1
|
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
Collapse
Affiliation(s)
- Hazal Turasan
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jozef Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| |
Collapse
|
2
|
Raymundo-Pereira PA, Silva TA, Caetano FR, Ribovski L, Zapp E, Brondani D, Bergamini MF, Marcolino LH, Banks CE, Oliveira ON, Janegitz BC, Fatibello-Filho O. Polyphenol oxidase-based electrochemical biosensors: A review. Anal Chim Acta 2020; 1139:198-221. [PMID: 33190704 DOI: 10.1016/j.aca.2020.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The detection of phenolic compounds is relevant not only for their possible benefits to human health but also for their role as chemical pollutants, including as endocrine disruptors. The required monitoring of such compounds on-site or in field analysis can be performed with electrochemical biosensors made with polyphenol oxidases (PPO). In this review, we describe biosensors containing the oxidases tyrosinase and laccase, in addition to crude extracts and tissues from plants as enzyme sources. From the survey in the literature, we found that significant advances to obtain sensitive, robust biosensors arise from the synergy reached with a diversity of nanomaterials employed in the matrix. These nanomaterials are mostly metallic nanoparticles and carbon nanostructures, which offer a suitable environment to preserve the activity of the enzymes and enhance electron transport. Besides presenting a summary of contributions to electrochemical biosensors containing PPOs in the last five years, we discuss the trends and challenges to take these biosensors to the market, especially for biomedical applications.
Collapse
Affiliation(s)
| | - Tiago A Silva
- Departamento de Metalurgia e Química, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 35180-008, Timóteo, MG, Brazil
| | - Fábio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Laís Ribovski
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Marcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Luiz H Marcolino
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
3
|
do Nascimento Marreiro Teixeira ASS, Teixeira PRS, de Oliveira Farias EA, Ferraz e Sousa B, Moura Sérvulo KBDL, da Silva DA, Eiras C. Babassu mesocarp (Orbignya phalerata Mart) nanoparticle-based biosensors for indirect sulfite detection in industrial juices. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04546-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Antunes RS, Thomaz DV, Garcia LF, Gil EDS, Sommerset VS, Lopes FM. Determination of Methyldopa and Paracetamol in Pharmaceutical Samples by a Low Cost Genipa americana L. Polyphenol Oxidase Based Biosensor. Adv Pharm Bull 2019; 9:416-422. [PMID: 31592074 PMCID: PMC6773932 DOI: 10.15171/apb.2019.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Jenipapo fruit (Genipa americana L) is a natural source of polyphenol oxidases (PPOs) whose potential in pharmaceutical analysis is noteworthy. Henceforth, this work reports the electrochemical study of a low-cost PPO-based biosensor produced from the crude extract of Jenipapo fruits and accounts a practical approach to employ this biosensor in the determination of methyldopa and paracetamol in pharmaceutical samples.
Methods: In order to investigate the electrochemical properties of the biosensor, theoretical
and practical approaches were employed, and both samples and the biosensor were analyzed
through electrochemical impedance spectroscopy (EIS) and voltammetric techniques, namely:
differential pulse voltammetry (DPV) and cyclic voltammetry (CV).
Results: showcased that the biosensor presented good analytical features, as well as low
detection limits (8 μmol L-1 for methyldopa and 5 μmol L-1 for paracetamol). The relative
standard deviation was less than 5% mid-assay.
Conclusion: The use of this biosensor is a reliable, low cost and useful alternative in the
pharmaceutic determination of phenolic drugs (e.g. methyldopa and paracetamol).
Collapse
Affiliation(s)
- Rafael Souza Antunes
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO, Brasil
| | - Douglas Vieira Thomaz
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO, Brasil
| | - Luane Ferreira Garcia
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO, Brasil
| | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO, Brasil
| | - Vernon Sydwill Sommerset
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Flavio Marques Lopes
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO, Brasil
| |
Collapse
|
5
|
Shaimi R, Low SC. Morphological characteristics of polymeric nylon-6 film as biological recognition interface for electrochemical immunosensor application. J Appl Polym Sci 2018. [DOI: 10.1002/app.46741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R. Shaimi
- School of Chemical Engineering Campus; Universiti Sains Malaysia; Seri Ampangan, Nibong Tebal 14300 S.P.S. Penang Malaysia
| | - S. C. Low
- School of Chemical Engineering Campus; Universiti Sains Malaysia; Seri Ampangan, Nibong Tebal 14300 S.P.S. Penang Malaysia
| |
Collapse
|
6
|
Development of a Polyphenol Oxidase Biosensor from Jenipapo Fruit Extract (Genipa americana L.) and Determination of Phenolic Compounds in Textile Industrial Effluents. BIOSENSORS-BASEL 2018; 8:bios8020047. [PMID: 29762479 PMCID: PMC6023019 DOI: 10.3390/bios8020047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo (Genipa americana L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r2 = 0.9982) and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.
Collapse
|
7
|
Antunes RS, Garcia LF, Somerset VS, Gil EDS, Lopes FM. The Use of a Polyphenoloxidase Biosensor Obtained from the Fruit of Jurubeba (Solanum paniculatum L.) in the Determination of Paracetamol and Other Phenolic Drugs. BIOSENSORS 2018; 8:E36. [PMID: 29614829 PMCID: PMC6023012 DOI: 10.3390/bios8020036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
The vegetable kingdom is a wide source of a diverse variety of enzymes with broad biotechnological applications. Among the main classes of plant enzymes, the polyphenol oxidases, which convert phenolic compounds to the related quinones, have been successfully used for biosensor development. The oxidation products from such enzymes can be electrochemically reduced, and the sensing is easily achieved by amperometric transducers. In this work, the polyphenoloxidases were extracted from jurubeba (Solanum paniculatum L.) fruits, and the extract was used to construct a carbon paste-based biosensor for pharmaceutical analysis and applications. The assay optimization was performed using a 0.1 mM catechol probe, taking into account the amount of enzymatic extract (50 or 200 μL) and the optimum pH (3.0 to 9.0) as well as some electrochemical differential pulse voltammetric (DPV) parameters (e.g., pulse amplitude, pulse range, pulse width, scan rate). Under optimized conditions, the biosensor was evaluated for the quantitative determination of acetaminophen, acetylsalicylic acid, methyldopa, and ascorbic acid. The best performance was obtained for acetaminophen, which responded linearly in the range between 5 and 245 μM (R = 0.9994), presenting a limit of detection of 3 μM and suitable repeatability ranging between 1.52% and 1.74% relative standard deviation (RSD).
Collapse
Affiliation(s)
- Rafael Souza Antunes
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| | - Luane Ferreira Garcia
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| | - Vernon Sydwill Somerset
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| | - Flavio Marques Lopes
- Faculdade de Farmácia, Universidade Federal do Goiás (UFG), rua 221 esquina com a 5ª avenida s/n, Setor Universitário, Goiânia-GO 74605-170, Brazil.
| |
Collapse
|
8
|
Halake K, Cho S, Kim J, Lee T, Cho Y, Chi S, Park M, Kim K, Lee D, Ju H, Choi Y, Jang M, Choe G, Lee J. Applications Using the Metal Affinity of Polyphenols with Mussel-Inspired Chemistry. Macromol Res 2018. [DOI: 10.1007/s13233-018-6051-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Wu YT, Liu YJ, Gao X, Gao KC, Xia H, Luo MF, Wang XJ, Ye L, Shi Y, Lu B. Monitoring bisphenol A and its biodegradation in water using a fluorescent molecularly imprinted chemosensor. CHEMOSPHERE 2015; 119:515-523. [PMID: 25112577 DOI: 10.1016/j.chemosphere.2014.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/25/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
In this paper, we present a simple and rapid method for monitoring bisphenol A (BPA) and its biodegradation in environmental water using a fluorescent molecularly imprinted polymer chemosensor (fMIPcs). A fluorescent molecularly imprinted polymer (fMIP) was first synthesized by precipitation polymerization method using BPA as template, dansyl methacrylate as functional monomer. Then a fMIPcs was constructed by combining the fMIP with a fluorescent microplate reader. The fMIPcs displayed selective, concentration-dependent fluorescence quenching in response to BPA in water even in the existence of interferences, thereby allowing reliable high through-put quantification of BPA via simple fluorescence measurements. The fMIPcs was able to directly quantify BPA (from 10 to 2000 μg L(-1)) in different environmental water samples (distilled water, distilled water containing heavy metals and humic acid, tap water, and river water) with high accuracy, and to monitor BPA biodegradation in real-time. Using the fMIPcs, it was possible to achieve fast analytical results with lower limit of detection for BPA (3 μg L(-1)) from smaller sample volume (250 μL), which are superior to many relevant methods reported in the literature. Moreover, BPA levels and biodegradation rates measured by fMIPcs are comparable to the instrument-based method (HPLC). The fMIPcs developed in this work offers a new solution for simple, rapid, accurate and high through-put BPA quantification, and makes it possible to monitor BPA biodegradation in real time.
Collapse
Affiliation(s)
- Ya-Ting Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yan-Jie Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Jingjiang Waterway Regulation Works Construction Headquarter, Changjiang Waterway Bureau, #99 Jiangjin Road, Jingzhou, Hubei 434001, China.
| | - Xia Gao
- Department of Public Health, Xinxiang Medical University, East Jin Sui Road, Xinxiang, Henan 453003, China.
| | - Kai-Chun Gao
- Jingjiang Waterway Regulation Works Construction Headquarter, Changjiang Waterway Bureau, #99 Jiangjin Road, Jingzhou, Hubei 434001, China.
| | - Hu Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Mi-Fang Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xue-Juan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Lei Ye
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Division of Pure and Applied Biochemistry, Lund University, Box 124, SE 22 100 Lund, Sweden.
| | - Yun Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Bin Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
10
|
da Silva CP, Franzoi AC, Fernandes SC, Dupont J, Vieira IC. Development of biosensor for phenolic compounds containing PPO in β-cyclodextrin modified support and iridium nanoparticles. Enzyme Microb Technol 2013; 52:296-301. [DOI: 10.1016/j.enzmictec.2012.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 11/19/2012] [Accepted: 12/02/2012] [Indexed: 12/12/2022]
|
11
|
Construction of an amperometric polyphenol biosensor based on PVA membrane. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2013. [DOI: 10.1007/s11694-012-9135-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|