1
|
Jin L, Liu X, Wang T, Wang Y, Zhou X, Mao W, Zhang Y, Wang Z, Sun J, Ying X. Multi-Enzymatic Cascade for Efficient Deracemization of dl-Pantolactone into d-Pantolactone. Molecules 2023; 28:5308. [PMID: 37513182 PMCID: PMC10384591 DOI: 10.3390/molecules28145308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
d-pantolactone is an intermediate in the synthesis of d-pantothenic acid, which is known as vitamin B5. The commercial synthesis of d-pantolactone is carried out through the selective resolution of dl-pantolactone catalyzed by lactone hydrolase. In contrast to a kinetic resolution approach, the deracemization of dl-pantolactone is a simpler, greener, and more sustainable way to obtain d-pantolactone with high optical purity. Herein, an efficient three-enzyme cascade was developed for the deracemization of dl-pantolactone, using l-pantolactone dehydrogenase from Amycolatopsis methanolica (AmeLPLDH), conjugated polyketone reductase from Zygosaccharomyces parabailii (ZpaCPR), and glucose dehydrogenase from Bacillus subtilis (BsGDH). The AmeLPLDH was used to catalyze the dehydrogenated l-pantolactone into ketopantolactone; the ZpaCPR was used to further catalyze the ketopantolactone into d-pantolactone; and glucose dehydrogenase together with glucose fulfilled the function of coenzyme regeneration. All three enzymes were co-expressed in E. coli strain BL21(DE3), which served as the whole-cell biocatalyst. Under optimized conditions, 36 h deracemization of 1.25 M dl-pantolactone d-pantolactone led to an e.e.p value of 98.6%, corresponding to productivity of 107.7 g/(l·d).
Collapse
Affiliation(s)
- Lijun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tairan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueting Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangwei Mao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Redox-driven deracemization of secondary alcohols by sequential ether/O2-mediated oxidation and Ru-catalyzed asymmetric reduction. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Nafiu SA, Takahashi M, Takahashi E, Hamdan SM, Musa MM. Deracemization and Stereoinversion of Alcohols Using Two Mutants of Secondary Alcohol Dehydrogenase from Thermoanaerobacter pseudoethanolicus. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sodiq A. Nafiu
- Chemistry Department; King Fahd University of Petroleum and Minerals; 31261 Dhahran KSA
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| | - Etsuko Takahashi
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| | - Musa M. Musa
- Chemistry Department; King Fahd University of Petroleum and Minerals; 31261 Dhahran KSA
| |
Collapse
|
5
|
Zu H, Gu J, Zhang H, Fan A, Nie Y, Xu Y. Highly enantioselective synthesis of (R)-1,3-butanediol via deracemization of the corresponding racemate by a whole-cell stereoinverting cascade system. Microb Cell Fact 2020; 19:125. [PMID: 32513165 PMCID: PMC7282177 DOI: 10.1186/s12934-020-01384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/30/2020] [Indexed: 11/11/2022] Open
Abstract
Background Deracemization, the transformation of the racemate into a single stereoisomeric product in 100% theoretical yield, is an appealing but challenging option for the asymmetric synthesis of optically pure chiral compounds as important pharmaceutical intermediates. To enhance the synthesis of (R)-1,3-butanediol from the corresponding low-cost racemate with minimal substrate waste, we designed a stereoinverting cascade deracemization route and constructed the cascade reaction for the total conversion of racemic 1,3-butanediol into its (R)-enantiomer. This cascade reaction consisted of the absolutely enantioselective oxidation of (S)-1,3-butanediol by Candida parapsilosis QC-76 and the subsequent asymmetric reduction of the intermediate 4-hydroxy-2-butanone to (R)-1,3-butanediol by Pichia kudriavzevii QC-1. Results The key reaction conditions including choice of cosubstrate, pH, temperature, and rotation speed were optimized systematically and determined as follows: adding acetone as the cosubstrate at pH 8.0, a temperature of 30 °C, and rotation speed of 250 rpm for the first oxidation process; in the next reduction process, the optimal conditions were: adding glucose as the cosubstrate at pH 8.0, a temperature of 35 °C, and rotation speed of 200 rpm. By investigating the feasibility of the step-by-step method with one-pot experiment as a natural extension for performing the oxidation–reduction cascade, the step-by-step approach exhibited high efficiency for this cascade process from racemate to (R)-1,3-butanediol. Under optimal conditions, 20 g/L of the racemate transformed into 16.67 g/L of (R)-1,3-butanediol with 99.5% enantiomeric excess by the oxidation–reduction cascade system in a 200-mL bioreactor. Conclusions The step-by-step cascade reaction efficiently produced (R)-1,3-butanediol from the racemate by biosynthesis and shows promising application prospects.
Collapse
Affiliation(s)
- Han Zu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jie Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Anwen Fan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yao Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
6
|
Aranda C, Oksdath‐Mansilla G, Bisogno FR, Gonzalo G. Deracemisation Processes Employing Organocatalysis and Enzyme Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC Avda/Reina Mercedes 10 41012 Sevilla Spain
| | - Gabriela Oksdath‐Mansilla
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Instituto de Investigaciones en Físico-Química Córdoba (INFIQC-CONICET)Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria 5000 Córdoba Argentina
| | - Fabricio R. Bisogno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Instituto de Investigaciones en Físico-Química Córdoba (INFIQC-CONICET)Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria 5000 Córdoba Argentina
| | - Gonzalo Gonzalo
- Departamento de Química OrgánicaUniversidad de Sevilla c/Profesor García González 2 41012 Sevilla Spain
| |
Collapse
|
7
|
Nafiu SA, Takahashi M, Takahashi E, Hamdan SM, Musa MM. Simultaneous cyclic deracemisation and stereoinversion of alcohols using orthogonal biocatalytic oxidation and reduction reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01524e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a concurrent cyclic deracemisation approach for secondary alcohols that combines a non-stereospecific oxidation step and a stereoselective reduction step using two mutants of TeSADH that exhibit various extents of stereoselectivities.
Collapse
Affiliation(s)
- Sodiq A. Nafiu
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Etsuko Takahashi
- Division of Biological and Environmental Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Musa M. Musa
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| |
Collapse
|
8
|
Musa MM, Hollmann F, Mutti FG. Synthesis of enantiomerically pure alcohols and amines via biocatalytic deracemisation methods. Catal Sci Technol 2019; 9:5487-5503. [PMID: 33628427 PMCID: PMC7116805 DOI: 10.1039/c9cy01539f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deracemisation via chemo-enzymatic or multi-enzymatic approaches is the optimum substitute for kinetic resolution, which suffers from the limitation of a theoretical maximum 50% yield albeit high enantiomeric excess is attainable. This review covers the recent progress in various deracemisation approaches applied to the synthesis of enantiomerically pure alcohols and amines, such as (1) dynamic kinetic resolution, (2) cyclic deracemisation, (3) linear deracemisation (including stereoinversion) and (4) enantioconvergent methods.
Collapse
Affiliation(s)
- Musa M Musa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZDelft, The Netherlands
| | - Francesco G Mutti
- Van't HoffInstitute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Liardo E, Ríos-Lombardía N, Morís F, González-Sabín J, Rebolledo F. A Straightforward Deracemization of sec
-Alcohols Combining Organocatalytic Oxidation and Biocatalytic Reduction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elisa Liardo
- Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; 33006 Oviedo Spain
| | | | - Francisco Morís
- Vivero Ciencias de la Salud; EntreChem SL; Santo Domingo de Guzmán 33011 Oviedo Spain
| | - Javier González-Sabín
- Vivero Ciencias de la Salud; EntreChem SL; Santo Domingo de Guzmán 33011 Oviedo Spain
| | - Francisca Rebolledo
- Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
10
|
Li K, Zhang R, Xu Y, Wu Z, Li J, Zhou X, Jiang J, Liu H, Xiao R. Sortase A-mediated crosslinked short-chain dehydrogenases/reductases as novel biocatalysts with improved thermostability and catalytic efficiency. Sci Rep 2017; 7:3081. [PMID: 28596548 PMCID: PMC5465079 DOI: 10.1038/s41598-017-03168-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
(S)-carbonyl reductase II (SCRII) from Candida parapsilosis is a short-chain alcohol dehydrogenase/reductase. It catalyses the conversion of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with low efficiency. Sortase was reported as a molecular “stapler” for site-specific protein conjugation to strengthen or add protein functionality. Here, we describe Staphylococcus aureus sortase A-mediated crosslinking of SCRII to produce stable catalysts for efficient biotransformation. Via a native N-terminal glycine and an added GGGGSLPETGG peptide at C-terminus of SCRII, SCRII subunits were conjugated by sortase A to form crosslinked SCRII, mainly dimers and trimers. The crosslinked SCRII showed over 6-fold and 4-fold increases, respectively, in activity and kcat/Km values toward 2-hydroxyacetophenone compared with wild-type SCRII. Moreover, crosslinked SCRII was much more thermostable with its denaturation temperature (Tm) increased to 60 °C. Biotransformation result showed that crosslinked SCRII gave a product optical purity of 100% and a yield of >99.9% within 3 h, a 16-fold decrease in transformation duration with respect to Escherichia coli/pET-SCRII. Sortase A-catalysed ligation also obviously improved Tms and product yields of eight other short-chain alcohol dehydrogenases/reductases. This work demonstrates a generic technology to improve enzyme function and thermostability through sortase A-mediated crosslinking of oxidoreductases.
Collapse
Affiliation(s)
- Kunpeng Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China. .,National Key Laboratory for Food Science, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China. .,National Key Laboratory for Food Science, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jing Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaotian Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiawei Jiang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Haiyan Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| |
Collapse
|
11
|
Sun T, Li B, Nie Y, Wang D, Xu Y. Enhancement of asymmetric bioreduction of N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine to corresponding (S)-enantiomer by fusion of carbonyl reductase and glucose dehydrogenase. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0151-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|