institute of Health Science, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Aise Unlu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
41
|
Casajus H, Lagarde A, Leremboure M, De Dios Miguel T, Nauton L, Thery V, Fessner W, Duguet N, Charmantray F, Hecquet L. Enzymatic Synthesis of Aliphatic Acyloins Catalyzed by Thermostable Transketolase. ChemCatChem 2020. [DOI: 10.1002/cctc.202001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hubert Casajus
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Thomas De Dios Miguel
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Nicolas Duguet
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| |
Collapse
|
42
|
Breaking Molecular Symmetry through Biocatalytic Reactions to Gain Access to Valuable Chiral Synthons. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review the recent reports of biocatalytic reactions applied to the desymmetrization of meso-compounds or symmetric prochiral molecules are summarized. The survey of literature from 2015 up to date reveals that lipases are still the most used enzymes for this goal, due to their large substrate tolerance, stability in different reaction conditions and commercial availability. However, a growing interest is focused on the use of other purified enzymes or microbial whole cells to expand the portfolio of exploitable reactions and the molecular diversity of substrates to be transformed. Biocatalyzed desymmetrization is nowadays recognized as a reliable and efficient approach for the preparation of pharmaceuticals or natural bioactive compounds and many processes have been scaled up for multigram preparative purposes, also in continuous-flow conditions.
Collapse
|
43
|
(S)-Pramipexole and Its Enantiomer, Dexpramipexole: A New Chemoenzymatic Synthesis and Crystallographic Investigation of Key Enantiomeric Intermediates. Catalysts 2020. [DOI: 10.3390/catal10080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new chemoenzymatic method has been developed for the synthesis of (S)- and (R)-N-(6-hydroxy-4,5,6,7-tetrahydrobenzo[d]thiazol-2-yl) acetamide, two key synthons for the preparation of (S)-pramipexole, an anti-Parkinson drug, and its enantiomer dexpramipexole, which is currently under investigation for the treatment of eosinophil-associated disorders. These two building blocks have been obtained in good yields and high enantiomeric excess (30% and >98% ee for the R-enantiomer, and 31% and >99% ee for the S- one) through a careful optimization of the reaction conditions, starting from the corresponding racemic mixture and using two consecutive irreversible transesterifications, catalyzed by Candida antarctica lipase type A. Single crystal X-ray analysis has been carried out to unambiguously define the stereochemistry of the two enantiomers, and to explore in depth their three-dimensional features.
Collapse
|
44
|
Jeucken A, Molenaar MR, van de Lest CHA, Jansen JWA, Helms JB, Brouwers JF. A Comprehensive Functional Characterization of Escherichia coli Lipid Genes. Cell Rep 2020; 27:1597-1606.e2. [PMID: 31042483 DOI: 10.1016/j.celrep.2019.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid membranes are the border between living cells and their environments. The membrane's lipid composition defines fluidity, thickness, and protein activity and is controlled by the intricate actions of lipid gene-encoded enzymes. However, a comprehensive analysis of each protein's contribution to the lipidome is lacking. Here, we present such a comprehensive and functional overview of lipid genes in Escherichia coli by individual overexpression or deletion of these genes. We developed a high-throughput lipidomic platform, combining growth analysis, one-step lipid extraction, rapid LC-MS, and bioinformatic analysis into one streamlined procedure. This allowed the processing of more than 300 samples per day and revealed interesting functions of known enzymes and distinct effects of individual proteins on the phospholipidome. Our data demonstrate the plasticity of the phospholipidome and unexpected relations between lipid classes and cell growth. Modeling of lipidomic responses to short-chain alcohols provides a rationale for targeted membrane engineering.
Collapse
Affiliation(s)
- Aike Jeucken
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Martijn R Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Chris H A van de Lest
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands.
| |
Collapse
|
45
|
Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts 2020. [DOI: 10.3390/catal10060697] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The utilization of biomaterials as novel carrier materials for lipase immobilization has been investigated by many research groups over recent years. Biomaterials such as agarose, starch, chitin, chitosan, cellulose, and their derivatives have been extensively studied since they are non-toxic materials, can be obtained from a wide range of sources and are easy to modify, due to the high variety of functional groups on their surfaces. However, although many lipases have been immobilized on biomaterials and have shown potential for application in biocatalysis, special features are required when the biocatalyst is used in non-conventional media, for example, in organic solvents, which are required for most reactions in organic synthesis. In this article, we discuss the use of biomaterials for lipase immobilization, highlighting recent developments in the synthesis and functionalization of biomaterials using different methods. Examples of effective strategies designed to result in improved activity and stability and drawbacks of the different immobilization protocols are discussed. Furthermore, the versatility of different biocatalysts for the production of compounds of interest in organic synthesis is also described.
Collapse
|
46
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
47
|
Fonseca TDS, Vega KB, da Silva MR, de Oliveira MDCF, de Lemos TLG, Contente ML, Molinari F, Cespugli M, Fortuna S, Gardossi L, de Mattos MC. Lipase mediated enzymatic kinetic resolution of phenylethyl halohydrins acetates: A case of study and rationalization. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Baydaş Y, Dertli E, Şahin E. Green synthesis of chiral aromatic alcohols with Lactobacillus kefiri P2 as a novel biocatalyst. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1729809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yasemin Baydaş
- Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Engin Şahin
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey
| |
Collapse
|
49
|
Gavin DP, Reen FJ, Rocha-Martin J, Abreu-Castilla I, Woods DF, Foley AM, Sánchez-Murcia PA, Schwarz M, O'Neill P, Maguire AR, O'Gara F. Genome mining and characterisation of a novel transaminase with remote stereoselectivity. Sci Rep 2019; 9:20285. [PMID: 31889089 PMCID: PMC6937235 DOI: 10.1038/s41598-019-56612-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
Microbial enzymes from pristine niches can potentially deliver disruptive opportunities in synthetic routes to Active Pharmaceutical Ingredients and intermediates in the Pharmaceutical Industry. Advances in green chemistry technologies and the importance of stereochemical control, further underscores the application of enzyme-based solutions in chemical synthesis. The rich tapestry of microbial diversity in the oceanic ecosystem encodes a capacity for novel biotransformations arising from the chemical complexity of this largely unexplored bioactive reservoir. Here we report a novel ω-transaminase discovered in a marine sponge Pseudovibrio sp. isolate. Remote stereoselection using a transaminase has been demonstrated for the first time using this novel protein. Application to the resolution of an intermediate in the synthesis of sertraline highlights the synthetic potential of this novel biocatalyst discovered through genomic mining. Integrated chemico-genomics revealed a unique substrate profile, while molecular modelling provided structural insights into this ‘first in class’ selectivity at a remote chiral centre.
Collapse
Affiliation(s)
- D P Gavin
- School of Chemistry; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F J Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, T12 K8AF, Cork, Ireland
| | - J Rocha-Martin
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - I Abreu-Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - D F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - A M Foley
- School of Chemistry, School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - P A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090, Vienna, Austria
| | - M Schwarz
- School of Chemistry; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - P O'Neill
- Pfizer Process Development Centre, Loughbeg, Cork, Ireland
| | - A R Maguire
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland. .,School of Chemistry, School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| | - F O'Gara
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland. .,BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland. .,Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia and Telethon Kids Institute, Perth, WA, 6008, Australia.
| |
Collapse
|
50
|
Galmés MÀ, García-Junceda E, Świderek K, Moliner V. Exploring the Origin of Amidase Substrate Promiscuity in CALB by a Computational Approach. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Miquel À Galmés
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Eduardo García-Junceda
- Departamento de Química Orgánica Biológica, Instituto de Química Orgánica General, CSIC Juan de la Cierva 3, 28006 Madrid, Spain
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|