1
|
Chatfield DC, Morozov AN. Proximal Pocket Controls Alkene Oxidation Selectivity of Cytochrome P450 and Chloroperoxidase toward Small, Nonpolar Substrates. J Phys Chem B 2018; 122:7828-7838. [PMID: 30052045 DOI: 10.1021/acs.jpcb.8b04279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper examines the influence of the proximal pockets of cytochrome P450CAM and chloroperoxidase (CPO) on the relative favorability of catalytic epoxidation and allylic hydroxylation of olefins, a type of alkene oxidation selectivity. The study employs quantum mechanical models of the active site to isolate the proximal pocket's influence on the barrier for the selectivity-determining step for each reaction, using cyclohexene and cis-β-methylstyrene as substrates. The proximal pocket is found to preference epoxidation by 2-5 kcal/mol, the largest value being for CPO, converting the active heme-thiolate moiety from being intrinsically hydroxylation-selective to being intrinsically epoxidation-selective. This theoretical study, the first to correctly predict these enzymes' preference for epoxidation of allylic substrates, strongly suggests that the proximal pocket is the key determinant of alkene oxidation selectivity. The selectivity for epoxidation can be rationalized in terms of the proximal pocket's modulation of the thiolate's electron "push" and consequent influence on the heme redox potential and the basicity of the trans ligand.
Collapse
Affiliation(s)
- David C Chatfield
- Department of Chemistry and Biochemistry , Florida International University , 11200 8th Street , Miami , Florida 33199 , United States
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry , Florida International University , 11200 8th Street , Miami , Florida 33199 , United States
| |
Collapse
|
2
|
|
3
|
Tudorache M, Gheorghe A, Viana AS, Parvulescu VI. Biocatalytic epoxidation of α-pinene to oxy-derivatives over cross-linked lipase aggregates. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Morozov AN, Chatfield DC. How the Proximal Pocket May Influence the Enantiospecificities of Chloroperoxidase-Catalyzed Epoxidations of Olefins. Int J Mol Sci 2016; 17:E1297. [PMID: 27517911 PMCID: PMC5000694 DOI: 10.3390/ijms17081297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
Chloroperoxidase-catalyzed enantiospecific epoxidations of olefins are of significant biotechnological interest. Typical enantiomeric excesses are in the range of 66%-97% and translate into free energy differences on the order of 1 kcal/mol. These differences are generally attributed to the effect of the distal pocket. In this paper, we show that the influence of the proximal pocket on the electron transfer mechanism in the rate-limiting event may be just as significant for a quantitatively accurate account of the experimentally-measured enantiospecificities.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | - David C Chatfield
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| |
Collapse
|
5
|
Schöttl S, Horinek D. Aggregation in detergent-free ternary mixtures with microemulsion-like properties. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Xenakis A, Zoumpanioti M, Stamatis H. Enzymatic reactions in structured surfactant-free microemulsions. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Morozov AN, Pardillo AD, Chatfield DC. Chloroperoxidase-Catalyzed Epoxidation of Cis-β-Methylstyrene: NH-S Hydrogen Bonds and Proximal Helix Dipole Change the Catalytic Mechanism and Significantly Lower the Reaction Barrier. J Phys Chem B 2015; 119:14350-63. [PMID: 26452587 DOI: 10.1021/acs.jpcb.5b06731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proximal hydrogen bonding of the axial sulfur with the backbone amides (NH-S) is a conserved feature of heme-thiolate enzymes such as chloroperoxidase (CPO) and cytochrome P450 (P450). In CPO, the effect of NH-S bonds is amplified by the dipole moment of the proximal helix. Our gas-phase DFT studies show that the proximal pocket effect significantly enhances CPO's reactivity toward the epoxidation of olefinic substrates. Comparison of models with and without proximal pocket residues shows that with them, the barrier for Cβ-O bond formation is lowered by about ∼4.6 kcal/mol, while Cα-O-Cβ ring closure becomes barrierless. The dipole moment of the proximal helix was estimated to contribute 1/3 of the decrease, while the rest is attributed to the effect of NH-S bonds. The decrease of the reaction barrier correlates with increased electron density transfer to residues of the proximal pocket. The effect is most pronounced on the doublet spin surface and involves a change in the electron-transfer mechanism. A full enzyme QMMM study on the doublet spin surface gives about the same barrier as the gas-phase DFT study. The free-energy barrier was estimated to be in agreement with the experimental results for the CPO-catalyzed epoxidation of styrene.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University , 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Armando D Pardillo
- Department of Chemistry and Biochemistry, Florida International University , 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - David C Chatfield
- Department of Chemistry and Biochemistry, Florida International University , 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
8
|
Bormann S, Gomez Baraibar A, Ni Y, Holtmann D, Hollmann F. Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01477d] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peroxygenases are promising oxyfunctionalisation catalysts for organic synthesis.
Collapse
Affiliation(s)
| | - Alvaro Gomez Baraibar
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| | - Yan Ni
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| | - Dirk Holtmann
- DECHEMA Research Institute
- 60486 Frankfurt am Main
- Germany
| | - Frank Hollmann
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| |
Collapse
|
9
|
Chhaya U, Gupte A. Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:149-156. [PMID: 23611799 DOI: 10.1016/j.jhazmat.2013.03.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/23/2013] [Accepted: 03/23/2013] [Indexed: 06/02/2023]
Abstract
Bisphenol A [2,2 bis (4 hydroxyphenyl) propane] is widely used in the variety of industrial and residential applications such as the synthesis of polymers including polycarbonates, epoxy resins, phenol resins, polyesters and polyacrylates. BPA has been recognized as an Endocrine Disrupting Chemicals (EDC), thus it is necessary to assess its biodegradability or fate in the natural environment. In general, environmental pollutant such as BPA does not dissolve in aqueous media, owing to their high hydrophobicity, and hence non-aqueous catalysis can be employed to enhance biodegradability of phenolic environmental pollutant. Purified laccase hosted in reverse micelles using ternary system of isooctane: AOT [Bis (2-ethylhexyl) sulphosuccinate sodium salt)]:water having hydration ratio (Wo) of 30 with protein concentration of 43.5 μg/ml was found to eliminate 91.43% of 200 ppm of Bisphenol A at 50 °C, pH-6.0 when incubated with laccase/Reverse Micelles system for 75 min. GC-MS analysis of isooctane soluble fractions detected the presence of 4,4'-(2 hydroxy propane 1,2 diyl) diphenol, bis (4-hydroxylphenyl) butenal and 2-(1-(4-hydroxyphenyl) vinyl) pent-2-enal indicated degradation of BPA by two oxidation steps and one ring opening step (C-C bond cleavage). Laccase/RM system exhibited several advantages for the oxidative degradation of hydrophobic phenols mainly because of the solubility of either enzyme or substrate was improved in organic media and the stable activity of laccase in organic media was achieved.
Collapse
Affiliation(s)
- Urvish Chhaya
- Department of Microbiology, Natubhai V. Patel College of Pure and Applied Sciences, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
| | - Akshaya Gupte
- Department of Microbiology, Natubhai V. Patel College of Pure and Applied Sciences, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India.
| |
Collapse
|
10
|
Yadav P, Yadav M, Yadav KDS, Sharma JK, Singh VK. Purification of chloroperoxidase from Musa paradisiaca
stem juice. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Churakova E, Arends IWCE, Hollmann F. Increasing the Productivity of Peroxidase-Catalyzed Oxyfunctionalization: A Case Study on the Potential of Two-Liquid-Phase Systems. ChemCatChem 2012. [DOI: 10.1002/cctc.201200490] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Morozov AN, Chatfield DC. Chloroperoxidase-catalyzed epoxidation of cis-β-methylstyrene: distal pocket flexibility tunes catalytic reactivity. J Phys Chem B 2012; 116:12905-14. [PMID: 23020548 DOI: 10.1021/jp302763h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chloroperoxidase, the most versatile heme protein, has a hybrid active site pocket that shares structural features with peroxidases and cytochrome P450s. The simulation studies presented here show that the enzyme possesses a remarkable ability to efficiently utilize its hybrid structure, assuming structurally different peroxidase-like and P450-like distal pocket faces and thereby enhancing the inherent catalytic capability of the active center. We find that, during epoxidation of cis-β-methylstyrene (CBMS), the native peroxidase-like aspect of the distal pocket is diminished as the polar Glu183 side chain is displaced away from the active center and the distal pocket takes on a more hydrophobic, P450-like, aspect. The P450-like distal pocket provides a significant enthalpic stabilization of ∼4 kcal/mol of the 14 kcal/mol reaction barrier for gas-phase epoxidation of CMBS by an oxyferryl heme-thiolate species. This stabilization comes from breathing of the distal pocket. As until recently the active site of chloroperoxidase was postulated to be inflexible, these results suggest a new conceptual understanding of the enzyme's versatility: catalytic reactivity is tuned by flexibility of the distal pocket.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.
| | | |
Collapse
|
13
|
Morozov AN, D'Cunha C, Alvarez CA, Chatfield DC. Enantiospecificity of chloroperoxidase-catalyzed epoxidation: biased molecular dynamics study of a cis-β-methylstyrene/chloroperoxidase-compound I complex. Biophys J 2011; 100:1066-75. [PMID: 21320452 DOI: 10.1016/j.bpj.2010.12.3729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/22/2010] [Accepted: 12/20/2010] [Indexed: 11/17/2022] Open
Abstract
Molecular dynamics simulations of an explicitly solvated cis-β-methylstyrene/chloroperoxidase-Compound I complex are performed to determine the cause of the high enantiospecificity of epoxidation. From the simulations, a two-dimensional free energy potential is calculated to distinguish binding potential wells from which reaction to 1S2R and 1R2S epoxide products may occur. Convergence of the free energy potential is accelerated with an adaptive biasing potential. Analysis of binding is followed by analysis of 1S2R and 1R2S reaction precursor structures in which the substrate, having left the binding wells, places its reactive double bond in steric proximity to the oxyferryl heme center. Structural analysis of binding and reaction precursor conformations is presented. We find that 1), a distortion of Glu(183) is important for CPO-catalyzed epoxidation as was postulated previously based on experimental results; 2), the free energy of binding does not provide significant differentiation between structures leading to the respective epoxide enantiomers; and 3), CPO's enantiospecificity toward cis-β-methylstyrene is likely to be caused by a specific group of residues which form a hydrophobic core surrounding the oxyferryl heme center.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA.
| | | | | | | |
Collapse
|
14
|
Wang Y, Wu J, Ru X, Jiang Y, Hu M, Li S, Zhai Q. Catalytic performance and thermostability of chloroperoxidase in reverse micelle: achievement of a catalytically favorable enzyme conformation. J Ind Microbiol Biotechnol 2010; 38:717-24. [DOI: 10.1007/s10295-010-0852-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 08/17/2010] [Indexed: 11/25/2022]
|
15
|
Wu J, Liu C, Jiang Y, Hu M, Li S, Zhai Q. Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent. CATAL COMMUN 2010. [DOI: 10.1016/j.catcom.2010.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Tzialla AA, Pavlidis IV, Felicissimo MP, Rudolf P, Gournis D, Stamatis H. Lipase immobilization on smectite nanoclays: characterization and application to the epoxidation of alpha-pinene. BIORESOURCE TECHNOLOGY 2010; 101:1587-1594. [PMID: 19910187 DOI: 10.1016/j.biortech.2009.10.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
The immobilization of lipase B from Candida antarctica on smectite group nanoclays (Laponite, SWy-2 and Kunipia), as well as on their organically modified derivatives, was investigated. A combination of techniques, namely X-ray diffraction, thermal analysis, X-ray photoelectron and FT-IR spectroscopy, was used for characterization of the novel immobilized biocatalyst. Structural and biochemical characterization have revealed that the hydrophobic microenvironment created by the organo-modified clays induces minor changes on the secondary structure of the enzyme, resulting in enhanced catalytic behaviour in hydrophobic media. The immobilized lipase on such modified nanoclays can be effectively applied for the indirect epoxidation of alpha-pinene using hydrogen peroxide as substrate. The amount of alpha-pinene epoxide produced in a single-step biocatalytic process is up to 3-fold higher than that of free enzyme or enzyme immobilized in non-modified clays. Moreover, lipase immobilized in modified clays retains up to 90% of its initial activity, even after 48h of incubation in the presence of oxidant, and up to 60% after four reaction cycles, while other forms of the enzyme retain less than 10%.
Collapse
Affiliation(s)
- Aikaterini A Tzialla
- Department of Biological Applications and Technologies, University of Ioannina, GR-45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
17
|
Podgoršek A, Zupan M, Iskra J. Oxidative Halogenierungen mit umweltschonenden Oxidationsmitteln: Sauerstoff und Wasserstoffperoxid. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901223] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Podgoršek A, Zupan M, Iskra J. Oxidative Halogenation with “Green” Oxidants: Oxygen and Hydrogen Peroxide. Angew Chem Int Ed Engl 2009; 48:8424-50. [DOI: 10.1002/anie.200901223] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Pavlidis IV, Gournis D, Papadopoulos GK, Stamatis H. Lipases in water-in-ionic liquid microemulsions: Structural and activity studies. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.03.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Perez D, van Rantwijk F, Sheldon R. Cross-Linked Enzyme Aggregates of Chloroperoxidase: Synthesis, Optimization and Characterization. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900303] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Lindborg J, Tanskanen A, Kanerva LT. Chemoselective chloroperoxidase-catalyzed oxidation of hexen-1-ols. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420902811113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Tzialla AA, Taha AA, Kalogeris E, Stamatis H. Improving the catalytic performance of fungal laccases in monoterpene-based reaction systems. Biotechnol Lett 2009; 31:1451-6. [PMID: 19458921 DOI: 10.1007/s10529-009-0014-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/15/2009] [Accepted: 04/28/2009] [Indexed: 11/30/2022]
Abstract
Ternary systems consisting of monoterpenes (alpha-pinene or D-limonene), tert-butanol and water were used as reaction media to enhance the catalytic performance of laccases from various fungi sources (Trametes versicolor, T. hirsuta and Botrytis cinerea). The enzymes had improved catalytic efficiency (5- to 10-fold) in alpha-pinene-rich environment, while optimal reaction rates were in high-water content systems (15.5% v/v). The stability of laccases was significantly improved in monoterpene-based systems (up to 90% residual enzyme activity after 24 h at 30 degrees C) in comparison with other non-conventional media. The results indicate that these ternary systems can increase the potential of laccases as catalysts for various oxidations.
Collapse
Affiliation(s)
- Aikaterini A Tzialla
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | |
Collapse
|
23
|
|