1
|
Cherni O, Carballares D, Siar EH, Abellanas-Perez P, de Andrades D, de Moraes Polizeli MDLT, Rocha-Martin J, Bahri S, Fernandez-Lafuente R. Tuning almond lipase features by the buffer used during immobilization: The apparent biocatalysts stability depends on the immobilization and inactivation buffers and the substrate utilized. J Biotechnol 2024; 391:72-80. [PMID: 38876311 DOI: 10.1016/j.jbiotec.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The lipase from Prunus dulcis almonds was inactivated under different conditions. At pH 5 and 9, enzyme stability remained similar under the different studied buffers. However, when the inactivation was performed at pH 7, there were some clear differences on enzyme stability depending on the buffer used. The enzyme was more stable in Gly than when Tris was employed for inactivation. Then, the enzyme was immobilized on methacrylate beads coated with octadecyl groups at pH 7 in the presence of Gly, Tris, phosphate and HEPES. Its activity was assayed versus triacetin and S-methyl mandelate. The biocatalyst prepared in phosphate was more active versus S-methyl mandelate, while the other ones were more active versus triacetin. The immobilized enzyme stability at pH 7 depends on the buffer used for enzyme immobilization. The buffer used in the inactivation and the substrate used determined the activity. For example, glycine was the buffer that promoted the lowest or the highest stabilities depending on the substrate used to quantify the activities.
Collapse
Affiliation(s)
- Oumaima Cherni
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
| | - El Hocine Siar
- Agri-food Engineering Laboratory (GENIAAL), Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Sellema Bahri
- LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia.
| | | |
Collapse
|
2
|
Papatola F, Slimani S, Peddis D, Pellis A. Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions. Microb Biotechnol 2024; 17:e14481. [PMID: 38850268 PMCID: PMC11162105 DOI: 10.1111/1751-7915.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
In this review article, a perspective on the immobilization of various hydrolytic enzymes onto magnetic nanoparticles for synthetic organic chemistry applications is presented. After a first part giving short overview on nanomagnetism and highlighting advantages and disadvantages of immobilizing enzymes on magnetic nanoparticles (MNPs), the most important hydrolytic enzymes and their applications were summarized. A section reviewing the immobilization techniques with a particular focus on supporting enzymes on MNPs introduces the reader to the final chapter describing synthetic organic chemistry applications of small molecules (flavour esters) and polymers (polyesters and polyamides). Finally, the conclusion and perspective section gives the author's personal view on further research discussing the new idea of a synergistic rational design of the magnetic and biocatalytic component to produce novel magnetic nano-architectures.
Collapse
Affiliation(s)
- F. Papatola
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| | - S. Slimani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - D. Peddis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - A. Pellis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| |
Collapse
|
3
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
4
|
Monteiro RRC, Berenguer-Murcia Á, Rocha-Martin J, Vieira RS, Fernandez-Lafuente R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol Adv 2023; 68:108215. [PMID: 37473819 DOI: 10.1016/j.biotechadv.2023.108215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The increasing worries by the inadequate use of energy and the preservation of nature are promoting an increasing interest in the production of biolubricants. After discussing the necessity of producing biolubricants, this review focuses on the production of these interesting molecules through the use of lipases, discussing the different possibilities (esterification of free fatty acids, hydroesterification or transesterification of oils and fats, transesterification of biodiesel with more adequate alcohols, estolides production, modification of fatty acids). The utilization of discarded substrates has special interest due to the double positive ecological impact (e.g., oil distillated, overused oils). Pros and cons of all these possibilities, together with general considerations to optimize the different processes will be outlined. Some possibilities to overcome some of the problems detected in the production of these interesting compounds will be also discussed.
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | - Javier Rocha-Martin
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| | | |
Collapse
|
5
|
Li F, Xu Y, Wang C, Wang C, Xie H, Xu Y, Chen P, Wang L. Efficient Synthesis of Substituted Pyrazoles Via [3+2] Cycloaddition Catalyzed By Lipase in Ionic Liquid. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Lei P, Chen H, Ma J, Fang Y, Qu L, Yang Q, Peng B, Zhang X, Jin L, Sun D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front Nutr 2022; 9:952147. [PMID: 36034890 PMCID: PMC9414081 DOI: 10.3389/fnut.2022.952147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Improved human material living standards have resulted in a continuous increase in the rate of obesity caused by excessive sugar intake. Consequently, the number of diabetic patients has skyrocketed, not only resulting in a global health problem but also causing huge medical pressure on the government. Limiting sugar intake is a serious problem in many countries worldwide. To this end, the market for sugar substitute products, such as artificial sweeteners and natural sugar substitutes (NSS), has begun to rapidly grow. In contrast to controversial artificial sweeteners, NSS, which are linked to health concepts, have received particular attention. This review focuses on the extraction technology and biomedical function of NSS, with a view of generating insights to improve extraction for its large-scale application. Further, we highlight research progress in the use of NSS as food for special medical purpose (FSMP) for patients.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimen Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
7
|
Tuning Immobilized Commercial Lipase Preparations Features by Simple Treatment with Metallic Phosphate Salts. Molecules 2022; 27:molecules27144486. [PMID: 35889359 PMCID: PMC9320038 DOI: 10.3390/molecules27144486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Four commercial immobilized lipases biocatalysts have been submitted to modifications with different metal (zinc, cobalt or copper) phosphates to check the effects of this modification on enzyme features. The lipase preparations were Lipozyme®TL (TLL-IM) (lipase from Thermomyces lanuginose), Lipozyme®435 (L435) (lipase B from Candida antarctica), Lipozyme®RM (RML-IM), and LipuraSelect (LS-IM) (both from lipase from Rhizomucor miehei). The modifications greatly altered enzyme specificity, increasing the activity versus some substrates (e.g., TLL-IM modified with zinc phosphate in hydrolysis of triacetin) while decreasing the activity versus other substrates (the same preparation in activity versus R- or S- methyl mandelate). Enantiospecificity was also drastically altered after these modifications, e.g., LS-IM increased the activity versus the R isomer while decreasing the activity versus the S isomer when treated with copper phosphate. Regarding the enzyme stability, it was significantly improved using octyl-agarose-lipases. Using all these commercial biocatalysts, no significant positive effects were found; in fact, a decrease in enzyme stability was usually detected. The results point towards the possibility of a battery of biocatalysts, including many different metal phosphates and immobilization protocols, being a good opportunity to tune enzyme features, increasing the possibilities of having biocatalysts that may be suitable for a specific process.
Collapse
|
8
|
Cheng J, Wang N, Li N, Zhou X, Yu D, Jiang L. Construction of magnetic switchable Pickering interfacial catalysis system and its application in the hydrolysis of crude rice bran oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Cheng
- School of Food Science Northeast Agricultural University Harbin 150030 China
| | - Ning Wang
- School of Food Science Northeast Agricultural University Harbin 150030 China
| | - Na Li
- School of Food Science Northeast Agricultural University Harbin 150030 China
| | - Xiaonan Zhou
- School of Food Science Northeast Agricultural University Harbin 150030 China
| | - Dianyu Yu
- School of Food Science Northeast Agricultural University Harbin 150030 China
| | - Lianzhou Jiang
- School of Food Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
9
|
Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 2021. [DOI: 10.3390/catal11091121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Triglycerides are the main constituents of lipids, which are the fatty acids of glycerol. Natural organic triglycerides (viz. virgin vegetable oils, recycled cooking oils, and animal fats) are the main sources for biodiesel production. Biodiesel (mono alkyl esters) is the most attractive alternative fuel to diesel, with numerous environmental advantages over petroleum-based fuel. The most practicable method for converting triglycerides to biodiesel with viscosities comparable to diesel fuel is transesterification. Previous research has proven that biodiesel–diesel blends can operate the compression ignition engine without the need for significant modifications. However, the commercialization of biodiesel is still limited due to the high cost of production. In this sense, the transesterification route is a crucial factor in determining the total cost of biodiesel production. Homogenous base-catalyzed transesterification, industrially, is the conventional method to produce biodiesel. However, this method suffers from limitations both environmentally and economically. Although there are review articles on transesterification, most of them focus on a specific type of transesterification process and hence do not provide a comprehensive picture. This paper reviews the latest progress in research on all facets of transesterification technology from reports published by highly-rated scientific journals in the last two decades. The review focuses on the suggested modifications to the conventional method and the most promising innovative technologies. The potentiality of each technology to produce biodiesel from low-quality feedstock is also discussed.
Collapse
|
10
|
Li Z, Yang Z, Chen H, Chen H, Yang B, Wang Y. A highly efficient and recoverable enzymatic method for removing phospholipids from soybean oil via an ionic liquid-based three-liquid-phase. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Vázquez L, Bañares C, Torres CF, Reglero G. Green Technologies for the Production of Modified Lipids. Annu Rev Food Sci Technol 2020; 11:319-337. [PMID: 31910657 DOI: 10.1146/annurev-food-032519-051701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the use of green solvents in enzyme catalysis of lipophilic compounds is achieving increasing interest from different perspectives. Conducting reactions under supercritical fluids, ionic liquids, deep eutectic solvents, and other green solvents affords opportunities to overcome problems associated with the lack of solubility of lipids in conventional solvents and the poor miscibility of substrates. Research on the biocatalytic production of modified lipids in the framework of green chemistry is conducted to improve the efficiency of obtaining the desired products as well as the selectivity, stability, and activity of the enzymatic systems. This overview describes the fundamentals and characteristics of several types of green solvents, the main variables involved in enzymatic processes, and examples and applications in the field of lipid modification.
Collapse
Affiliation(s)
- Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Celia Bañares
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Carlos F Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Guillermo Reglero
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail: .,Department of Production and Development of Foods for Health, IMDEA-Food Institute, CEI (UAM-CSIC), 28049 Madrid, Spain
| |
Collapse
|
12
|
Zhang Y, Xu X. Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids. NEW J CHEM 2020. [DOI: 10.1039/d0nj03868g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The LSBoost model is developed to predict the solubility of supercritical carbon dioxide in 24 ionic liquids by using critical properties and biphasic system parameters as descriptors. The model is highly accurate and stable.
Collapse
Affiliation(s)
- Yun Zhang
- North Carolina State University
- Raleigh
- USA
| | - Xiaojie Xu
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
13
|
Pinheiro BB, Rios NS, Rodríguez Aguado E, Fernandez-Lafuente R, Freire TM, Fechine PB, dos Santos JC, Gonçalves LR. Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol 2019; 130:798-809. [DOI: 10.1016/j.ijbiomac.2019.02.145] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
14
|
Samui A, Chowdhuri AR, Sahu SK. Lipase Immobilized Metal‐Organic Frameworks as Remarkably Biocatalyst for Ester Hydrolysis: A One Step Approach for Lipase Immobilization. ChemistrySelect 2019. [DOI: 10.1002/slct.201803200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arpita Samui
- Department of Applied ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| | - Angshuman Ray Chowdhuri
- Department of Applied ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| | - Sumanta Kumar Sahu
- Department of Applied ChemistryIndian Institute of Technology (ISM) Dhanbad 826004, Jharkhand India
| |
Collapse
|
15
|
Chang P, Zhang Z, Tang S. Lipase-catalyzed Synthesis of Sugar Ester in Mixed Biphasic System of Ionic Liquids and Supercritical Carbon Dioxide. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Panpan Chang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering & Technology; Tianjin University; Tianjin 300350 China
| | - Zhixia Zhang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering & Technology; Tianjin University; Tianjin 300350 China
| | - Shaokun Tang
- Key Laboratory for Green Chemical Technology of MOE, School of Chemical Engineering & Technology; Tianjin University; Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin University; Tianjin 300350 China
| |
Collapse
|
16
|
Kołodziejska R, Studzińska R, Pawluk H. Lipase-catalyzed enantioselective transesterification of prochiral 1-((1,3-dihydroxypropan-2-yloxy)methyl)-5,6,7,8-tetrahydroquinazoline-2,4(1H,3H)-dione in ionic liquids. Chirality 2017; 30:206-214. [PMID: 29139569 DOI: 10.1002/chir.22787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022]
Abstract
The application of ionic liquids as solvents for transesterification of prochiral pirymidine acyclonucleoside using lipase (EC 3.1.1.3) Amano PS from Burkholderia cepacia (BCL) is reported. The effect of using medium reaction, acyl group donor, and temperature on the activity and enantioselectivity of BCL was studied. From the investigated ionic solvents, the hydrophobic ionic liquid [BMIM]PF6 ] was the preferred medium for enzymatic reactions. However, the best result was obtained in the mixture [BMIM][PF6 ]:TBME (1:1 v/v) at 50°C. Enzyme activity and selectivity in [BMIM][PF6 ]:TBME (1:1 v/v) was slightly higher in than in conventional organic solvents (for example, TBME), and in this condition, good activity and enantioselectivity were associated with unique properties of ionic liquid such as hydrophobicity and high polarity. Independently of solvents, monester of (R)-configuration was obtained in excess. Under optimal conditions, desymmetrization of the prochiral compound using different acyl donors was performed. If vinyl butyrate was used as the acylating agent, BCL completely selectively acylated enantiotopic hydroxyl groups.
Collapse
Affiliation(s)
- Renata Kołodziejska
- Department of Biochemistry, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Hanna Pawluk
- Department of Biochemistry, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
17
|
Jiang Y, Loos K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers (Basel) 2016; 8:E243. [PMID: 30974520 PMCID: PMC6432488 DOI: 10.3390/polym8070243] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022] Open
Abstract
Nowadays, "green" is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be "green", being associated with massive energy consumption and severe pollution problems (for example, the "Plastic Soup") as a public stereotype. To achieve green polymers, three elements should be entailed: (1) green raw materials, catalysts and solvents; (2) eco-friendly synthesis processes; and (3) sustainable polymers with a low carbon footprint, for example, (bio)degradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
| | - Katja Loos
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
| |
Collapse
|
18
|
Tsai SW. Enantiopreference of Candida antarctica lipase B toward carboxylic acids: Substrate models and enantioselectivity thereof. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2014.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Li C, Zhang G, Liu N, Liu L. Preparation and Properties of Rhizopus oryzae Lipase Immobilized Using an Adsorption-Crosslinking Method. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1107732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chun Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Guofang Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Ning Liu
- Key Lab of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Libo Liu
- Key Lab of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
20
|
|
21
|
Primožič M, Kavčič S, Knez Ž, Leitgeb M. Enzyme-catalyzed esterification of d , l -lactic acid in different SCF/IL media. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
dos Santos JCS, Rueda N, Sanchez A, Villalonga R, Gonçalves LRB, Fernandez-Lafuente R. Versatility of divinylsulfone supports permits the tuning of CALB properties during its immobilization. RSC Adv 2015. [DOI: 10.1039/c5ra03798k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Properties of CALB has been modulated by immobilization on divinylsulfone (DVS) activated agarose beads under different conditions (pH 5–10).
Collapse
Affiliation(s)
| | - Nazzoly Rueda
- Departamento de Biocatálisis
- Instituto de Catálisis-CSIC
- ICP-CSIC
- 28049 Madrid
- Spain
| | - Alfredo Sanchez
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040 Madrid
- Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040 Madrid
- Spain
| | - Luciana R. B. Gonçalves
- Departamento de Engenharia Química
- Universidade Federal do Ceará
- Campus do Pici
- Fortaleza
- Brazil
| | | |
Collapse
|
23
|
Ferreira IM, Nishimura RH, Souza ABDA, Clososki GC, Yoshioka SA, Porto AL. Highly enantioselective acylation of chlorohydrins using Amano AK lipase from P. fluorescens immobilized on silk fibroin–alginate spheres. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Sun J, Lee LWW, Liu SQ. Biosynthesis of Flavour-Active Esters via Lipase-Mediated Reactions and Mechanisms. Aust J Chem 2014. [DOI: 10.1071/ch14225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flavour active esters belong to one group of fine aroma chemicals that impart desirable fruity flavour notes and are widely applied in the flavour and fragrance industry. Due to the increasing consumer concern about health, natural products are attracting more attention than chemically synthesized substances. The biosynthesis of flavour-active esters via lipase-catalyzed reactions is one of the most important biotechnological methods for natural flavour generation. To proceed with the industrial production of esters on a large scale, it is critical to understand the enzyme properties and behaviours under different reaction conditions. In this short review, the lipase-catalyzed reactions in various systems and their mechanisms for synthesis of the esters are summarized and discussed.
Collapse
|
25
|
Relationship study of partition coefficients between ionic liquid and headspace for organic solvents by HS-GC. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 945-946:60-7. [DOI: 10.1016/j.jchromb.2013.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/24/2013] [Accepted: 11/09/2013] [Indexed: 11/16/2022]
|
26
|
Garcia-Galan C, Barbosa O, Ortiz C, Torres R, Rodrigues RC, Fernandez-Lafuente R. Biotechnological prospects of the lipase from Mucor javanicus. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer. Bioprocess Biosyst Eng 2013; 36:1527-43. [DOI: 10.1007/s00449-013-0943-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/14/2013] [Indexed: 11/26/2022]
|
28
|
|
29
|
Dhake KP, Thakare DD, Bhanage BM. Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. FLAVOUR FRAG J 2013. [DOI: 10.1002/ffj.3140] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kishor P. Dhake
- Department of Chemistry; Institute of Chemical Technology; Matunga; Mumbai; 400 019; India
| | - Dinesh D. Thakare
- Department of Chemistry; Institute of Chemical Technology; Matunga; Mumbai; 400 019; India
| | - Bhalchandra M. Bhanage
- Department of Chemistry; Institute of Chemical Technology; Matunga; Mumbai; 400 019; India
| |
Collapse
|
30
|
Esterification of polyglycerol with polycondensed ricinoleic acid catalysed by immobilised Rhizopus oryzae lipase. Bioprocess Biosyst Eng 2012; 36:1291-302. [PMID: 23263570 DOI: 10.1007/s00449-012-0874-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
The enzymatic method for synthesising polyglycerol polyricinoleate (PGPR), a food additive named E-476, was successfully carried out in the presence of immobilised Rhizopus oryzae lipase in a solvent-free medium. The great advantage of using the commercial preparation of R. oryzae lipase is that it is ten times cheaper than the commercial preparation of R. arrhizus lipase, the biocatalyst used in previous studies. The reaction, which is really a reversal of hydrolysis, takes place in the presence of a very limited amount of aqueous phase. Immobilisation of the lipase by physical adsorption onto an anion exchange resin provided good results in terms of activity, enzyme stability and reuse of the immobilised derivative. It has been established that the adsorption of R. oryzae lipase on Lewatit MonoPlus MP 64 follows a pseudo-second order kinetics, which means that immobilisation is a process of chemisorption, while the equilibrium adsorption follows a Langmuir isotherm. The use of this immobilised derivative as catalyst for obtaining PGPR under a controlled atmosphere in a vacuum reactor, with a dry nitrogen flow intake, allowed the synthesis of a product with an acid value lower than 6 mg KOH/g, which complies with the value established by the European Commission Directive. This product also fulfils the European specifications regarding the hydroxyl value and refractive index given for this food additive, one of whose benefits, as proved in our experiments, is that it causes a drastic decrease in the viscosity (by 50 %) and yield stress (by 82 %) of chocolate, comparable to the impact of customary synthesised PGPR.
Collapse
|
31
|
Enzyme is stabilized by a protection layer of ionic liquids in supercritical CO2: Insights from molecular dynamic simulation. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Cruz J, Barbosa O, Rodrigues RC, Fernandez-Lafuente R, Torres R, Ortiz C. Optimized preparation of CALB-CLEAs by response surface methodology: The necessity to employ a feeder to have an effective crosslinking. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R. Versatility of glutaraldehyde to immobilize lipases: Effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.04.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Singh R, Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: Chemical Profile of a Versatile Synthetic Building Block and its Impact on the Development of Therapeutics. Chem Rev 2012; 112:4642-86. [DOI: 10.1021/cr2004822] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rohit Singh
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| |
Collapse
|
35
|
Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R. The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glutaraldehyde. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Barbosa O, Ruiz M, Ortiz C, Fernández M, Torres R, Fernandez-Lafuente R. Modulation of the properties of immobilized CALB by chemical modification with 2,3,4-trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Structural behavior of Candida antarctica lipase B in water and supercritical carbon dioxide: A molecular dynamic simulation study. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2011.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
|
39
|
Lorenzoni ASG, Graebin NG, Martins AB, Fernandez-Lafuente R, Záchia Ayub MA, Rodrigues RC. Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from Rhizomucor miehei. FLAVOUR FRAG J 2012. [DOI: 10.1002/ffj.3088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- André S. G. Lorenzoni
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology; Federal University of Rio Grande do Sul; Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC; 91501-970; Porto Alegre; RS; Brazil
| | - Natália G. Graebin
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology; Federal University of Rio Grande do Sul; Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC; 91501-970; Porto Alegre; RS; Brazil
| | - Andréa B. Martins
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology; Federal University of Rio Grande do Sul; Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC; 91501-970; Porto Alegre; RS; Brazil
| | | | - Marco A. Záchia Ayub
- Biochemical Engineering Lab (BiotecLab), Institute of Food Science and Technology; Federal University of Rio Grande do Sul; Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC; 91501-970; Porto Alegre; RS; Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology; Federal University of Rio Grande do Sul; Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC; 91501-970; Porto Alegre; RS; Brazil
| |
Collapse
|
40
|
|
41
|
Dhake KP, Deshmukh KM, Patil YP, Singhal RS, Bhanage BM. Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide. J Biotechnol 2011; 156:46-51. [DOI: 10.1016/j.jbiotec.2011.08.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/01/2011] [Accepted: 08/11/2011] [Indexed: 11/16/2022]
|
42
|
Gumel AM, Annuar MSM, Heidelberg T, Chisti Y. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate. BIORESOURCE TECHNOLOGY 2011; 102:8727-8732. [PMID: 21816608 DOI: 10.1016/j.biortech.2011.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction.
Collapse
Affiliation(s)
- A M Gumel
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
43
|
Fan Y, Xie Z, Zhang H, Qian J. Kinetic resolution of both 1-phenylethanol enantiomers produced by hydrolysis of 1-phenylethyl acetate with Candida antarctica lipase B in different solvent systems. KINETICS AND CATALYSIS 2011. [DOI: 10.1134/s0023158411050065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Kinetic Resolution of (R,S)-2-Butanol Using Enzymatic Synthesis of Esters. Appl Biochem Biotechnol 2011; 165:1129-40. [DOI: 10.1007/s12010-011-9330-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/27/2011] [Indexed: 11/25/2022]
|
45
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
46
|
Bezbradica D, Jugović B, Gvozdenović M, Jakovetić S, Knežević-Jugović Z. Electrochemically synthesized polyaniline as support for lipase immobilization. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
García-Urdiales E, Alfonso I, Gotor V. Update 1 of: Enantioselective Enzymatic Desymmetrizations in Organic Synthesis. Chem Rev 2011; 111:PR110-80. [DOI: 10.1021/cr100330u] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo García-Urdiales
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| | - Ignacio Alfonso
- Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada
de Cataluña (IQAC, CSIC), Jordi Girona, 18-26, 08034, Barcelona,
Spain
| | - Vicente Gotor
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| |
Collapse
|