1
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024; 282:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase towards wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
2
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Acar M, Abul N, Yildiz S, Taskesenligil ED, Gerni S, Unver Y, Kalin R, Ozdemir H. Affinity-based and in a single step purification of recombinant horseradish peroxidase A2A isoenzyme produced by Pichia pastoris. Bioprocess Biosyst Eng 2023; 46:523-534. [PMID: 36527454 DOI: 10.1007/s00449-022-02837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Horseradish peroxidase (HRP) is an oxidoreductase enzyme and oxidizes various inorganic and organic compounds. It has wide application areas such as immunological tests, probe-based test techniques, removal of phenolic pollutants from wastewater and organic synthesis. HRP is found in the root of the horseradish plant as a mixture of different isoenzymes, and it is very difficult to separate these enzymes from each other. In this regard, recombinant production is a very advantageous method in terms of producing the desired isoenzyme. This study was performed to produce HRP A2A isoenzyme extracellularly in Pichia pastoris and to purify this enzyme in a single step using a 3-amino-4-chloro benzohydrazide affinity column. First, codon-optimized HRP A2A gene was amplified and inserted into pPICZαC. So, obtained pPICZαC-HRPA2A was cloned in E. coli cells. Then, P. pastoris X-33 cells were transformed with linearized recombinant DNA and a yeast clone was cultivated for extracellular recombinant HRP A2A (rHRP A2A) enzyme production. Then, the purification of this enzyme was performed in a single step by affinity chromatography. The molecular mass of purified rHRP A2A enzyme was found to be about 40 kDa. According to characterization studies of the purified enzyme, the optimum pH and ionic strength for the rHRP A2A isoenzyme were determined to be 6.0 and 0.04 M, respectively, and o-dianisidine had the highest specificity with the lowest Km and Vmax values. Thus, this is an economical procedure to purify HRP A2A isoenzyme without time-consuming and laborious isolation from an isoenzyme mixture.
Collapse
Affiliation(s)
- Melek Acar
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Nurgul Abul
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Seyda Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ezgi Dag Taskesenligil
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Ramazan Kalin
- Department of Basic Sciences, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Ozdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
4
|
Wei M, Chen P, Zheng P, Tao X, Yu X, Wu D. Purification and characterization of aspartic protease from Aspergillus niger and its efficient hydrolysis applications in soy protein degradation. Microb Cell Fact 2023; 22:42. [PMID: 36864487 PMCID: PMC9983247 DOI: 10.1186/s12934-023-02047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Adding acid protease to feed can enhance protein digestibility, boost feed utilization, and stimulate the growth of animals in breading industry. In order to obtain an acid protease with high hydrolysis efficiency to plant protein, in this study, an aspartic protease from Aspergillus niger was heterologous expressed in Pichia pastoris (P. pastoris). The enzymatic properties and application in soybean protein degradation were also studied. RESULTS In our investigation, the high aspartic protease (Apa1) activity level of 1500 U/mL was achieved in 3 L bioreactor. After dialysis and anion exchange chromatography, the total enzyme activity and specific enzyme activity were 9412 U and 4852 U/mg, respectively. The molecular weight of the purified protease was 50 kDa, while the optimal pH and temperature were 3.0 and 50 °C, respectively. It was stable at pH 2.0-5.0 and 30-60 °C. Apa1 was used to hydrolyze soybean isolate protein (SPI) at 40 °C and pH 3.0, and a high hydrolysis degree (DH) of 61.65% was achieved. In addition, the molecular weight distribution of SPI hydrolysis products was studied, the result showed that the hydrolysis products were primarily oligopeptides with molecular weights of 189 Da or below. CONCLUSIONS In this study, Apa1 was successfully expressed in P. pastoris and high expression level was obtained. In addition, the highest protein hydrolysis rate to SPI degradation so far was achieved. The acid protease in this study provides a new protease that is suitable for the feed industry, which will be very helpful to improve the feed utilization and promote the development of the breeding industry.
Collapse
Affiliation(s)
- Mengyuan Wei
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Pengcheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaowei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Improved Production of Streptomyces sp. FA1 Xylanase in a Dual-Plasmid Pichia pastoris System. Curr Issues Mol Biol 2021; 43:2289-2304. [PMID: 34940135 PMCID: PMC8928940 DOI: 10.3390/cimb43030161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Methanol is considered as a potential hazard in the methanol-induced yeast expression of food-related enzymes. To increase the production efficiency of recombinant proteins in Pichia pastoris without methanol induction, a novel dual-plasmid system was constructed, for the first time, by a combining the strategies of genomic integration and episomal expression. To obtain a high copy number of the target gene, the autonomously replicating sequence derived from Kluyveromyces lactis (PARS) was used to construct episomal vectors carrying the constitutive promoters PGAP and PGCW14. In addition, an integrative vector carrying the PGCW14 promoter was constructed by replacing the PGAP promoter sequence with a partial PGCW14 promoter. Next, using xylanase XynA from Streptomyces sp. FA1 as the model enzyme, recombination strains were transformed with different combinations of integrating and episomal vectors that were constructed to investigate the changes in the protein yield. Results in shake flasks indicated that the highest enzyme yield was achieved when integrated PGAP and episomal PGCW14 were simultaneously transformed into the host strain. Meanwhile, the copy number of xynA increased from 1.14 ± 0.46 to 3.06 ± 0.35. The yield of XynA was successfully increased to 3925 U·mL-1 after 102 h of fermentation in a 3.6 L fermenter, which was 16.7-fold and 2.86-fold of the yields that were previously reported for the constitutive expression and methanol-induced expression of the identical protein, respectively. Furthermore, the high-cell-density fermentation period was shortened from 132 h to 102 h compared to that of methanol-induced system. Since the risk of methanol toxicity is removed, this novel expression system would be suitable for the production of proteins related to the food and pharmaceutical industries.
Collapse
|
6
|
Yu J, Liu X, Guan L, Jiang Z, Yan Q, Yang S. High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing. Int J Biol Macromol 2020; 168:223-232. [PMID: 33309660 DOI: 10.1016/j.ijbiomac.2020.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
A novel thermostable xylanase gene from Chaetomium sp. CQ31 was cloned and codon-optimized (CsXynBop). The deduced protein sequence of the gene shared the highest similarity of 75% with the glycoside hydrolase (GH) family 10 xylanase from Achaetomium sp. Xz-8. CsXynBop was over-expressed in Pichia pastoris GS115 by high-cell density fermentation, with the highest xylanase yield of 10,017 U/mL. The recombinant xylanase (CsXynBop) was purified to homogeneity and biochemically characterized. CsXynBop was optimally active at pH 6.5 and 85 °C, respectively, and stable over a broad pH range of 5.0-9.5 and up to 60 °C. The enzyme exhibited strict substrate specificity towards oat-spelt xylan (2, 489 U/mg), beechwood xylan (1522 U/mg), birchwood xylan (1067 U/mg), and showed relatively high activity towards arabinoxylan (1208 U/mg), but exhibited no activity on other tested polysaccharides. CsXynBop hydrolyzed different xylans to yield mainly xylooligosaccharides (XOSs) with degree of polymerization (DP) 2-5. The application of CsXynBop (200 U/g malt) in malt mashing substantially decreased the filtration time and viscosity of malt by 42.3% and 8.6%, respectively. These excellent characteristics of CsXynBop may make it a good candidate in beer industry.
Collapse
Affiliation(s)
- Jing Yu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqiang Liu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Leying Guan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Efficient xylan-to-sugar biotransformation using an engineered xylanase in hyperthermic environment. Int J Biol Macromol 2020; 157:17-23. [DOI: 10.1016/j.ijbiomac.2020.04.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 04/18/2020] [Indexed: 11/30/2022]
|
8
|
Suleimanova A, Bulmakova D, Sharipova M. Heterologous Expression of Histidine Acid Phytase From Pantoea sp. 3.5.1 in Methylotrophic Yeast Pichia Pastoris. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objective:The major storage form of phosphorus in plant-derived feed is presented by phytates and not digested by animals. Phytases are able to hydrolyze phytates and successfully used as feed additives. Nevertheless, nowadays, there is a constant search of new phytases and expression systems for better production of these enzymes. In this study, we describe cloning and expression of gene encoding histidine acid phytase fromPantoeasp. 3.5.1 using methylotrophic yeastPichia pastorisas the host.Methods:The phytase gene was placed under the control of the methanol-inducible AOX1 promoter and expressed inP. pastoris. Experiments of small-scale phytase expression and activity assays were used to test recombinant colonies. Four different signal peptides were screened for better secretion of phytase byP. pastoris. After 36 h of methanol induction in shake flasks, the maximum extracellular phytase activity (3.2 U/ml) was observed inP. pastorisstrain with integrated construct based on pPINK-HC vector andKluyveromyces maxianusinulinase gene signal sequence. This phytase was isolated and purified using affinity chromatography.Results:Recombinant phytase was a glycosylated protein, had a molecular weight of around 90 kDa and showed maximum activity at pH 4.0 and at 50°C. Recombinant phytase had excellent thermal stability – it retained high residual activity (100% ± 2%) after 1 hour of heat treatment at 70°C.Conclusion:The enhanced thermostability of the recombinant phytase, its expression provided by strong inducible promotor and the effectively designed expression cassette, the simple purification procedure of the secreted enzyme, and the possibility of large-scale expression make the foundation for further production of this bacterial phytase inP. pastorisat an industrial scale.
Collapse
|
9
|
Efficient Expression of Xylanase by Codon Optimization and Its Effects on the Growth Performance and Carcass Characteristics of Broiler. Animals (Basel) 2019; 9:ani9020065. [PMID: 30791602 PMCID: PMC6406647 DOI: 10.3390/ani9020065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The aim of this work was to combine xylanase expression and broiler production. The xylanase (XynB) gene from Trichoderma reesei was optimized to increase its expression level in Pichia pastoris. The maximum activity of xylanase (optiXynB) secreted by P. pastoris pPICZaA-optiXynB was 1299 U/mL after 96 h induction. The recombinase was highly specific towards birchwood xylan, beechwood xylan, and oat-spelt xylan. Dietary 1000 and 1500 IU/kg optiXynB significantly increased (p < 0.05) final weight and body weight gain; dietary 500, 1000, and 1500 IU/kg optiXynB significantly increased (p < 0.05) pre-evisceration weight, dressed percentage, and eviscerated weight compared with the control group. Results suggested that the optiXynB from P. pastoris pPICZaA-optiXynB has great application in broiler production. Abstract The aim of the present study was to improve the expression level of Trichoderma reesei xylanase (XynB) in Pichia pastoris through a codon optimization strategy and evaluate its effects on the growth performance and carcass characteristics of broiler. According to the codon bias of Pichia genome, the XynB gene from T. reesei was optimized and synthesized by whole gene assembly to improve its expression level in P. pastoris. Approximately 180 target mutations were successfully introduced into natural XynB. The maximum activity of xylanase (optiXynB) secreted by P. pastoris pPICZaA-optiXynB was 1299 U/mL after 96 h induction. Purified recombinant optiXynB had the molecular weight of 24 kDa. The optiXynB presented highest activity in pH 5.0 and 50 °C. The recombinase was highly specific towards birchwood xylan, beechwood xylan, and oat-spelt xylan. In the broiler experiment, a total of 200 Arbor Acre broilers (one day old) were randomly allocated into four groups fed with basal diets containing 0 (control group), 500, 1000, and 1500 IU/kg optiXynB. Dietary 1000 and 1500 IU/kg optiXynB significantly increased (p < 0.05) final weight and body weight gain; dietary 500, 1000, and 1500 IU/kg optiXynB significantly increased (p < 0.05) pre-evisceration weight, dressed percentage, and eviscerated weight compared with the control group. Inclusion of optiXynB in broiler diets linearly increased final weight, body weight gain, breast muscle weight and leg muscle weight, but linearly decreased feed conversion rate (p < 0.05). Furthermore, inclusion of optiXynB in broiler diets linearly and quadratically increased pre-evisceration weight, dressed percentage, and eviscerated weight (p < 0.05). The recombinant optiXynB from P. pastoris pPICZaA-optiXynB was beneficial in improving growth performance and carcass characteristics of broilers.
Collapse
|
10
|
Xue Y, He Q. Synthetic Biology Approaches to the Sustainable Production of p-Coumaric Acid and Its Derivatives in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1080:261-277. [PMID: 30091099 DOI: 10.1007/978-981-13-0854-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photosynthetic cyanobacteria are promising candidates for the sustainable production of a plethora of plant secondary metabolites, which are beneficial to human health but are difficult to produce and purify in other systems. This chapter focuses on genetic engineering of Synechocystis PCC 6803 for production of p-coumaric acid and its derivatives. Cyanobacterial engineering approaches are briefly reviewed. Strategies to increase production yield are discussed, including codon optimization of genes expressing enzymatic proteins and a laccase-coding gene knockout from Synechocystis genome which degrades polyphenols.
Collapse
Affiliation(s)
- Yong Xue
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Qingfang He
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, USA.
| |
Collapse
|
11
|
Juturu V, Wu JC. Heterologous Protein Expression in Pichia pastoris
: Latest Research Progress and Applications. Chembiochem 2017; 19:7-21. [DOI: 10.1002/cbic.201700460] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| |
Collapse
|
12
|
Al-Hawash AB, Zhang X, Ma F. Strategies of codon optimization for high-level heterologous protein expression in microbial expression systems. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Sun Q, Chen F, Geng F, Luo Y, Gong S, Jiang Z. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem 2017; 245:570-577. [PMID: 29287411 DOI: 10.1016/j.foodchem.2017.10.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
Abstract
A novel aspartic protease gene (RmproA) was cloned from the thermophilic fungus Rhizomucor miehei CAU432 and expressed in Pichia pastoris. The RmproA was successfully expressed in P. pastoris as an active extracellular protease. High protease activity of 3480.4 U/mL was obtained by high cell-density fermentation. The protease was purified by the two step protocols to homogeneity. The molecular mass of the RmproA was estimated to be 52.4 kDa by SDS-PAGE and 50.6 kDa by gel filtration. The purified enzyme was optimally active at pH 5.5 and 55 °C, respectively. The enzyme exhibited a broad range of substrate specificity. RmproA-treated pork muscle showed lower shear force than papain-treated sample at a relative low concentration, suggesting its effectiveness on meat tenderization. Moreover, turtle hydrolysis by RmproA resulted in a large amount of small peptides, which exhibited high ACE-inhibitory activity. Thus, RmproA may be a potential candidate for several industrial applications.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fusheng Chen
- College of Grain and Food, Henan University of Technology, Zhengzhou 450001, China
| | - Fang Geng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Siyi Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
14
|
Marešová H, Palyzová A, Plačková M, Grulich M, Rajasekar VW, Štěpánek V, Kyslíková E, Kyslík P. Potential of Pichia pastoris for the production of industrial penicillin G acylase. Folia Microbiol (Praha) 2017; 62:417-424. [PMID: 28281229 DOI: 10.1007/s12223-017-0512-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/24/2017] [Indexed: 02/07/2023]
Abstract
This study deals with the potential of Pichia pastoris X-33 for the production of penicillin G acylase (PGAA) from Achromobacter sp. CCM 4824. Synthetic gene matching the codon usage of P. pastoris was designed for intracellular and secretion-based production strategies and cloned into vectors pPICZ and pPICZα under the control of AOX1 promoter. The simple method was developed to screen Pichia transformants with the intracellularly produced enzyme. The positive correlation between acylase production and pga gene dosage for both expression systems was demonstrated in small scale experiments. In fed-batch bioreactor cultures of X-33/PENS2, an extracellular expression system, total PGAA expressed from five copies reached 14,880 U/L of an active enzyme after 142 h; however, 60% of this amount retained in the cytosol. The maximum PGAA production of 31,000 U/L was achieved intracellularly from nine integrated gene copies of X-33/PINS2 after 90 h under methanol induction. The results indicate that in both expression systems the production level of PGAA is similar but there is a limitation in secretion efficiency.
Collapse
Affiliation(s)
- Helena Marešová
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Martina Plačková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12840, Prague 2, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | | | - Václav Štěpánek
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Eva Kyslíková
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Pavel Kyslík
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
15
|
|
16
|
Recombinant Thermostable Thermomonospora fusca TF Endo-xylanase A and Its Immobilization on Modified Mesoporous SiO2 Microspheres for Manufacturing Xylooligosaccharides. Catal Letters 2017. [DOI: 10.1007/s10562-017-1979-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Su L, Ji D, Tao X, Yu L, Wu J, Xia Y. Recombinant expression, characterization, and application of a phospholipase B from Fusarium oxysporum. J Biotechnol 2017; 242:92-100. [DOI: 10.1016/j.jbiotec.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/20/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
|
18
|
García-Huante Y, Cayetano-Cruz M, Santiago-Hernández A, Cano-Ramírez C, Marsch-Moreno R, Campos JE, Aguilar-Osorio G, Benitez-Cardoza CG, Trejo-Estrada S, Hidalgo-Lara ME. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity. Extremophiles 2016; 21:175-186. [PMID: 27900528 DOI: 10.1007/s00792-016-0893-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
A hyperthermophilic and thermostable xylanase of 82 kDa (TtXynA) was purified from the culture supernatant of T. terrestris Co3Bag1, grown on carboxymethyl cellulose (CMC), and characterized biochemically. TtXynA showed optimal xylanolytic activity at pH 5.5 and at 85 °C, and retained more than 90% of its activity at a broad pH range (4.5-10). The enzyme is highly thermostable with a half-life of 23.1 days at 65 °C, and active in the presence of several metal ions. Circular dichroism spectra strongly suggest the enzyme gains secondary structures when temperature increases. TtXynA displayed higher substrate affinity and higher catalytic efficiency towards beechwood xylan than towards birchwood xylan, oat-spelt xylan, and CMC. According to its final hydrolysis products, TtXynA displays endo-/exo-activity, yielded xylobiose, an unknown oligosaccharide containing about five residues of xylose and a small amount of xylose on beechwood xylan. Finally, this report represents the description of the first fungal hyperthermophilic xylanase which is produced by T. terrestris Co3Bag1. Since TtXynA displays relevant biochemical properties, it may be a suitable candidate for biotechnological applications carried out at high temperatures, like the enzymatic pretreatment of plant biomass for the production of bioethanol.
Collapse
Affiliation(s)
- Yolanda García-Huante
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Maribel Cayetano-Cruz
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Alejandro Santiago-Hernández
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Claudia Cano-Ramírez
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Rodolfo Marsch-Moreno
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México
| | - Jorge E Campos
- Laboratorio de Biología Molecular, UBIPRO, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México
| | - Guillermo Aguilar-Osorio
- Grupo de Fisiología de Hongos, Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM. Cd. Universitaria, CP 04510, México, Ciudad de México, México
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, ENMH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 La Escalera Ticomán, 07320, México, Ciudad de México, México
| | - Sergio Trejo-Estrada
- Grupo de Microbiología Industrial, Centro de Investigación en Biotecnología Aplicada-IPN, Km 1.5 Carretera Estatal Tecuexcomac-Tepetitla, 90700, Tepetitla, Tlaxcala, México
| | - María Eugenia Hidalgo-Lara
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, CP 07360, México, Ciudad de México, México.
| |
Collapse
|
19
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
20
|
Yu T, Anbarasan S, Wang Y, Telli K, Aslan AS, Su Z, Zhou Y, Zhang L, Iivonen P, Havukainen S, Mentunen T, Hummel M, Sixta H, Binay B, Turunen O, Xiong H. Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids. Extremophiles 2016; 20:515-24. [PMID: 27240671 PMCID: PMC4921120 DOI: 10.1007/s00792-016-0841-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/15/2016] [Indexed: 01/16/2023]
Abstract
The gene of Thermotoga maritima GH10 xylanase (TmXYN10B) was synthesised to study the extreme limits of this hyperthermostable enzyme at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids (ILs). TmXYN10B expressed from Pichia pastoris showed maximal activity at 100 °C and retained 92 % of maximal activity at 105 °C in a 30-min assay. Although the temperature optimum of activity was lowered by 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), TmXYN10B retained partial activity in 15-35 % hydrophilic ILs, even at 75-90 °C. TmXYN10B retained over 80 % of its activity at 90 °C in 15 % [EMIM]OAc and 15-25 % 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DMP) during 22-h reactions. [EMIM]OAc may rigidify the enzyme and lower V max. However, only minor changes in kinetic parameter K m showed that competitive inhibition by [EMIM]OAc of TmXYN10B is minimal. In conclusion, when extended enzymatic reactions under extreme conditions are required, TmXYN10B shows extraordinary potential.
Collapse
Affiliation(s)
- Tianyi Yu
- South-Central University for Nationalities, College of Life Science, Wuhan, 430074, China
| | - Sasikala Anbarasan
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Yawei Wang
- South-Central University for Nationalities, College of Life Science, Wuhan, 430074, China
| | - Kübra Telli
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Aşkın Sevinç Aslan
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Zhengding Su
- Hubei University of Technology, Wuhan, 430068, China
| | - Yin Zhou
- Wuhan Sunhy Biology Co., Ltd, Wuhan, 430074, China
| | - Li Zhang
- South-Central University for Nationalities, College of Life Science, Wuhan, 430074, China
| | - Piia Iivonen
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Sami Havukainen
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Tero Mentunen
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Michael Hummel
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Herbert Sixta
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland
| | - Baris Binay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze Kocaeli, Turkey
| | - Ossi Turunen
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, 00076, Aalto, Finland.
| | - Hairong Xiong
- South-Central University for Nationalities, College of Life Science, Wuhan, 430074, China.
| |
Collapse
|
21
|
Huang X, Li Z, Du C, Wang J, Li S. Improved Expression and Characterization of a Multidomain Xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6430-9. [PMID: 26132889 DOI: 10.1021/acs.jafc.5b01259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A xylanase gene was cloned and characterized from Thermoanerobacterium aotearoense SCUT27, which was attested to consist of a signal peptide, one glycoside hydrolase family 10 domain, four carbohydrate binding modules, and three surface layer homology domains. The change of expression host from Escherichia coli to Bacillus subtilis resulted in a 4.1-fold increase of specific activity for the truncated XynAΔSLH. Five different versions of secretion signals in B. subtilis indicated that it was preferably routed via a Sec-dependent pathway. Purified XynAΔSLH showed a high activity of 379.8 U/mg on beechwood xylan. XynAΔSLH was optimally active at 80 °C, pH 6.5. Thin layer chromatography results showed that xylobiose and the presumed methylglucuronoxylotriose (MeGlcAXyl3) were the main products liberated from beechwood xylan catalyzed by the recombinant xylanase. All of the results suggest that XynAΔSLH is a suitable candidate for generating xylooligosaccharides from cellulosic materials for industrial uses.
Collapse
Affiliation(s)
- Xiongliang Huang
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhe Li
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chenyu Du
- §School of Applied Sciences, The University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Jufang Wang
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Codon Optimization Significantly Improves the Expression Level of α -Amylase Gene from Bacillus licheniformis in Pichia pastoris. BIOMED RESEARCH INTERNATIONAL 2015; 2015:248680. [PMID: 26171389 PMCID: PMC4478363 DOI: 10.1155/2015/248680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/31/2014] [Indexed: 11/17/2022]
Abstract
α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis), the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris) and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use.
Collapse
|
23
|
Çalık P, Ata Ö, Güneş H, Massahi A, Boy E, Keskin A, Öztürk S, Zerze GH, Özdamar TH. Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhao H, Chen D, Tang J, Jia G, Long D, Liu G, Chen X, Shang H. Partial optimization of the 5-terminal codon increased a recombination porcine pancreatic lipase (opPPL) expression in Pichia pastoris. PLoS One 2014; 9:e114385. [PMID: 25544987 PMCID: PMC4278863 DOI: 10.1371/journal.pone.0114385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/06/2014] [Indexed: 11/18/2022] Open
Abstract
Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed additive for animal improvement.
Collapse
Affiliation(s)
- Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- * E-mail:
| | - Dan Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dingbiao Long
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
25
|
Gao H, Yan P, Zhang B, Shan A. Expression of Aspergillus niger IA-001 Endo-β-1,4-xylanase in Pichia pastoris and analysis of the enzymic characterization. Appl Biochem Biotechnol 2014; 173:2028-41. [PMID: 24888408 DOI: 10.1007/s12010-014-1000-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/23/2014] [Indexed: 11/25/2022]
Abstract
The xylanaseB (XynB) (JX560731.1) gene of Aspergillus niger IA-001 was optimized according to the codon usage of Pichia pastoris and expressed in P. pastoris GS115. The optimized XynB expression level was increased 2.8 times relative to that of the wild-type XynB, and the dual-copy XynB (optimized) expression level was increased 1.9 times relative to that of the single-copy XynB (optimized). The activity of the dual-copy XynB ((XynB-opt)2) was maximized at 15,158.23 ± 45.11 U/mL after 120 h of shaking. The optimal temperature and pH of (XynB-opt)2 were 50 °C and 5.0, respectively. (XynB-opt)2 showed a high specific activity of 6,853.00 ± 20.08 U/mg. IC analysis of the standard xylooligosaccharides showed that (XynB-opt)2 was an endo-xylanase with X2 as the main degradation product. (XynB-opt)2 was highly specific towards different natural xylans. After 24 h of hydrolysis, more than 90 % of the total hydrolysis products of xylan were X2 and X1, almost no X4 ~ X6. In addition, the enzyme exhibited resistance to many metal ions and low pH values. The superior catalytic properties of (XynB-opt)2 suggested its great potential as an effective additive in animal feed industry.
Collapse
Affiliation(s)
- He Gao
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China
| | | | | | | |
Collapse
|
26
|
High Level Production of β-Galactosidase Exhibiting Excellent Milk-Lactose Degradation Ability from Aspergillus oryzae by Codon and Fermentation Optimization. Appl Biochem Biotechnol 2014; 172:2787-99. [DOI: 10.1007/s12010-013-0684-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
27
|
Hu H, Gao J, He J, Yu B, Zheng P, Huang Z, Mao X, Yu J, Han G, Chen D. Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris. PLoS One 2013; 8:e58393. [PMID: 23472192 PMCID: PMC3589435 DOI: 10.1371/journal.pone.0058393] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.
Collapse
Affiliation(s)
- Hong Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jie Gao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Guoquan Han
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
- * E-mail:
| |
Collapse
|
28
|
Optimization of the production of Aspergillus niger α-glucosidase expressed in Pichia pastoris. World J Microbiol Biotechnol 2012; 29:533-40. [PMID: 23132254 DOI: 10.1007/s11274-012-1207-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
The α-glucosidase (AGL) from Aspergillus niger has been applied to produce isomaltooligosaccharides. In the present study, various factors which affect the yield of recombinant AGL, produced by engineered Pichia pastoris, were investigated. The expression level reached 5.5 U ml(-1) in bioreactor after optimization of parameters of initial induction cell density, induction temperature and methanol concentration. In addition, it was found that coexpression of protein disulfide isomerase (PDI) inhibited the growth of the engineered P. pastoris strains and had an adverse effect on the production of AGL, while codon optimization of native A. niger α-glucosidase encoding gene (aglu) resulted in a significant enhancement of enzyme production, which reached 10.1 U ml(-1). We believe that yield of AGL is increased by codon optimization as a result of enhanced translation efficiency as well as more stable mRNA secondary structure. In contrast, PDI coexpression under the control of alcohol oxidase promoter (PAOX1) seems to be less efficient in helping disulfide bond formation in AGL while probably induce unfolded protein response, which further leads to cell apoptosis and increased protein degradation.
Collapse
|