1
|
Ran L, Lu Y, Chen L, He M, Deng Z. Design, Synthesis, and Application of Immobilized Enzymes on Artificial Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500345. [PMID: 40305741 PMCID: PMC12120765 DOI: 10.1002/advs.202500345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Enzymes have been recognized as highly efficient biocatalysts, whereas characteristics such as poor stability and single reaction type greatly significantly limit their wide application. Hence, the exploitation of suitable carriers for immobilized enzymes enables the provision of a protective layer for the enzyme, with the capability of chemical and biological cascade catalysis. Among the various immobilization carriers, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs) have been emerging as a promising strategy to surpass the inherent instability and other limitations of free enzymes. Specifically, the integration of such artificial porous materials as carriers improves the stability and reusability of enzymes, while simultaneously affording a platform for multifunctional applications. Herein, this review systematically discusses the various preparation strategies and advantages of artificial porous materials, while elucidating the effects of different immobilization methods on enzyme activity. Furthermore, the innovative applications of artificial porous materials as multifunctional carriers in the field of enzyme immobilization fields such as enzyme carriers, photocatalysts, chemical catalysts and sensing are also comprehensively summarized here, thus demonstrating their multifunctional characteristics and promising applications in addressing complex biotransformation challenges.
Collapse
Affiliation(s)
- Lu Ran
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Yuan Lu
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Li Chen
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Mengru He
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| |
Collapse
|
2
|
Xu LJ, Yang T, Wang J, Huang FH, Zheng MM. Immobilized Lipase Based on Hollow Mesoporous Silicon Spheres for Efficient Enzymatic Synthesis of Resveratrol Ester Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9067-9075. [PMID: 33560828 DOI: 10.1021/acs.jafc.0c07501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymatic esterification of resveratrol is crucial for its potential application in lipophilic foods and drugs. However, the poor activity of the free enzyme hinders the reaction. In this work, the highly efficient enzymatic synthesis of resveratrol ester derivatives was achieved by immobilized lipase on hydrophobic modified hollow mesoporous silicon spheres (HMSS-C8). We preliminarily explored the use of Candida sp. 99-125 lipase (CSL) for the acylation of resveratrol, with a regioselectivity toward 3-OH- over 4'-OH-acylation. HMSS-C8 provided ideal accommodation for CSL with a loading capacity of up to 652 mg/g. The catalytic efficiency of CSL@HMSS-C8 was 15 times higher than that of free CSL, and the conversion of resveratrol reached 98.7% within only 2 h, which is the fastest value recorded in the current literature. After 10 cycles, the conversion remained up to 86.3%. Benefiting from better lipid solubility, the relative oxidation stability index values of oil containing monoester derivatives were 43.1%-68.8% and 23.9%-33.2% higher than that of refined oil and oil containing resveratrol, respectively. This research provides a new pathway for efficient enzymatic synthesis of resveratrol ester derivatives and demonstrates the potential application of resveratrol monoester derivatives as a group of excellent lipid-soluble antioxidants.
Collapse
Affiliation(s)
- Liu-Jia Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Tao Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Jing Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Feng-Hong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Ming-Ming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
3
|
Grajales-Hernández DA, Armendáriz-Ruiz MA, Gallego FL, Mateos-Díaz JC. Approaches for the enzymatic synthesis of alkyl hydroxycinnamates and applications thereof. Appl Microbiol Biotechnol 2021; 105:3901-3917. [PMID: 33928423 DOI: 10.1007/s00253-021-11285-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
Alkyl hydroxycinnamates (AHs) is a group of molecules of biotechnological interest due to their cosmetic, food, and pharmaceutical applications. Among their most interesting uses are as UV protectants, skin depigmentation agents, and antioxidant ingredients which are often claimed for their antitumoral potential. Nowadays, many sustainable enzymatic approaches using low-cost starting materials are available and interesting immobilization techniques are helping to increase the reuse of the biocatalysts, allowing the intensification of the processes and increasing AHs accessibility. Here a convenient summary of AHs most interesting biological activities and possible applications is presented. A deeper analysis of the art state to obtain AHs, focusing on most employed enzymatic synthesis approaches, their sustainability, acyl donors relevance, and most interesting enzyme immobilization strategies is provided.Key points• Most interesting alkyl hydroxycinnamates applications are summarized.• Enzymatic approaches to obtain alkyl hydroxycinnamates are critically discussed.• Outlook of enzyme immobilization strategies to attain alkyl hydroxycinnamates.
Collapse
Affiliation(s)
- Daniel A Grajales-Hernández
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paséo Miramón, 182, 20014, Donostia-San Sebastián, Spain
| | - Mariana A Armendáriz-Ruiz
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico
| | - Fernando López Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paséo Miramón, 182, 20014, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| | - Juan Carlos Mateos-Díaz
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico.
| |
Collapse
|
4
|
Liang W, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, Falcaro P, Doonan CJ. Metal–Organic Framework-Based Enzyme Biocomposites. Chem Rev 2021; 121:1077-1129. [DOI: 10.1021/acs.chemrev.0c01029] [Citation(s) in RCA: 354] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Weibin Liang
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, 8010 Graz, Austria
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
5
|
Tamayo-Cabezas J, Karboune S. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Gür B. Determination of the pH-dependent immobilization efficacy of α-glycosidase and its catalytic performance on SnO2:Sb/ITO thin films. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Grajales-Hernández DA, Velasco-Lozano S, Armendáriz-Ruiz MA, Rodríguez-González JA, Camacho-Ruíz RM, Asaff-Torres A, López-Gallego F, Mateos-Díaz JC. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J Biotechnol 2020; 316:6-16. [PMID: 32305629 DOI: 10.1016/j.jbiotec.2020.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Feruloyl esterases synthesize butyl hydroxycinnamates, molecules possessing interesting biological properties, nonetheless, they exhibit a low stability under synthesis conditions in organic solvents, restricting its use. To enhance its operational stability in synthesis, we immobilized type A feruloyl esterase from Aspergillus niger (AnFAEA) using several carrier-bound and carrier-free strategies. The most active biocatalysts were: 1) AnFAEA immobilized on epoxy-activated carriers (protein load of 0.6 mgenzyme x mg-1carrier) that recovered 91 % of the initial hydrolytic activity, and 2) AnFAEA aggregated and cross-linked in the presence of 5 mg of BSA and 15 mM of glutaraldehyde (AnFAEA-amino-CLEAs), which exhibited 385 % of its initial hydrolytic activity; both using 4-nitrophenyl butyrate as substrate. The AnFAEA-amino-CLEAs were 12.7 times more thermostable at 60 °C than the AnFAEA immobilized on epoxy-activated carrier, thus AnFAEA-amino-CLEAs were selected for further characterization. Interestingly, during methyl sinapate hydrolysis (pH 7.2 and 30 °C), AnFAEA-amino-CLEAs KM was 15 % higher, while during butyl sinapate synthesis the KM was reduced in 63 %, both compared with the soluble enzyme. The direct esterification of butyl sinapate at solvent free conditions using sinapic acid 50 mM, reached 95 % conversion after 24 h employing AnFAEA-amino-CLEAs, which could be used for 10 cycles without significant activity losses, demonstrating their outstanding operational stability.
Collapse
Affiliation(s)
- Daniel A Grajales-Hernández
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, Zaragoza, Spain
| | - Mariana A Armendáriz-Ruiz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Jorge A Rodríguez-González
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Rosa María Camacho-Ruíz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Ali Asaff-Torres
- Industrial biotechnology, Centro de Investigación en Alimentación y Desarrollo, Carretera a La Victoria km 0.6, Hermosillo, Sonora, Mexico
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, Zaragoza, Spain; ARAID, Aragon I+D Foundation, Zaragoza, Spain
| | - Juan Carlos Mateos-Díaz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico.
| |
Collapse
|
8
|
Chong SL, Cardoso V, Brás JLA, Gomes MZDV, Fontes CMGA, Olsson L. Immobilization of bacterial feruloyl esterase on mesoporous silica particles and enhancement of synthetic activity by hydrophobic-modified surface. BIORESOURCE TECHNOLOGY 2019; 293:122009. [PMID: 31493730 DOI: 10.1016/j.biortech.2019.122009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Here, we demonstrated the immobilization of bacterial feruloyl esterase (FAE) from Butyrivibrio sp. XPD2006, Lactobacillus crispatus, Butyrivibrio sp. AE2015, Ruminococcus albus, Cellulosilyticum ruminicola and Clostridium cellulovorans on SBA-15 and their ability to synthesize butyl ferulate (BFA). The BFae2 from Butyrivibrio sp. XPD2006 showed the best catalytic efficiency. High BFA yield was produced when the immobilization of BFae2 took place with a high protein loading and narrow pore sized SBA-15, suggesting alteration of enzyme behavior due to the crowding environment in SBA-15. Grafting of SBA-15 with octyl moieties led to shrinking pore size and resulted in 2.5-fold increment of BFA activity compared to the free enzyme and 70%mol BFA was achieved. The BFae2 encapsulated in hydrophobic-modified SBA-15 endured up to seven reaction cycles while the BFA activity remained above 60%. This is the first report showing the superior performance of hydrophobic-modified surface to entrap FAE to produce fatty phenolic esters.
Collapse
Affiliation(s)
- Sun Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300 Hangzhou, China; Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Vânia Cardoso
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal; CIISA - Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Joana L A Brás
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal
| | - Milene Zezzi do Valle Gomes
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Applied Chemistry, SE 412 96 Gothenburg, Sweden
| | - Carlos M G A Fontes
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal; CIISA - Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Lisbeth Olsson
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
9
|
Bonzom C, Hüttner S, Mirgorodskaya E, Chong SL, Uthoff S, Steinbüchel A, Verhaert RMD, Olsson L. Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express 2019; 9:126. [PMID: 31407106 PMCID: PMC6691016 DOI: 10.1186/s13568-019-0852-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 11/26/2022] Open
Abstract
Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.
Collapse
|
10
|
Giussani L, Tabacchi G, Coluccia S, Fois E. Confining a Protein-Containing Water Nanodroplet inside Silica Nanochannels. Int J Mol Sci 2019; 20:E2965. [PMID: 31216631 PMCID: PMC6627703 DOI: 10.3390/ijms20122965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
Incorporation of biological systems in water nanodroplets has recently emerged as a new frontier to investigate structural changes of biomolecules, with perspective applications in ultra-fast drug delivery. We report on the molecular dynamics of the digestive protein Pepsin subjected to a double confinement. The double confinement stemmed from embedding the protein inside a water nanodroplet, which in turn was caged in a nanochannel mimicking the mesoporous silica SBA-15. The nano-bio-droplet, whose size fits with the pore diameter, behaved differently depending on the protonation state of the pore surface silanols. Neutral channel sections allowed for the droplet to flow, while deprotonated sections acted as anchoring piers for the droplet. Inside the droplet, the protein, not directly bonded to the surface, showed a behavior similar to that reported for bulk water solutions, indicating that double confinement should not alter its catalytic activity. Our results suggest that nanobiodroplets, recently fabricated in volatile environments, can be encapsulated and stored in mesoporous silicas.
Collapse
Affiliation(s)
- Lara Giussani
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| | - Gloria Tabacchi
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| | - Salvatore Coluccia
- Dipartimento di Chimica, Turin University, Via P. Giuria 7, I-10125 Turin, Italy.
| | - Ettore Fois
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| |
Collapse
|
11
|
Immobilized feruloyl esterase from Humicola insolens catalyzes the synthesis of feruloylated oligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Oliveira DM, Mota TR, Oliva B, Segato F, Marchiosi R, Ferrarese-Filho O, Faulds CB, Dos Santos WD. Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. BIORESOURCE TECHNOLOGY 2019; 278:408-423. [PMID: 30704902 DOI: 10.1016/j.biortech.2019.01.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 05/25/2023]
Abstract
Ferulic acid and its hydroxycinnamate derivatives represent one of the most abundant forms of low molecular weight phenolic compounds in plant biomass. Feruloyl esterases are part of a microorganism's plant cell wall-degrading enzymatic arsenal responsible for cleaving insoluble wall-bound hydroxycinnamates and soluble cytosolic conjugates. Stimulated by industrial requirements, accelerating scientific discoveries and knowledge transfer, continuous improvement efforts have been made to identify, create and repurposed biocatalysts dedicated to plant biomass conversion and biosynthesis of high-added value molecules. Here we review the basic knowledge and recent advances in biotechnological characteristics and the gene content encoding for feruloyl esterases. Information about several enzymes is systematically organized according to their function, biochemical properties, substrate specificity, and biotechnological applications. This review contributes to further structural, functional, and biotechnological R&D both for obtaining hydroxycinnamates from agricultural by-products as well as for lignocellulose biomass treatments aiming for production of bioethanol and other derivatives of industrial interest.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Bianca Oliva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Craig B Faulds
- Aix-Marseille Université, INRA UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France
| | | |
Collapse
|
13
|
Feruloyl esterase immobilization in mesoporous silica particles and characterization in hydrolysis and transesterification. BMC BIOCHEMISTRY 2018; 19:1. [PMID: 29390959 PMCID: PMC5795792 DOI: 10.1186/s12858-018-0091-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/25/2018] [Indexed: 02/03/2023]
Abstract
Background Enzymes display high reactivity and selectivity under natural conditions, but may suffer from decreased efficiency in industrial applications. A strategy to address this limitation is to immobilize the enzyme. Mesoporous silica materials offer unique properties as an immobilization support, such as high surface area and tunable pore size. Results The performance of a commercially available feruloyl esterase, E-FAERU, immobilized on mesoporous silica by physical adsorption was evaluated for its transesterification ability. We optimized the immobilization conditions by varying the support pore size, the immobilization buffer and its pH. Maximum loading and maximum activity were achieved at different pHs (4.0 and 6.0 respectively). Selectivity, shown by the transesterification/hydrolysis products molar ratio, varied more than 3-fold depending on the reaction buffer used and its pH. Under all conditions studied, hydrolysis was the dominant activity of the enzyme. pH and water content had the greatest influence on the enzyme selectivity and activity. Determined kinetic parameters of the enzyme were obtained and showed that Km was not affected by the immobilization but kcat was reduced 10-fold when comparing the free and immobilized enzymes. Thermal and pH stabilities as well as the reusability were investigated. The immobilized biocatalyst retained more than 20% of its activity after ten cycles of transesterification reaction. Conclusions These results indicate that this enzyme is more suited for hydrolysis reactions than transesterification despite good reusability. Furthermore, it was found that the immobilization conditions are crucial for optimal enzyme activity as they can alter the enzyme performance. Electronic supplementary material The online version of this article (10.1186/s12858-018-0091-y) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Hüttner S, Zezzi Do Valle Gomes M, Iancu L, Palmqvist A, Olsson L. Immobilisation on mesoporous silica and solvent rinsing improve the transesterification abilities of feruloyl esterases from Myceliophthora thermophila. BIORESOURCE TECHNOLOGY 2017; 239:57-65. [PMID: 28501686 DOI: 10.1016/j.biortech.2017.04.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The immobilisation of four feruloyl esterases (FAEs) (FaeA1, FaeA2, FaeB1, FaeB2) from the thermophilic fungus Myceliophthora thermophila C1 was studied and optimised via physical adsorption onto various mesoporous silica particles with pore diameters varying from 6.6nm to 10.9nm. Using crude enzyme preparations, enrichment of immobilised FAEs was observed, depending on pore diameter and protein size. The immobilised enzymes were successfully used for the synthesis of butyl ferulate through transesterification of methyl ferulate with 1-butanol. Although the highest butyl ferulate yields were obtained with free enzyme, the synthesis-to-hydrolysis ratio was higher when using immobilised enzymes. Over 90% of the initial activity was observed in a reusability experiment after nine reaction cycles, each lasting 24h. Rinsing with solvent to remove water from the immobilised enzymes further improved their activity. This study demonstrates the suitability of immobilised crude enzyme preparations in the development of biocatalysts for esterification reactions.
Collapse
Affiliation(s)
- Silvia Hüttner
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Milene Zezzi Do Valle Gomes
- Department of Chemistry and Chemical Engineering, Division of Applied Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Laura Iancu
- DuPont Industrial Biosciences, Nieuwe Kanaal 7S, 6709 PA Wageningen, The Netherlands.
| | - Anders Palmqvist
- Department of Chemistry and Chemical Engineering, Division of Applied Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
15
|
Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials. Colloids Surf B Biointerfaces 2016; 137:77-90. [DOI: 10.1016/j.colsurfb.2015.04.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/26/2023]
|
16
|
Liu J, Peng C, Yu G, Zhou J. Molecular simulation study of feruloyl esterase adsorption on charged surfaces: effects of surface charge density and ionic strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10751-10763. [PMID: 26379082 DOI: 10.1021/acs.langmuir.5b01491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.
Collapse
Affiliation(s)
- Jie Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, PR China
| | - Chunwang Peng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, PR China
| | - Gaobo Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, PR China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, PR China
| |
Collapse
|
17
|
He F, Zhang S, Liu X. Immobilization of feruloyl esterases on magnetic nanoparticles and its potential in production of ferulic acid. J Biosci Bioeng 2015; 120:330-4. [DOI: 10.1016/j.jbiosc.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 11/29/2022]
|
18
|
Liu J, Yang Q, Li C. Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors. Chem Commun (Camb) 2015. [PMID: 26208044 DOI: 10.1039/c5cc04590h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocatalysis with immobilized enzymes as catalysts holds enormous promise in developing more efficient and sustainable processes for the synthesis of fine chemicals, chiral pharmaceuticals and biomass feedstocks. Despite the appealing potentials, nowadays the industrial-scale application of biocatalysts is still quite modest in comparison with that of traditional chemical catalysts. A critical issue is that the catalytic performance of enzymes, the sophisticated and vulnerable catalytic machineries, strongly depends on their intracellular working environment; however the working circumstances provided by the support matrix are radically different from those in cells. This often leads to various adverse consequences on enzyme conformation and dynamic properties, consequently decreasing the overall performance of immobilized enzymes with regard to their activity, selectivity and stability. Engineering enzyme catalysis in support nanopores by mimicking the physiological milieu of enzymes in vivo and investigating how the interior microenvironment of nanopores imposes an influence on enzyme behaviors in vitro are of paramount significance to modify and improve the catalytic functions of immobilized enzymes. In this feature article, we have summarized the recent advances in mimicking the working environment and working patterns of intracellular enzymes in nanopores of mesoporous silica-based supports. Especially, we have demonstrated that incorporation of polymers into silica nanopores could be a valuable approach to create the biomimetic microenvironment for enzymes in the immobilized state.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | | | | |
Collapse
|
19
|
Moritz M, Geszke-Moritz M. Mesoporous materials as multifunctional tools in biosciences: Principles and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:114-151. [DOI: 10.1016/j.msec.2014.12.079] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022]
|
20
|
Liu F, Wang J, Huang P, Zhang Q, Deng J, Cao Q, Jia J, Cheng J, Fang Y, Deng DYB, Zhou W. Outside-in stepwise functionalization of mesoporous silica nanocarriers for matrix type sustained release of fluoroquinolone drugs. J Mater Chem B 2015; 3:2206-2214. [DOI: 10.1039/c4tb02073a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we propose outside-in stepwise functionalization of MCM-41-type mesoporous silica for use as a high-efficiency matrix drug delivery nanosystem aimed at the insoluble antibacterial agent fluoroquinolone.
Collapse
|
21
|
Carlsson N, Gustafsson H, Thörn C, Olsson L, Holmberg K, Åkerman B. Enzymes immobilized in mesoporous silica: a physical-chemical perspective. Adv Colloid Interface Sci 2014; 205:339-60. [PMID: 24112562 DOI: 10.1016/j.cis.2013.08.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023]
Abstract
Mesoporous materials as support for immobilized enzymes have been explored extensively during the last two decades, primarily not only for biocatalysis applications, but also for biosensing, biofuels and enzyme-controlled drug delivery. The activity of the immobilized enzymes inside the pores is often different compared to that of the free enzymes, and an important challenge is to understand how the immobilization affects the enzymes in order to design immobilization conditions that lead to optimal enzyme activity. This review summarizes methods that can be used to understand how material properties can be linked to changes in enzyme activity. Real-time monitoring of the immobilization process and techniques that demonstrate that the enzymes are located inside the pores is discussed by contrasting them to the common practice of indirectly measuring the depletion of the protein concentration or enzyme activity in the surrounding bulk phase. We propose that pore filling (pore volume fraction occupied by proteins) is the best standard for comparing the amount of immobilized enzymes at the molecular level, and present equations to calculate pore filling from the more commonly reported immobilized mass. Methods to detect changes in enzyme structure upon immobilization and to study the microenvironment inside the pores are discussed in detail. Combining the knowledge generated from these methodologies should aid in rationally designing biocatalyst based on enzymes immobilized in mesoporous materials.
Collapse
Affiliation(s)
- Nils Carlsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Physical Chemistry, 412 96 Gothenburg, Sweden
| | - Hanna Gustafsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Applied Surface Chemistry, 412 96 Gothenburg, Sweden
| | - Christian Thörn
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Industrial Biotechnology, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Industrial Biotechnology, 412 96 Gothenburg, Sweden
| | - Krister Holmberg
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Applied Surface Chemistry, 412 96 Gothenburg, Sweden.
| | - Björn Åkerman
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Physical Chemistry, 412 96 Gothenburg, Sweden
| |
Collapse
|