1
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
2
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Cheng J, Tu W, Luo Z, Liang L, Gou X, Wang X, Liu C, Zhang G. Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Escherichia coli. Front Bioeng Biotechnol 2021; 9:726126. [PMID: 34604186 PMCID: PMC8481640 DOI: 10.3389/fbioe.2021.726126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
The compounds 5-aminovalerate and δ-valerolactam are important building blocks that can be used to synthesize bioplastics. The production of 5-aminovalerate and δ-valerolactam in microorganisms provides an ideal source that reduces the cost. To achieve efficient biobased coproduction of 5-aminovalerate and δ-valerolactam in Escherichia coli, a single biotransformation step from L-lysine was constructed. First, an equilibrium mixture was formed by L-lysine α-oxidase RaiP from Scomber japonicus. In addition, by adjusting the pH and H2O2 concentration, the titers of 5-aminovalerate and δ-valerolactam reached 10.24 and 1.82 g/L from 40 g/L L-lysine HCl at pH 5.0 and 10 mM H2O2, respectively. With the optimized pH value, the δ-valerolactam titer was improved to 6.88 g/L at pH 9.0 with a molar yield of 0.35 mol/mol lysine. The ratio of 5AVA and δ-valerolactam was obviously affected by pH value. The ratio of 5AVA and δ-valerolactam could be obtained in the range of 5.63:1-0.58:1 at pH 5.0-9.0 from the equilibrium mixture. As a result, the simultaneous synthesis of 5-aminovalerate and δ-valerolactam from L-lysine in Escherichia coli is highly promising. To our knowledge, this result constitutes the highest δ-valerolactam titer reported by biological methods. In summary, a commercially implied bioprocess developed for the coproduction of 5-aminovalerate and δ-valerolactam using engineered Escherichia coli.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zhou Luo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xinghua Gou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xinhui Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Chao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Sasikumar K, Hannibal S, Wendisch VF, Nampoothiri KM. Production of Biopolyamide Precursors 5-Amino Valeric Acid and Putrescine From Rice Straw Hydrolysate by Engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 9:635509. [PMID: 33869152 PMCID: PMC8044859 DOI: 10.3389/fbioe.2021.635509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
The non-proteinogenic amino acid 5-amino valeric acid (5-AVA) and the diamine putrescine are potential building blocks in the bio-polyamide industry. The production of 5-AVA and putrescine using engineered Corynebacterium glutamicum by the co-consumption of biomass-derived sugars is an attractive strategy and an alternative to their petrochemical synthesis. In our previous work, 5-AVA production from pure xylose by C. glutamicum was shown by heterologously expressing xylA from Xanthomonas campestris and xylB from C. glutamicum. Apart from this AVA Xyl culture, the heterologous expression of xylA Xc and xylB Cg was also carried out in a putrescine producing C. glutamicum to engineer a PUT Xyl strain. Even though, the pure glucose (40 g L-1) gave the maximum product yield by both the strains, the utilization of varying combinations of pure xylose and glucose by AVA Xyl and PUT Xyl in CGXII synthetic medium was initially validated. A blend of 25 g L-1 of glucose and 15 g L-1 of xylose in CGXII medium yielded 109 ± 2 mg L-1 putrescine and 874 ± 1 mg L-1 5-AVA after 72 h of fermentation. Subsequently, to demonstrate the utilization of biomass-derived sugars, the alkali (NaOH) pretreated-enzyme hydrolyzed rice straw containing a mixture of glucose (23.7 g L-1) and xylose (13.6 g L-1) was fermented by PUT Xyl and AVA Xyl to yield 91 ± 3 mg L-1 putrescine and 260 ± 2 mg L-1 5-AVA, respectively, after 72 h of fermentation. To the best of our knowledge, this is the first proof of concept report on the production of 5-AVA and putrescine using rice straw hydrolysate (RSH) as the raw material.
Collapse
Affiliation(s)
- Keerthi Sasikumar
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Silvin Hannibal
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - K. Madhavan Nampoothiri
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
5
|
Cheng J, Tu W, Luo Z, Gou X, Li Q, Wang D, Zhou J. A High-Efficiency Artificial Synthetic Pathway for 5-Aminovalerate Production From Biobased L-Lysine in Escherichia coli. Front Bioeng Biotechnol 2021; 9:633028. [PMID: 33634090 PMCID: PMC7900509 DOI: 10.3389/fbioe.2021.633028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Bioproduction of 5-aminovalerate (5AVA) from renewable feedstock can support a sustainable biorefinery process to produce bioplastics, such as nylon 5 and nylon 56. In order to achieve the biobased production of 5AVA, a 2-keto-6-aminocaproate-mediated synthetic pathway was established. Combination of L-Lysine α-oxidase from Scomber japonicus, α-ketoacid decarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli could achieve the biosynthesis of 5AVA from biobased L-Lysine in E. coli. The H2O2 produced by L-Lysine α-oxidase was decomposed by the expression of catalase KatE. Finally, 52.24 g/L of 5AVA were obtained through fed-batch biotransformation. Moreover, homology modeling, molecular docking and molecular dynamic simulation analyses were used to identify mutation sites and propose a possible trait-improvement strategy: the expanded catalytic channel of mutant and more hydrogen bonds formed might be beneficial for the substrates stretch. In summary, we have developed a promising artificial pathway for efficient 5AVA synthesis.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhou Luo
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xinghua Gou
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Gordillo Sierra AR, Alper HS. Progress in the metabolic engineering of bio-based lactams and their ω-amino acids precursors. Biotechnol Adv 2020; 43:107587. [DOI: 10.1016/j.biotechadv.2020.107587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
|
7
|
The production of enantiopure d-lysine from l-lysine by a two-strain coupled system. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Xu Y, Zhou D, Luo R, Yang X, Wang B, Xiong X, Shen W, Wang D, Wang Q. Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine. Appl Microbiol Biotechnol 2020; 104:9965-9977. [PMID: 33064187 DOI: 10.1007/s00253-020-10939-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/06/2020] [Accepted: 10/01/2020] [Indexed: 01/03/2023]
Abstract
Nylon 5 and nylon 6,5 are recently explored as new commercial polyamides, of which the monomer includes δ-valerolactam. In this study, a novel catalytic activity of lysine 2-monooxygenase (DavB) was explored to produce δ-valerolactam from L-pipecolic acid (L-PA), functioning as oxidative decarboxylase on a cyclic compound. Recombinant Escherichia coli BS01 strain expressing DavB from Pseudomonas putida could synthesize δ-valerolactam from L-pipecolic acid with a concentration of 90.3 mg/L. Through the co-expression of recombinant apoptosis-inducing protein (rAIP) from Scomber japonicus, glucose dehydrogenase (GDH) from Bacillus subtilis, Δ1-piperideine-2-carboxylae reductase (DpkA) from P. putida and lysine permease (LysP) from E. coli with DavB, δ-valerolactam was produced with the highest concentration of 242 mg/L. α-Dioxygenases (αDox) from Oryza sativa could act as a similar catalyst on L-pipecolic acid. A novel δ-valerolactam synthesis pathway was constructed entirely via microbial conversion from feedstock lysine in this study. Our system has great potential in the development of a bio-nylon production process. KEY POINTS: • DavB performs as an oxidative decarboxylase on L-PA with substrate promiscuity. • Strain with rAIP, GDH, DpkA, LysP, and DavB coexpression could produce δ-valerolactam. • This is the first time to obtain valerolactam entirely via biosynthesis from lysine.
Collapse
Affiliation(s)
- Yanqin Xu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Dan Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Ruoshi Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Xizhi Yang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Baosheng Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | - Weifeng Shen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing, 401331, People's Republic of China.
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
9
|
Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment. Sci Rep 2020; 10:990. [PMID: 31969619 PMCID: PMC6976619 DOI: 10.1038/s41598-020-57752-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023] Open
Abstract
Microorganisms can utilize biomass to produce valuable chemicals, showing sustainable, renewable and economic advantages compared with traditional chemical synthesis. As a potential five-carbon platform polymer monomer, 5-aminovalerate has been widely used in industrial fields such as clothes and disposable goods. Here we establish an efficient whole-cell catalysis for 5-aminovalerate production with ethanol pretreatment. In this study, the metabolic pathway from L-lysine to 5-aminovalerate was constructed at the cellular level by introducing L-lysine α-oxidase. The newly produced H2O2 and added ethanol both are toxic to the cells, obviously inhibiting their growth. Here, a promising strategy of whole-cell catalysis with ethanol pretreatment is proposed, which greatly improves the yield of 5-aminovalerate. Subsequently, the effects of ethanol pretreatment, substrate concentration, reaction temperature, pH value, metal ion additions and hydrogen peroxide addition on the whole-cell biocatalytic efficiency were investigated. Using 100 g/L of L-lysine hydrochloride as raw material, 50.62 g/L of 5-aminovalerate could be excellently produced via fed-batch bioconversion with the yield of 0.84 mol/mol. The results show that a fast, environmentally friendly and efficient production of 5-aminovalerate was established after introducing the engineered whole-cell biocatalysts. This strategy, combined with ethanol pretreatment, can not only greatly enhance the yield of 5-aminovalerate but also be applied to the biosynthesis of other valuable chemicals.
Collapse
|
10
|
De Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. CHEMSUSCHEM 2019; 12:1272-1303. [PMID: 30667150 DOI: 10.1002/cssc.201802418] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.
Collapse
Affiliation(s)
- Free De Schouwer
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Annelies Vandekerkhove
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| |
Collapse
|
11
|
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. ACTA ACUST UNITED AC 2018; 45:719-734. [DOI: 10.1007/s10295-018-2030-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Abstract
l-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like l-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.
Collapse
|
12
|
Ding H, Zhao W, Lü C, Huang J, Hu S, Yao S, Mei L, Wang J, Mei J. Biosynthesis of 4-hydroxyphenylpyruvic acid from l-tyrosine using recombinant Escherichia coli cells expressing membrane bound l-amino acid deaminase. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Pellis A, Cantone S, Ebert C, Gardossi L. Evolving biocatalysis to meet bioeconomy challenges and opportunities. N Biotechnol 2018; 40:154-169. [DOI: 10.1016/j.nbt.2017.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
|
14
|
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. Biorefining of protein waste for production of sustainable fuels and chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:256. [PMID: 30250508 PMCID: PMC6146663 DOI: 10.1186/s13068-018-1234-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus protein waste is recycled in a circular economy scenario. In this context, the present review focuses on the current development of biotechnology with the emphasis on biotransformation and metabolic engineering to refine protein-derived amino acids for production of fuels and chemicals. Its scope starts with the explosion of potential feedstock sources rich in protein waste. The availability of techniques is applied for purification and hydrolysis of various feedstock proteins to amino acids. Useful lessons are leaned from the microbial catabolism of amino acids and lay a foundation for the development of the protein-based biotechnology. At last, the future perspective of the biorefinery scheme based on protein waste is discussed associated with remarks on possible solutions to overcome the technical bottlenecks.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|
15
|
Efficient production of 5-aminovalerate from l -lysine by engineered Escherichia coli whole-cell biocatalysts. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Biobased Amines: From Synthesis to Polymers; Present and Future. Chem Rev 2016; 116:14181-14224. [DOI: 10.1021/acs.chemrev.6b00486] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vincent Froidevaux
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| | - Claire Negrell
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| | - Sylvain Caillol
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| | - Jean-Pierre Pascault
- INSA-Lyon, IMP, UMR5223, F-69621 Villeurbanne, France
- Université de Lyon, F-69622 Lyon, France
| | - Bernard Boutevin
- Institut Charles Gerhardt UMR 5253–CNRS, UM, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier Cedex 5, France
| |
Collapse
|
17
|
Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System. Catalysts 2016. [DOI: 10.3390/catal6110168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
18
|
Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microb Cell Fact 2016; 15:174. [PMID: 27717386 PMCID: PMC5054628 DOI: 10.1186/s12934-016-0566-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/22/2016] [Indexed: 01/30/2023] Open
Abstract
Background 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of l-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of l-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than l-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient l-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using l-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Results Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His6-Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. Conclusions Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seok Hyun Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Hoon Oh
- Division of Convergence Chemistry, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34602, Republic of Korea
| | - Jae Woong Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Moon Hee Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Sung Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Chan Joo
- Division of Convergence Chemistry, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34602, Republic of Korea
| | - James Yu
- Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido, 17058, Republic of Korea.
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Bioinformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Sci Rep 2016; 6:30884. [PMID: 27510748 PMCID: PMC4980613 DOI: 10.1038/srep30884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial transporters mediate the exchanges between intracellular and extracellular environments. Modification of transport route could be applied to speed up the metabolic reactions and promote the production of aimed compounds. Herein, lysine 2-monooxygenase (DavB) and δ-aminovaleramidase (DavA) were co-expressed in Escherichia coli BL21(DE3) to produce nylon-5 monomer 5-aminovalerate from l-lysine. Then, PP2911 (4-aminobutyrate transporter in Pseudomonas putida) and LysP (the lysine specific permease in E. coli) were overexpressed to promote 5-aminovalerate production using whole cells of recombinant E. coli. The constructed E. coli strain overexpressing transport proteins exhibited good 5-aminovalerate production performance and might serve as a promising biocatalyst for 5-aminovalerate production from l-lysine. This strategy not only shows an efficient process for the production of nylon monomers but also might be used in production of other chemicals.
Collapse
|
20
|
Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of l-lysine into cadaverine. ACTA ACUST UNITED AC 2015; 42:1481-91. [DOI: 10.1007/s10295-015-1678-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/21/2015] [Indexed: 11/25/2022]
Abstract
Abstract
A whole-cell biocatalytic system for the production of cadaverine from l-lysine has been developed. Among the investigated lysine decarboxylases from different microorganisms, Escherichia coli LdcC showed the best performance on cadaverine synthesis when E. coli XL1-Blue was used as the host strain. Six different strains of E. coli expressing E. coli LdcC were investigated and recombinant E. coli XL1-Blue, BL21(DE3) and W were chosen for further investigation since they showed higher conversion yield of lysine into cadaverine. The effects of substrate pH, substrate concentrations, buffering conditions, and biocatalyst concentrations have been investigated. Finally, recombinant E. coli XL1-Blue concentrated to an OD600 of 50, converted 192.6 g/L (1317 mM) of crude lysine solution, obtained from an actual lysine manufacturing process, to 133.7 g/L (1308 mM) of cadaverine with a molar yield of 99.90 %. The whole-cell biocatalytic system described herein is expected to be applicable to the development of industrial bionylon production process.
Collapse
|
21
|
Kumar MBA, Gao Y, Shen W, He L. Valorisation of protein waste: An enzymatic approach to make commodity chemicals. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1532-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Mika LT, Cséfalvay E, Horváth IT. The role of water in catalytic biomass-based technologies to produce chemicals and fuels. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.10.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG, Lee S, David Y, Baylon MG, Song BK, Jegal J, Lee SY, Lee SH. High-level conversion ofL-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis. Biotechnol J 2014; 9:1322-8. [DOI: 10.1002/biot.201400156] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/01/2014] [Accepted: 08/13/2014] [Indexed: 11/07/2022]
|
24
|
Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Sci Rep 2014; 4:5657. [PMID: 25012259 PMCID: PMC4093655 DOI: 10.1038/srep05657] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/11/2014] [Indexed: 12/23/2022] Open
Abstract
5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. l-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of l-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate from l-lysine. Under optimal conditions, 20.8 g/L 5-aminovalerate was produced from 30 g/L l-lysine in 12 h. Because l-lysine is an industrial fermentation product, the two-enzyme coupled system presents a promising alternative for the production of 5-aminovalerate.
Collapse
Affiliation(s)
- Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Haiwei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Min Lv
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Mandong Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Ping Xu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China [2]
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| |
Collapse
|
25
|
Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 2013; 16:42-7. [DOI: 10.1016/j.ymben.2012.11.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/07/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
|
26
|
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev 2013; 42:6491-533. [DOI: 10.1039/c3cs00004d] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M. Valorization of Biomass: Deriving More Value from Waste. Science 2012; 337:695-9. [DOI: 10.1126/science.1218930] [Citation(s) in RCA: 1467] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|