1
|
Khazaal Kadhim Almansoori A, Reddy NS, Abdulfattah M, Ismail SS, Abdul Rahim R. Characterization of a novel subfamily 1.4 lipase from Bacillus licheniformis IBRL-CHS2: Cloning and expression optimization. PLoS One 2024; 19:e0314556. [PMID: 39689112 DOI: 10.1371/journal.pone.0314556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
This study focuses on a novel lipase from Bacillus licheniformis IBRL-CHS2. The lipase gene was cloned into the pGEM-T Easy vector, and its sequences were registered in GenBank (KU984433 and AOT80658). It was identified as a member of the bacterial lipase subfamily 1.4. The pCold I vector and E. coli BL21 (DE3) host were utilized for expression, with the best results obtained by removing the enzyme's signal peptide. Optimal conditions were found to be 15°C for 24 h, using 0.2 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG). The His-tagged lipase was purified 13-fold with a 68% recovery and a specific activity of 331.3 U/mg using affinity purification. The lipase demonstrated optimal activity at 35°C and pH 7. It remained stable after 24 h in 25% (v/v) organic solvents such as isooctane, n-hexane, dimethyl sulfoxide (DMSO), and methanol, which enhanced its activity. Chloroform and diethyl ether inhibited the lipase. The enzyme exhibited the highest affinity for p-nitrophenol laurate (C12:0) with a Km of 0.36 mM and a Vmax of 357 μmol min-1 mg-1. Among natural oils, it performed best with coconut oil and worst with olive oil. The lipase was stable in the presence of 1 mM and 5 mM Ca2⁺, K⁺, Na⁺, Mg2⁺, and Ba2⁺, but its activity decreased with Zn2⁺ and Al3⁺. Non-ionic surfactants like Triton X-100, Nonidet P40, Tween 20, and Tween 40 boosted activity, while Sodium Dodecyl Sulfate (SDS) inhibited it. This lipase's unique properties, particularly its stability in organic solvents, make it suitable for applications in organic synthesis and various industries.
Collapse
Affiliation(s)
- Ammar Khazaal Kadhim Almansoori
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
- Department of Medical Laboratory Techniques, Al-Mustaqbal University, Hillah, Babylon, Iraq
| | | | - Mustafa Abdulfattah
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia, SAINS@USM, Bayan Lepas, Penang, Malaysia
| | - Sarah Solehah Ismail
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Rashidah Abdul Rahim
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia, SAINS@USM, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
2
|
Zhou H, Fang Y, Zhang J, Xiong T, Peng F. Site-directed immobilization of enzymes on nanoparticles using self-assembly systems. BIORESOURCE TECHNOLOGY 2024; 397:130505. [PMID: 38423485 DOI: 10.1016/j.biortech.2024.130505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Enzyme immobilization is an effective method for improving the stability and reusability. However, linking at random sites on the enzyme results in low catalytic efficiency due to blockage of the active site or conformational changes. Therefore, controlling the orientation of enzymes on the carrier has been developed. Here, the site-specific mutation and the SpyTag/SpyCatcher systems were used to prepare a site-directed immobilized enzyme. The thermal stability of the immobilized enzyme was better than that of the free enzyme, and ≥80 % of the catalytic activity was retained after 30 days of storage. Furthermore, the Michaelis constant (Km) and the turnover number (kcat) of the immobilized enzyme were 5.23-fold lower and 6.11-fold higher than those of the free enzyme, respectively, which appeared to be related to changes in secondary structure after immobilization. These findings provide a new and effective option for enzyme-directed immobilization.
Collapse
Affiliation(s)
- Haili Zhou
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yuling Fang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jing Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
3
|
Ng YK, Ikeno S, Kadhim Almansoori AK, Muhammad I, Abdul Rahim R. Characterization of Sphingobacterium sp. Ab3 Lipase and Its Coexpression with LEA Peptides. Microbiol Spectr 2022; 10:e0142221. [PMID: 36314920 PMCID: PMC9769720 DOI: 10.1128/spectrum.01422-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Sphingobacterium sp. is a yellowish Gram-negative bacterium that is usually characterized by high concentrations of sphingophospholipids as lipid components. As microbial enzymes have been in high demand in industrial fields in the past few decades, this study hopes to provide significant information on lipase activities of Sphingobacterium sp., since limited studies have been conducted on the Sphingobacterium sp. lipase. A microbe from one collected Artic soil sample, ARC4, was identified as psychrotolerant Sphingobacterium sp., and it could grow in temperatures ranging from 0°C to 24°C. The expression of Sphingobacterium sp. lipase was successfully performed through an efficient approach of utilizing mutated group 3 late embryogenesis abundant (G3LEA) proteins developed from Polypedilum vanderplanki. Purified enzyme was characterized using a few parameters, such as temperature, pH, metal ion cofactors, organic solvents, and detergents. The expressed enzyme is reported to be cold adapted and has the capability to work efficiently under neutral pH (pH 5.0 to 7.0), cofactors like Na+ ion, and the water-like solvent methanol. Addition of nonionic detergents greatly enhanced the activity of purified enzyme. IMPORTANCE The mechanism of action of LEA proteins has remained unknown to many; in this study we reveal their presence and improved protein expression due to the molecular shielding effect reported by others. This paper should be regarded as a useful example of using such proteins to influence an existing expression system to produce difficult-to-express proteins.
Collapse
Affiliation(s)
- You Kiat Ng
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Ibrahim Muhammad
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Science Lab. Technology, Ramat Polytechnic Maiduguri, Maiduguri, Nigeria
| | | |
Collapse
|
4
|
Different Effects of Salt Bridges near the Active Site of Cold-Adapted Proteus mirabilis Lipase on Thermal and Organic Solvent Stabilities. Catalysts 2022. [DOI: 10.3390/catal12070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organic solvent-tolerant (OST) enzymes have been discovered in psychrophiles. Cold-adapted OST enzymes exhibit increased conformational flexibility in polar organic solvents resulting from their intrinsically flexible structures. Proteus mirabilis lipase (PML), a cold-adapted OST lipase, was used to assess the contribution of salt bridges near the active site involving two arginine residues (R237 and R241) on the helix η1 and an aspartate residue (D248) on the connecting loop to the thermal and organic solvent stabilities of PML. Alanine substitutions for the ion pairs (R237A, R241A, D248A, and R237A/D248A) increased the conformational flexibility of PML mutants compared to that of the wild-type PML in an aqueous buffer. The PML mutants became more susceptible to denaturation after increasing the dimethyl sulfoxide or methanol concentration than after a temperature increase. Methanol was more detrimental to the structural stability of PML compared to dimethyl sulfoxide. These results suggest that direct interactions of dimethyl sulfoxide and methanol with the residues near the active site can have a destructive effect on the structure of PML compared with the global effect of heat on the protein structure. This study provides insight into the conformational changes within an OST enzyme with different effects on its thermal and organic solvent stabilities.
Collapse
|
5
|
Mhetras N, Mapare V, Gokhale D. Cold Active Lipases: Biocatalytic Tools for Greener Technology. Appl Biochem Biotechnol 2021; 193:2245-2266. [PMID: 33544363 DOI: 10.1007/s12010-021-03516-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lipases are enzymes that catalyze the ester bond hydrolysis in triglycerides with the release of fatty acids, mono- and diglycerides, and glycerol. The microbial lipases account for $400 million market size in 2017 and it is expected to reach $590 million by 2023. Many biotechnological processes are expedited at high temperatures and hence much research is dealt with thermostable enzymes. Cold active lipases are now gaining importance in the detergent, synthesis of chiral intermediates and frail/fragile compounds, and food and pharmaceutical industries. In addition, they consume less energy since they are active at low temperatures. These cold active lipases have not been commercially exploited so far compared to mesophilic and thermophilc lipases. Cold active lipases are distributed in microbes found at low temperatures. Only a few microbes were studied for the production of these enzymes. These cold-adapted enzymes show increased flexibility of their structures in response to freezing effect of the cold habitats. This review presents an update on cold-active lipases from microbial sources along with some structural features justifying high enzyme activity at low temperature. In addition, recent achievements on their use in various industries will also be discussed.
Collapse
Affiliation(s)
- Nutan Mhetras
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, India
| | - Vidhyashri Mapare
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Digambar Gokhale
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
6
|
Wang Y, Zhao M, Liu T. Extraction of allelochemicals from poplar alkaline peroxide mechanical pulping effluents and their allelopathic effects on Microcystis aeruginosa. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Dachuri V, Truongvan N, DangThu Q, Jang SH, Lee C. Distinct roles of an ionic interaction holding an alpha-helix with catalytic Asp and a beta-strand with catalytic His in a hyperthermophilic esterase EstE1 and a mesophilic esterase rPPE. Extremophiles 2019; 23:649-657. [PMID: 31332517 DOI: 10.1007/s00792-019-01115-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
An ionic interaction that holds an α-helix and a β-strand on which catalytic Asp and His residues are located, respectively, is conserved in a hyperthermophilic esterase EstE1 (optimum temperature 70 °C) and a mesophilic esterase rPPE (optimum temperature 50 °C). We investigated the role of an ionic interaction between E258 and R275 in EstE1 and that between E263 and R280 in rPPE in active-site stability of serine esterases adapted to different temperatures. Ala substitutions caused a 5-10 °C decrease in the optimum temperature of both EstE1 and rPPE mutants. Surprisingly, disruption of the ionic interaction caused larger effects on the conformational flexibility of EstE1 mutants despite their rigid structures, whereas the disruption had fewer effects on the thermal stability of EstE1 mutants at 60-70 °C, as the structure of EstE1 was adapted to high temperatures. In contrast, mesophilic rPPE mutants showed dramatic decreases in thermal stability at 40-50 °C, but less changes in conformational flexibility because of their inherently flexible structures. The results of this study suggest that the ionic interaction between the α-helix with catalytic Asp and the β-strand with catalytic His plays an important role in the active-site conformation of EstE1 and rPPE, with larger effects on the conformational flexibility of hyperthermophilic EstE1 and the thermal stability of mesophilic rPPE.
Collapse
Affiliation(s)
- VinayKumar Dachuri
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, 38453, South Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan, 38578, South Korea
| | - Ngoc Truongvan
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, 38453, South Korea
| | - Quynh DangThu
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, 38453, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, 38453, South Korea.
| |
Collapse
|
8
|
Sadaf A, Grewal J, Jain I, Kumari A, Khare SK. Stability and structure of Penicillium chrysogenum lipase in the presence of organic solvents. Prep Biochem Biotechnol 2018; 48:977-983. [PMID: 30461349 DOI: 10.1080/10826068.2018.1525566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present work describes the enzymatic properties of Penicillium chrysogenum lipase and its behavior in the presence of organic solvents. The temperature and pH optima of the purified lipase was found to be 55 °C and pH 8.0 respectively. The lipase displayed remarkable stability in both polar and non-polar solvents upto 50% (v/v) concentrations for 72 h. A structural perspective of the purified lipase in different organic solvents was gained by using circular dichroism and intrinsic fluorescence spectroscopy. The native lipase consisted of a predominant α-helix structure which was maintained in both polar and non-polar solvents with the exception of ethyl butyrate where the activity was decreased and the structure was disrupted. The quenching of fluorescence intensity in the presence of organic solvents indicated the transformation of the lipase microenviroment P. chrysogenum lipase offers an interesting system for understanding the solvent stability mechanisms which could be used for rationale designing of engineered lipase biocatalysts for application in organic synthesis in non-aqueous media.
Collapse
Affiliation(s)
- Ayesha Sadaf
- a Enzyme and Microbial Biochemistry Lab, Department of Chemistry , Indian Institute of Technology Delhi , New Delhi , India
| | - Jasneet Grewal
- a Enzyme and Microbial Biochemistry Lab, Department of Chemistry , Indian Institute of Technology Delhi , New Delhi , India
| | - Isha Jain
- a Enzyme and Microbial Biochemistry Lab, Department of Chemistry , Indian Institute of Technology Delhi , New Delhi , India
| | - Arti Kumari
- a Enzyme and Microbial Biochemistry Lab, Department of Chemistry , Indian Institute of Technology Delhi , New Delhi , India
| | - Sunil K Khare
- a Enzyme and Microbial Biochemistry Lab, Department of Chemistry , Indian Institute of Technology Delhi , New Delhi , India
| |
Collapse
|
9
|
Characterization of Organic Solvent-Tolerant Lipolytic Enzyme from Marinobacter lipolyticus Isolated from the Antarctic Ocean. Appl Biochem Biotechnol 2018; 187:1046-1060. [PMID: 30151635 DOI: 10.1007/s12010-018-2865-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023]
Abstract
The Antarctic marine environment provides a good source of novel lipolytic enzymes that possess beneficial properties, i.e., resistance to extreme physical and chemical conditions. We found a lipolytic Escherichia coli colony that was transformed using genomic DNA from Marinobacter lipolyticus 27-A9 isolated from the Antarctic Ross Sea. DNA sequence analysis revealed an open reading frame of lipolytic enzyme gene. The gene translates a protein (LipA9) of 404 amino acids with molecular mass of 45,247 Da. Recombinant LipA9 was expressed in E. coli BL21 (DE3) cells and purified by anion exchange and gel filtration chromatography. The kcat/Km of LipA9 was 175 s-1 μM-1, and the optimum temperature and pH were 70 °C and pH 8.0, respectively. LipA9 had quite high organic solvent stability; it was stable toward several common organic solvents up to 50% concentration. Substrate specificity studies showed that LipA9 preferred a short acyl chain length of p-nitrophenyl ester and triglyceride. Sequence analysis showed that LipA9 contained catalytic Ser72 and Lys75 in S-x-x-K motif, like family VIII esterases. Homology modeling and site-directed mutagenesis studies revealed that Tyr141 and Tyr188 residues were located near the conserved motif and played an important role in catalytic activity.
Collapse
|
10
|
Yu J, Chen X, Jiang M, Wang A, Yang L, Pei X, Zhang P, Wu SG. Efficient promiscuous Knoevenagel condensation catalyzed by papain confined in Cu3(PO4)2 nanoflowers. RSC Adv 2018; 8:2357-2364. [PMID: 35541490 PMCID: PMC9077389 DOI: 10.1039/c7ra12940h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/29/2017] [Indexed: 11/21/2022] Open
Abstract
To develop an efficient and green immobilized biocatalyst for promiscuous catalysis which has a broad scope of applications, hybrid nanoflower (hNF) confined papain as a biocatalyst has been proposed and characterized in this study. hNFs were firstly prepared through mixing CuSO4 aqueous solution with papain in phosphate saline (PBS) at room temperature. The resulting hNFs were characterized by SEM and verified through a hydrolysis reaction with N-benzoyl-dl-arginine amide as substrate. Under optimal conditions, this nano-biocatalyst demonstrated a 15-fold hydrolytic activity compared with papain of free form, along with better thermal stability. A series of reaction factors (reaction temperature, time, and solvent) have been investigated for Knoevenagel condensation reactions with hNFs as catalyst. At optimal conditions, product yield of the hNFs catalyzed reaction was 1.3 fold higher than that of the free enzyme with benzaldehyde and acetylacetone as substrates. A few aldehydes and methylene compounds have also been used to test the generality and scope of this new enzymatic promiscuity. To sum up, the obtained hNFs demonstrate better catalytic properties than free papain and the inorganic metal-salt crystal can function as both support and promotor in biocatalysis. Knoevenagel condensation was catalyzed and enhanced by Cu2+ and papain on hybrid nanoflowers (hNFs) in the promiscuous catalysis.![]()
Collapse
Affiliation(s)
- Jianyun Yu
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Xinxin Chen
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Linlin Yang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Stephen Gang Wu
- Department of Energy, Environmental and Chemical Engineering
- Washington University
- St. Louis
- USA
| |
Collapse
|
11
|
|
12
|
Hong DK, Jang SH, Lee C. Gene cloning and characterization of a psychrophilic phthalate esterase with organic solvent tolerance from an Arctic bacterium Sphingomonas glacialis PAMC 26605. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|