1
|
Wang X, Hu R, Zhang Y, Tian L, Liu S, Huang Z, Wang L, Lu Y, Wang L, Wang Y, Wu Y, Cong Y, Yang G. Mechanistic analysis of thermal stability in a novel thermophilic polygalacturonase MlPG28B derived from the marine fungus Mucor lusitanicus. Int J Biol Macromol 2024; 280:136007. [PMID: 39326595 DOI: 10.1016/j.ijbiomac.2024.136007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this study, heterologous MlPG28B expression was obtained by cloning the Mucor lusitanicus gene screened from a marine environment. The enzyme activity of MlPG28B was maximum at 60 °C, 30 % of the enzyme activity was retained after incubation at 100 °C for 30 min, and enzyme activity was still present after 60 min incubation, one of the best thermostable polygalacturonases characterized until now. The high-purity oligosaccharide standards (DP2-DP7) were prepared with polygalacturonic acid as a substrate. Kinetic parameters showed that MlPG28B at the optimum temperature has a low Km value (3055 ± 1104 mg/L), indicating high substrate affinity. Sequence alignment analysis inferred key residues Cys276, Cys284, Lys107, and Gln237 for MlPG28B thermal stability. Molecular docking and molecular dynamics simulation results indicated that MlPG28B has flexible T1 and T3 loops conducive to substrate recognition, binding, and catalysis and forms a hydrogen bond to the substrate by a highly conserved residue Asn161 in the active-site cleft. Based on site-directed mutation results, the five residues are key in determining MlPG28B thermal stability. Therefore, MlPG28B is a promising candidate for industrial enzymes in feed preparation.
Collapse
Affiliation(s)
- Xin Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Ruitong Hu
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yu Zhang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Linfang Tian
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Siyi Liu
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Zhe Huang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Lianshun Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yanan Lu
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Li Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yuan Wang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Yuntian Wu
- Agricultural Service Center, Huanren Manchu Autonomous County, Benxi 117200, China.
| | - Yuting Cong
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China.
| | - Guojun Yang
- College of Fisheries and Life Science, National Demonstration Center for Experimental Aquaculture Education (Dalian Ocean University), Ministry of Education, Dalian 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China.
| |
Collapse
|
2
|
Battisti JA, Rocha GB, Rasbold LM, Delai VM, Costa MSSDM, Kadowaki MK, da Conceição Silva JL, Simão RDCG, Bifano TD, Maller A. Purification, biochemical characterization, and biotechnological applications of a multifunctional enzyme from the Thermoascus aurantiacus PI3S3 strain. Sci Rep 2024; 14:5037. [PMID: 38424450 PMCID: PMC10904743 DOI: 10.1038/s41598-024-55665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
The filamentous Thermoascus aurantiacus fungus characterized by its thermophilic nature, is recognized as an exceptional producer of various enzymes with biotechnological applications. This study aimed to explore biotechnological applications using polygalacturonase (PG) derived from the Thermoascus aurantiacus PI3S3 strain. PG production was achieved through submerged fermentation and subsequent purification via ion-exchange chromatography and gel filtration methods. The crude extract exhibited a diverse spectrum of enzymatic activities including amylase, cellulase, invertase, pectinase, and xylanase. Notably, it demonstrated the ability to hydrolyze sugarcane bagasse biomass, corn residue, and animal feed. The purified PG had a molecular mass of 36 kDa, with optimal activity observed at pH 4.5 and 70 °C. The activation energy (Ea) was calculated as 0.513 kJ mol-1, highlighting activation in the presence of Ca2+. Additionally, it displayed apparent Km, Vmax, and Kcat values of at 0.19 mg mL-1, 273.10 U mL-1, and 168.52 s-1, respectively, for hydrolyzing polygalacturonic acid. This multifunctional PG exhibited activities such as denim biopolishing, apple juice clarification, and demonstrated both endo- and exo-polygalacturonase activities. Furthermore, it displayed versatility by hydrolyzing polygalacturonic acid, carboxymethylcellulose, and xylan. The T. aurantiacus PI3S3 multifunctional polygalacturonase showed heightened activity under acidic pH, elevated temperatures, and in the presence of calcium. Its multifunctional nature distinguished it from other PGs, significantly expanding its potential for diverse biotechnological applications.
Collapse
Affiliation(s)
- Juliane Almeida Battisti
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | - Giovane Bruno Rocha
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | - Letícia Mara Rasbold
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | - Vitória Maciel Delai
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | | | - Marina Kimiko Kadowaki
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | - José Luis da Conceição Silva
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | - Rita de Cássia Garcia Simão
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | - Thaís Duarte Bifano
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil
| | - Alexandre Maller
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, 2069 Universitária Street, Faculdade, Cascavel, Paraná, 85819-110, Brazil.
| |
Collapse
|
3
|
Liu S, Tian L, Cong Y, Shi Q, Wang L, Lu Y, Wang L, Yang G. Recent advances in polygalacturonase: Industrial applications and challenges. Carbohydr Res 2023; 528:108816. [PMID: 37094533 DOI: 10.1016/j.carres.2023.108816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
This review focuses on the applications of polygalacturonase (PG), one of the most commercially produced enzymes on the biocatalyst market, in the food, beverage, feed, textile, and paper industries. Most PGs are acidic mesophilic enzymes, as shown by a summary of their biochemical properties. However, the acidic PGs discovered to date are insufficiently effective for industrial applications. The sequence and structural characteristics of thermophilic PGs are analyzed based on the results of extensive discussions regarding the catalytic mechanism and structural characteristics of PGs with shared right-handed parallel β-helical structures. In addition, the molecular modification methods for obtaining thermostable PGs are systematically presented. Notably, the demand for alkaline heat-resistant PGs has increased significantly concurrent with the biomanufacturing industry development. Therefore, this review also provides a theoretical guideline for mining heat-resistant PG gene resources and modifying PG thermostability.
Collapse
Affiliation(s)
- Siyi Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Linfang Tian
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Yuting Cong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Qianqian Shi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Li Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Guojun Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China.
| |
Collapse
|
4
|
Double-Fermented Soybean Meal Totally Replaces Soybean Meal in Broiler Rations with Favorable Impact on Performance, Digestibility, Amino Acids Transporters and Meat Nutritional Value. Animals (Basel) 2023; 13:ani13061030. [PMID: 36978571 PMCID: PMC10044553 DOI: 10.3390/ani13061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Inclusion of microbial fermented soybean meal in broiler feed has induced advantageous outcomes for their performance and gastrointestinal health via exhibiting probiotic effects. In this study, soybean meal (SBM) was subjected to double-stage microbial fermentation utilizing functional metabolites of fungi and bacteria. In broiler diet, DFSBM replaced SBM by 0, 25, 50 and 100%. DFSBM was reported to have higher protein content and total essential, nonessential and free amino acids (increased by 3.67%, 12.81%, 10.10% and 5.88-fold, respectively, compared to SBM). Notably, phytase activity and lactic acid bacteria increased, while fiber, lipid and trypsin inhibitor contents were decreased by 14.05%, 38.24% and 72.80%, respectively, in a diet containing 100% DFSBM, compared to SBM. Improved growth performance and apparent nutrient digestibility, including phosphorus and calcium, and pancreatic digestive enzyme activities were observed in groups fed higher DFSBM levels. In addition, higher inclusion levels of DFSBM increased blood immune response (IgG, IgM, nitric oxide and lysozyme levels) and liver antioxidant status. Jejunal amino acids- and peptide transporter-encoding genes (LAT1, CAT-1, CAT-2, PepT-1 and PepT-2) were upregulated with increasing levels of DFSBM in the ration. Breast muscle crude protein, calcium and phosphorus retention were increased, especially at higher inclusion levels of DFSBM. Coliform bacteria load was significantly reduced, while lactic acid bacteria count in broiler intestines was increased with higher dietary levels of DFSBM. In conclusion, replacement of SBM with DFSBM positively impacted broiler chicken feed utilization and boosted chickens’ amino acid transportation, in addition to improving the nutritional value of their breast meat.
Collapse
|
5
|
Hao MJ, Wu D, Xu Y, Tao XM, Li N, Yu XW. A Novel Endo-Polygalacturonase from Penicillium rolfsii with Prebiotics Production Potential: Cloning, Characterization and Application. Foods 2022; 11:3469. [PMID: 36360082 PMCID: PMC9656037 DOI: 10.3390/foods11213469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2024] Open
Abstract
In this study, a potential producer of prebiotics, a novel endo-polygalacturonase pePGA from Penicillium rolfsii BM-6, was successfully expressed in Komagataella phaffii, characterized and applied to produce pectic oligosaccharides. The optimum temperature and pH of pePGA were 60 °C and 6.0. The purified recombinant enzyme showed a good pH stability and was stable from pH 3.5 to 8.0. The Km, Vmax and kcat values of pePGA were 0.1569 g/L, 12,273 μmol/min/mg and 7478.4 s-1, respectively. More importantly, pePGA-POS, the pePGA hydrolysis products from commercial pectin, had good prebiotic and antibacterial activities in vitro. The pePGA-POS was able to significantly promote the growth of probiotics; meanwhile, the growth of Escherichia coli JM109, Staphylococcus aureus and Bacillus subtilis 168 was effectively inhibited by pePGA-POS. In addition, pePGA-POS also had the DPPH radical scavenging capacity. These properties of pePGA-POS make pePGA attractive for the production of prebiotics.
Collapse
Affiliation(s)
- Meng-Jie Hao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dan Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiu-Mei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Ning Li
- Guangzhou Puratos Food Co., Ltd., Guangzhou 511400, China
| | - Xiao-Wei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Lu B, Xian L, Zhu J, Wei Y, Yang C, Cheng Z. A Novel Endo-Polygalacturonase from Penicillium oxalicum: Gene Cloning, Heterologous Expression and Its Use in Acidic Fruit Juice Extraction. J Microbiol Biotechnol 2022; 32:464-472. [PMID: 35001012 PMCID: PMC9628815 DOI: 10.4014/jmb.2112.12023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
An endo-polygalacturonase (endo-PGase) exhibiting excellent performance during acidic fruit juice production would be highly attractive to the fruit juice industry. However, candidate endo-PGases for this purpose have rarely been reported. In this study, we expressed a gene from Penicillium oxalicum in Pichia pastoris. The recombinant enzyme PoxaEnPG28C had an optimal enzyme activity at pH 4.5 and 45°C and was stable at pH 3.0-6.5 and < 45°C. The enzyme had a specific activity of 4,377.65 ± 55.37 U/mg towards polygalacturonic acid, and the Km and Vmax values of PoxaEnPG28C were calculated as 1.64 g/l and 6127.45 U/mg, respectively. PoxaEnPG28C increased the light transmittance of orange, lemon, strawberry and hawthorn juice by 13.9 ± 0.3%, 29.4 ± 3.8%, 95.7 ± 10.2% and 79.8 ± 1.7%, respectively; it reduced the viscosity of the same juices by 25.7 ± 1.6%, 52.0 ± 4.5%, 48.2 ± 0.7% and 80.5 ± 2.3%, respectively, and it increased the yield of the juices by 24.5 ± 0.7%, 12.7 ± 2.2%, 48.5 ± 4.2% and 104.5 ± 6.4%, respectively. Thus, PoxaEnPG28C could be considered an excellent candidate enzyme for acidic fruit juice production. Remarkably, fruit juice production using hawthorn as an material was reported for the first time.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, P.R. China
| | - Liang Xian
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, P.R. China
| | - Jing Zhu
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Yunyi Wei
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Chengwei Yang
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Zhong Cheng
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China,Corresponding author Phone: +86-771-5900891 Fax: +86-771-5900885 E-mail:
| |
Collapse
|
7
|
Cavalieri de Alencar Guimarães N, Glienke NN, Silva Galeano RM, Ruller R, Zanoelo FF, Masui DC, Giannesi GC. Polygalacturonase from Aspergillus japonicus (PGAj): Enzyme production using low-cost carbon source, biochemical properties and application in clarification of fruit juices. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Tu T, Wang Z, Luo Y, Li Y, Su X, Wang Y, Zhang J, Rouvinen J, Yao B, Hakulinen N, Luo H. Structural Insights into the Mechanisms Underlying the Kinetic Stability of GH28 Endo-Polygalacturonase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:815-823. [PMID: 33404235 DOI: 10.1021/acs.jafc.0c06941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermostability is a key property of industrial enzymes. Endo-polygalacturonases of the glycoside hydrolase family 28 have many practical applications, but only few of their structures have been determined, and the reasons for their stability remain unclear. We identified and characterized the Talaromyces leycettanus JCM12802 endo-polygalacturonase TlPGA, which differs from other GH28 family members because of its high catalytic activity, with an optimum temperature of 70 °C. Distinctive features were revealed by comparison of thermophilic TlPGA and all known structures of fungal endo-polygalacturonases, including a relatively large exposed polar accessible surface area in thermophilic TlPGA. By mutating potentially important residues in thermophilic TlPGA, we identified Thr284 as a critical residue. Mutant T284A was comparable to thermophilic TlPGA in melting temperature but exhibited a significantly lower half-life and half-inactivation temperature, implicating residue Thr284 in the kinetic stability of thermophilic TlPGA. Structure analysis of thermophilic TlPGA and mutant T284A revealed that a carbon-oxygen hydrogen bond between the hydroxyl group of Thr284 and the Cα atom of Gln255, and the stable conformation adopted by Gln255, contribute to its kinetic stability. Our results clarify the mechanism underlying the kinetic stability of GH28 endo-polygalacturonases and may guide the engineering of thermostable enzymes for industrial applications.
Collapse
Affiliation(s)
- Tao Tu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhiyun Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yan Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yeqing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoyun Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yuan Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jie Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, Joensuu 80130, Finland
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu 80130, Finland
| | - Huiying Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
9
|
Karataş E, Tülek A, Çakar MM, Tamtürk F, Aktaş F, Binay B. From secretion in Pichia pastoris to application in apple juice processing: Exo-polygalacturonase from Sporothrix schenckii 1099-18. Protein Pept Lett 2021; 28:817-830. [PMID: 33413052 DOI: 10.2174/1871530321666210106110400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. OBJECTIVES The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. METHODS Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. RESULTS The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo-PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. CONCLUSION The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.
Collapse
Affiliation(s)
- Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Faruk Tamtürk
- Döhler Food & Beverage Ingredients, 70100 Merkez, Karaman. Turkey
| | - Fatih Aktaş
- Department of Environment Engineering, Duzce University, Konuralp 81100, Düzce. Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| |
Collapse
|
10
|
John J, Kaimal KS, Smith ML, Rahman PK, Chellam PV. Advances in upstream and downstream strategies of pectinase bioprocessing: A review. Int J Biol Macromol 2020; 162:1086-1099. [DOI: 10.1016/j.ijbiomac.2020.06.224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
|
11
|
Cheng Z, Xian L, Chen D, Lu J, Wei Y, Du L, Wang Q, Chen Y, Lu B, Bi D, Zhang Z, Huang R. Development of an Innovative Process for High-Temperature Fruit Juice Extraction Using a Novel Thermophilic Endo-Polygalacturonase From Penicillium oxalicum. Front Microbiol 2020; 11:1200. [PMID: 32595621 PMCID: PMC7303257 DOI: 10.3389/fmicb.2020.01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Efficient and cost-effective production of thermophilic endo-polygalacturonase is desirable for industrial fruit juice production, because its application could shorten the processing time and lower the production cost, by eliminating the separate step of pectin degradation. However, no endo-polygalacturonase that both functions well at sufficiently high temperature and can be manufactured economically, has been reported previously. In this study, the cDNA encoding a thermophilic endo-polygalacturonase from Penicillium oxalicum CZ1028, was cloned and over-expressed in Pichia pastoris GS115 and Escherichia coli BL21(DE3). The recombinant proteins PoxaEnPG28B-Pp (from P. pastoris) and PoxaEnPG28B-Ec (from E. coli) were isolated and purified. PoxaEnPG28B-Pp was sufficiently thermostable for potential industrial use, but PoxaEnPG28B-Ec was not. The optimal pH and temperature of PoxaEnPG28B-Pp were pH 5.0 and 65°C, respectively. The enzyme had a low Km of 1.82 g/L and a high Vmax of 77882.2 U/mg, with polygalacturonic acid (PGA) as substrate. The performance of PoxaEnPG28B-Pp in depectinization of papaya, plantain and banana juices at 65°C for 15 min was superior to that of a reported mesophilic endo-polygalacturonase. PoxaEnPG28B-Pp is the first endo-polygalacturonase reported to show excellent performance at high temperature. An innovative process, including a step of simultaneous heat-treatment and depectinization of fruit pulps with PoxaEnPG28B-Pp, is reported for the first time.
Collapse
Affiliation(s)
- Zhong Cheng
- College of Mechatronic and Quality Technology Engineering, Nanning University, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liang Xian
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Dong Chen
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Jian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingyan Wang
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Yunlai Chen
- School of Environment and Life Science, Nanning Normal University, Nanning, China
| | - Bo Lu
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Dewu Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Zhikai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
12
|
Ladeira Ázar RI, da Luz Morales M, Piccolo Maitan-Alfenas G, Falkoski DL, Ferreira Alfenas R, Guimarães VM. Apple juice clarification by a purified polygalacturonase from Calonectria pteridis. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Pagnonceli J, Rasbold L, Rocha G, Silva J, Kadowaki M, Simão R, Maller A. Biotechnological potential of an exo‐polygalacturonase of the new strain
Penicillium janthinellum
VI2R3M: biochemical characterization and clarification of fruit juices. J Appl Microbiol 2019; 127:1706-1715. [DOI: 10.1111/jam.14426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Affiliation(s)
- J. Pagnonceli
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - L.M. Rasbold
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - G.B. Rocha
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - J.L.C. Silva
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - M.K. Kadowaki
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - R.C.G. Simão
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - A. Maller
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| |
Collapse
|
14
|
Optimized production of Aspergillus aculeatus URM4953 polygalacturonases for pectin hydrolysis in hog plum (Spondias mombin L.) juice. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Pectin hydrolysis in cashew apple juice by Aspergillus aculeatus URM4953 polygalacturonase covalently-immobilized on calcium alginate beads: A kinetic and thermodynamic study. Int J Biol Macromol 2019; 126:820-827. [DOI: 10.1016/j.ijbiomac.2018.12.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/28/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
|
16
|
Kinetic and thermodynamic characterization of a novel Aspergillus aculeatus URM4953 polygalacturonase. Comparison of free and calcium alginate-immobilized enzyme. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Patidar MK, Nighojkar S, Kumar A, Nighojkar A. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 2018; 8:199. [PMID: 29581931 DOI: 10.1007/s13205-018-1220-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
A plethora of solid substrates, cultivation conditions and enzyme assay methods have been used for efficient production and estimation of polygalacturonase and pectin methylesterase enzymes. Recent developments in industrial biotechnology offer several opportunities for the utilization of low cost agro-industrial waste in Solid State Fermentation (SSF) for the pectinolytic enzyme production using fungi. Fruit waste mainly citrus fruit waste alone and along with other agro-industrial waste has been explored in SSF for enzyme production. Agro-industrial waste, due to the economic advantage of low procuring cost has been employed in SSF bioreactors for pectinolytic enzyme production. Acidic pectinases produced by fungi are utilized especially in food industries for clarification of fruit juices. This review focuses on the recent developments in SSF processes utilizing agro-industrial residues for polygalacturonase and pectin methylesterase production, their various assay methods and applications in fruit juice industries.
Collapse
Affiliation(s)
- Mukesh Kumar Patidar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| | - Sadhana Nighojkar
- Mata Gujri College of Professional Studies, A.B. Road, Indore, 452001 India
| | - Anil Kumar
- 3School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore, 452001 India
| | - Anand Nighojkar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| |
Collapse
|
18
|
Tu T, Li Y, Luo Y, Wang Z, Wang Y, Luo H, Yao B. A key residue for the substrate affinity enhancement of a thermophilic endo-polygalacturonase revealed by computational design. Appl Microbiol Biotechnol 2018; 102:4457-4466. [DOI: 10.1007/s00253-018-8948-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
|
19
|
Li Y, Wang Y, Tu T, Zhang D, Ma R, You S, Wang X, Yao B, Luo H, Xu B. Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem 2017; 237:997-1003. [DOI: 10.1016/j.foodchem.2017.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 11/29/2022]
|
20
|
Karahalil E, Demirel F, Evcan E, Germeç M, Tari C, Turhan I. Microparticle-enhanced polygalacturonase production by wild type Aspergillus sojae. 3 Biotech 2017; 7:361. [PMID: 28979834 DOI: 10.1007/s13205-017-1004-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022] Open
Abstract
Polygalacturonases (PGs), an important industrial enzyme group classified under depolymerases, catalyze the hydrolytic cleavage of the polygalacturonic acid chain through the introduction of water across the oxygen bridge. In order to produce and increase the concentration of this enzyme group in fermentation processes, a new approach called microparticle cultivation, a promising and remarkable method, has been used. The aim of this study was to increase the PG activity of Aspergillus sojae using aluminum oxide (Al2O3) as microparticles in shake flask fermentation medium. Results indicated that the highest PG activity of 34.55 ± 0.5 U/ml was achieved with the addition of 20 g/L of Al2O3 while the lowest activity of 15.20 ± 0.2 U/mL was obtained in the presence of 0.1 g/L of Al2O3. In fermentation without microparticles as control, the activity was 15.64 ± 3.3 U/mL. Results showed that the maximum PG activity was 2.2-fold higher than control. Additionally, smaller pellets formed with the addition of Al2O3 where the lowest pellet diameter was 955.1 µm when 10 g/L of the microparticle was used. Also, it was noticed that biomass concentration gradually increased with increasing microparticle concentration in the fermentation media. Consequently, the PG activity was significantly increased in microparticle-enhanced shake flask fermentation. In fact, these promising preliminary data can be of significance to improve the enzyme activity in large-scale bioreactors.
Collapse
Affiliation(s)
- Ercan Karahalil
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, 07058 Antalya, Turkey
| | - Fadime Demirel
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, 07058 Antalya, Turkey
| | - Ezgi Evcan
- Department of Food Engineering, Izmir Institute of Technology, Gulbahce Campus, 35430 Izmir, Turkey
| | - Mustafa Germeç
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, 07058 Antalya, Turkey
| | - Canan Tari
- Department of Food Engineering, Izmir Institute of Technology, Gulbahce Campus, 35430 Izmir, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, 07058 Antalya, Turkey
| |
Collapse
|
21
|
Identification of an acidic endo-polygalacturonase from Penicillium oxalicum CZ1028 and its broad use in major tropical and subtropical fruit juices production. J Biosci Bioeng 2017; 123:665-672. [DOI: 10.1016/j.jbiosc.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023]
|