1
|
Wellner K, Gnauck J, Bernier D, Bernhart SH, Betat H, Mörl M. Two complementing in vivo selection systems based on CCA-trimming exonucleases as a tool to monitor, select and evaluate enzymatic features of tRNA nucleotidyltransferases. RNA Biol 2025; 22:1-14. [PMID: 39831457 PMCID: PMC11784652 DOI: 10.1080/15476286.2025.2453963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/07/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease. Recently, we developed an in vivo screening system that allows for the selection and analysis of tRNA nucleotidyltransferase variants by challenging terminal AMP incorporation into tRNA during induced RNase T-catalyzed CCA-decay. Here, we extend this method for screening of full CCA-end repair by utilizing the CCA-trimming activity of exonuclease LCCR4. To demonstrate the combined potential of these two in vivo selection systems, we applied a semi-rational library design to investigate the mode of operation of catalytically important motifs in the human CCA-adding enzyme. This approach revealed unexpected requirements for amino acid composition in two motifs and gives new insights into the mechanism of CCA addition. The data show the potential of these RNase-based screening systems, as they allow the detection of enzyme variations that would not have been identified by a conventional rational approach. Furthermore, the combination of both RNase T and LCCR4 systems can be used to investigate and dissect the effects of pathogenic mutations on C- and A-addition.
Collapse
Affiliation(s)
- Karolin Wellner
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Josefine Gnauck
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Dorian Bernier
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Stephan H. Bernhart
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Roux C, Ramos-Hue M, Audonnet M, Duviau MP, Nouaille S, Carpousis AJ, Laguerre S, Hajnsdorf E, Cocaign-Bousquet M, Girbal L. RNA stability is regulated by both RNA polyadenylation and ATP levels, linking RNA and energy metabolisms in Escherichia coli. mBio 2025; 16:e0268024. [PMID: 39611689 PMCID: PMC11708017 DOI: 10.1128/mbio.02680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
The post-transcriptional process of RNA polyadenylation sits at the crossroads of energy metabolism and RNA metabolism. RNA polyadenylation is catalyzed by poly(A) polymerases, which use ATP as a substrate to add adenine to the 3' end of RNAs, which can alter their stability. In Escherichia coli, RNA polyadenylation mediated by the major poly(A) polymerase was previously shown to facilitate degradation of individual RNAs. In this study, we performed the first genome-wide study of RNA stability in the absence of PAP I. Inactivation of the pcnB gene coding for PAP I led to the stabilization of more than a thousand of E. coli RNAs in the form of full-length functional molecules or non-functional fragments. The absence of PAP I altered the energy metabolism, with an almost 20% reduction in ATP levels. To better understand how RNA and energy metabolisms are interconnected, we investigated the role of ATP levels in regulating RNA stability. When we lowered intracellular ATP levels below 0.5 mM, many RNAs were stabilized, demonstrating the causal link between ATP levels and RNA stability for the first time in E. coli. Above this concentration, changes in ATP levels had no impact on RNA stability. We also demonstrated that some RNAs were stabilized when PAP I was inactivated by low ATP availability. These results clearly demonstrate that PAP I mediates an energy-dependent RNA stabilization, which may contribute to cell energy homeostasis under energy-limited conditions.IMPORTANCEPoly(A) polymerases are prime targets for understanding the interactions between RNA polyadenylation, RNA stability, and cellular energy. These enzymes catalyze the process of RNA polyadenylation, which involves ATP hydrolysis and addition of poly(A) tails to the 3' end of RNAs. 3' end poly(A) extensions potentially facilitate RNA degradation in bacteria. In this study, we inactivated the pcnB gene encoding PAP I, the major poly(A) polymerase in E. coli, and investigated the effects on RNA stability and energy levels. Our results show for the first time in E. coli a genome-wide RNA stabilization in the absence of PAP I associated with a decrease in ATP levels. We provide the first evidence in E. coli of a link between ATP levels and RNA stabilization and demonstrate that this is mediated in some cases by PAP I. PAP I-mediated RNA stabilization at low ATP levels could be a means of energy conservation under energy-limited conditions.
Collapse
Affiliation(s)
- Charlotte Roux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Marvin Ramos-Hue
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | | | | | | | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | | | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
3
|
Francis N, Behera MR, Natarajan K, Laishram RS. Tyrosine phosphorylation controlled poly(A) polymerase I activity regulates general stress response in bacteria. Life Sci Alliance 2023; 6:6/3/e202101148. [PMID: 36535710 PMCID: PMC9764084 DOI: 10.26508/lsa.202101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
RNA 3'-end polyadenylation that marks transcripts for degradation is implicated in general stress response in Escherichia coli Yet, the mechanism and regulation of poly(A) polymerase I (PAPI) in stress response are obscure. We show that pcnB (that encodes PAPI)-null mutation widely stabilises stress response mRNAs and imparts cellular tolerance to multiple stresses, whereas PAPI ectopic expression renders cells stress-sensitive. We demonstrate that there is a substantial loss of PAPI activity on stress exposure that functionally phenocopies pcnB-null mutation stabilising target mRNAs. We identify PAPI tyrosine phosphorylation at the 202 residue (Y202) that is enormously enhanced on stress exposure. This phosphorylation inhibits PAPI polyadenylation activity under stress. Consequentially, PAPI phosphodeficient mutation (tyrosine 202 to phenylalanine, Y202F) fails to stimulate mRNA expression rendering cells stress-sensitive. Bacterial tyrosine kinase Wzc phosphorylates PAPI-Y202 residue, and that wzc-null mutation renders cells stress-sensitive. Accordingly, wzc-null mutation has no effect on stress sensitivity in the presence of pcnB-null or pcnB-Y202F mutation. We also establish that PAPI phosphorylation-dependent stress tolerance mechanism is distinct and operates downstream of the primary stress regulator RpoS.
Collapse
Affiliation(s)
- Nimmy Francis
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Malaya R Behera
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
4
|
New biochemical insights of CCA enzyme role in tRNA maturation and an efficient method to synthesize the 3'-amino-tailed tRNA. Biochimie 2023; 209:95-102. [PMID: 36646204 DOI: 10.1016/j.biochi.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.
Collapse
|
5
|
Hager M, Pöhler MT, Reinhardt F, Wellner K, Hübner J, Betat H, Prohaska S, Mörl M. Substrate Affinity Versus Catalytic Efficiency: Ancestral Sequence Reconstruction of tRNA Nucleotidyltransferases Solves an Enzyme Puzzle. Mol Biol Evol 2022; 39:6835633. [PMID: 36409584 PMCID: PMC9728577 DOI: 10.1093/molbev/msac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In tRNA maturation, CCA-addition by tRNA nucleotidyltransferase is a unique and highly accurate reaction. While the mechanism of nucleotide selection and polymerization is well understood, it remains a mystery why bacterial and eukaryotic enzymes exhibit an unexpected and surprisingly low tRNA substrate affinity while they efficiently catalyze the CCA-addition. To get insights into the evolution of this high-fidelity RNA synthesis, the reconstruction and characterization of ancestral enzymes is a versatile tool. Here, we investigate a reconstructed candidate of a 2 billion years old CCA-adding enzyme from Gammaproteobacteria and compare it to the corresponding modern enzyme of Escherichia coli. We show that the ancestral candidate catalyzes an error-free CCA-addition, but has a much higher tRNA affinity compared with the extant enzyme. The consequence of this increased substrate binding is an enhanced reverse reaction, where the enzyme removes the CCA end from the mature tRNA. As a result, the ancestral candidate exhibits a lower catalytic efficiency in vitro as well as in vivo. Furthermore, the efficient tRNA interaction leads to a processive polymerization, while the extant enzyme catalyzes nucleotide addition in a distributive way. Thus, the modern enzymes increased their polymerization efficiency by lowering the binding affinity to tRNA, so that CCA synthesis is efficiently promoted due to a reduced reverse reaction. Hence, the puzzling and at a first glance contradicting and detrimental weak substrate interaction represents a distinct activity enhancement in the evolution of CCA-adding enzymes.
Collapse
Affiliation(s)
| | | | - Franziska Reinhardt
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Jessica Hübner
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Sonja Prohaska
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA,Complexity Science Hub Vienna, Josefstädter Str. 39, 1080 Wien, Austria
| | | |
Collapse
|
6
|
Erber L, Betat H, Mörl M. CCA-Addition Gone Wild: Unusual Occurrence and Phylogeny of Four Different tRNA Nucleotidyltransferases in Acanthamoeba castellanii. Mol Biol Evol 2021; 38:1006-1017. [PMID: 33095240 PMCID: PMC7947759 DOI: 10.1093/molbev/msaa270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tRNAs are important players in the protein synthesis machinery, where they act as adapter molecules for translating the mRNA codons into the corresponding amino acid sequence. In a series of highly conserved maturation steps, the primary transcripts are converted into mature tRNAs. In the amoebozoan Acanthamoeba castellanii, a highly unusual evolution of some of these processing steps was identified that are based on unconventional RNA polymerase activities. In this context, we investigated the synthesis of the 3'-terminal CCA-end that is added posttranscriptionally by a specialized polymerase, the tRNA nucleotidyltransferase (CCA-adding enzyme). The majority of eukaryotic organisms carry only a single gene for a CCA-adding enzyme that acts on both the cytosolic and the mitochondrial tRNA pool. In a bioinformatic analysis of the genome of this organism, we identified a surprising multitude of genes for enzymes that contain the active site signature of eukaryotic/eubacterial tRNA nucleotidyltransferases. In vitro activity analyses of these enzymes revealed that two proteins represent bona fide CCA-adding enzymes, one of them carrying an N-terminal sequence corresponding to a putative mitochondrial target signal. The other enzymes have restricted activities and represent CC- and A-adding enzymes, respectively. The A-adding enzyme is of particular interest, as its sequence is closely related to corresponding enzymes from Proteobacteria, indicating a horizontal gene transfer. Interestingly, this unusual diversity of nucleotidyltransferase genes is not restricted to Acanthamoeba castellanii but is also present in other members of the Acanthamoeba genus, indicating an ancient evolutionary trait.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
7
|
Jones GH. Acquisition of pcnB [poly(A) polymerase I] genes via horizontal transfer from the β, γ- Proteobacteria. Microb Genom 2021; 7. [PMID: 33502308 PMCID: PMC8208693 DOI: 10.1099/mgen.0.000508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(A) polymerases (PAPs) and tRNA nucleotidyltransferases belong to a superfamily of nucleotidyltransferases and modify RNA 3'-ends. The product of the pcnB gene, PAP I, has been characterized in a few β-, γ- and δ-Proteobacteria. Using the PAP I signature sequence, putative PAPs were identified in bacterial species from the α- and ε-Proteobacteria and from four other bacterial phyla (Firmicutes, Actinobacteria, Bacteroidetes and Aquificae). Phylogenetic analysis, alien index and G+C content calculations strongly suggest that the PAPs in the species identified in this study arose by horizontal gene transfer from the β- and γ-Proteobacteria.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Hennig O, Philipp S, Bonin S, Rollet K, Kolberg T, Jühling T, Betat H, Sauter C, Mörl M. Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates. Int J Mol Sci 2020; 21:E9047. [PMID: 33260740 PMCID: PMC7730189 DOI: 10.3390/ijms21239047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that-when inserted into the human enzyme-confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3'-end of the tRNA primer in the catalytic core, dramatically increases the enzyme's substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.
Collapse
Affiliation(s)
- Oliver Hennig
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Susanne Philipp
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Sonja Bonin
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Kévin Rollet
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Tina Jühling
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| |
Collapse
|
9
|
Erber L, Franz P, Betat H, Prohaska S, Mörl M. Divergent Evolution of Eukaryotic CC- and A-Adding Enzymes. Int J Mol Sci 2020; 21:ijms21020462. [PMID: 31936900 PMCID: PMC7014341 DOI: 10.3390/ijms21020462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/04/2022] Open
Abstract
Synthesis of the CCA end of essential tRNAs is performed either by CCA-adding enzymes or as a collaboration between enzymes restricted to CC- and A-incorporation. While the occurrence of such tRNA nucleotidyltransferases with partial activities seemed to be restricted to Bacteria, the first example of such split CCA-adding activities was reported in Schizosaccharomyces pombe. Here, we demonstrate that the choanoflagellate Salpingoeca rosetta also carries CC- and A-adding enzymes. However, these enzymes have distinct evolutionary origins. Furthermore, the restricted activity of the eukaryotic CC-adding enzymes has evolved in a different way compared to their bacterial counterparts. Yet, the molecular basis is very similar, as highly conserved positions within a catalytically important flexible loop region are missing in the CC-adding enzymes. For both the CC-adding enzymes from S. rosetta as well as S. pombe, introduction of the loop elements from closely related enzymes with full activity was able to restore CCA-addition, corroborating the significance of this loop in the evolution of bacterial as well as eukaryotic tRNA nucleotidyltransferases. Our data demonstrate that partial CC- and A-adding activities in Bacteria and Eukaryotes are based on the same mechanistic principles but, surprisingly, originate from different evolutionary events.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Paul Franz
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Sonja Prohaska
- Computational EvoDevo Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany;
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
- Santa Fe Institute for Complex Systems, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
- Correspondence: ; Tel.: +49-341-9736-911; Fax: +49-341-9736-919
| |
Collapse
|
10
|
Leibovitch M, Reid NE, Victoria J, Hanic-Joyce PJ, Joyce PBM. Analysis of the pathogenic I326T variant of human tRNA nucleotidyltransferase reveals reduced catalytic activity and thermal stability in vitro linked to a conformational change. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:616-626. [PMID: 30959222 DOI: 10.1016/j.bbapap.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The I326T mutation in the TRNT1 gene encoding human tRNA nucleotidyltransferase (tRNA-NT) is linked to a relatively mild form of SIFD. Previous work indicated that the I326T variant was unable to incorporate AMP into tRNAs in vitro, however, expression of the mutant allele from a strong heterologous promoter supported in vivo CCA addition to both cytosolic and mitochondrial tRNAs in a yeast strain lacking tRNA-NT. To address this discrepancy, we determined the biochemical and biophysical characteristics of the I326T variant enzyme and the related variant, I326A. Our in vitro analysis revealed that the I326T substitution decreases the thermal stability of the enzyme and causes a ten-fold reduction in enzyme activity. We propose that the structural changes in the I326T variant that lead to these altered parameters result from a rearrangement of helices within the body domain of the protein which can be probed by the inability of the monomeric enzyme to form a covalent dimer in vitro mediated by C373. In addition, we confirm that the effects of the I326T or I326A substitutions are relatively mild in vivo by demonstrating that the mutant alleles support both mitochondrial and cytosolic CCA-addition in yeast.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - N E Reid
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - J Victoria
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
11
|
A Temporal Order in 5'- and 3'- Processing of Eukaryotic tRNA His. Int J Mol Sci 2019; 20:ijms20061384. [PMID: 30893886 PMCID: PMC6470698 DOI: 10.3390/ijms20061384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 01/27/2023] Open
Abstract
For flawless translation of mRNA sequence into protein, tRNAs must undergo a series of essential maturation steps to be properly recognized and aminoacylated by aminoacyl-tRNA synthetase, and subsequently utilized by the ribosome. While all tRNAs carry a 3'-terminal CCA sequence that includes the site of aminoacylation, the additional 5'-G-1 position is a unique feature of most histidine tRNA species, serving as an identity element for the corresponding synthetase. In eukaryotes including yeast, both 3'-CCA and 5'-G-1 are added post-transcriptionally by tRNA nucleotidyltransferase and tRNAHis guanylyltransferase, respectively. Hence, it is possible that these two cytosolic enzymes compete for the same tRNA. Here, we investigate substrate preferences associated with CCA and G-1-addition to yeast cytosolic tRNAHis, which might result in a temporal order to these important processing events. We show that tRNA nucleotidyltransferase accepts tRNAHis transcripts independent of the presence of G-1; however, tRNAHis guanylyltransferase clearly prefers a substrate carrying a CCA terminus. Although many tRNA maturation steps can occur in a rather random order, our data demonstrate a likely pathway where CCA-addition precedes G-1 incorporation in S. cerevisiae. Evidently, the 3'-CCA triplet and a discriminator position A73 act as positive elements for G-1 incorporation, ensuring the fidelity of G-1 addition.
Collapse
|
12
|
Hajnsdorf E, Kaberdin VR. RNA polyadenylation and its consequences in prokaryotes. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0166. [PMID: 30397102 DOI: 10.1098/rstb.2018.0166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
Post-transcriptional addition of poly(A) tails to the 3' end of RNA is one of the fundamental events controlling the functionality and fate of RNA in all kingdoms of life. Although an enzyme with poly(A)-adding activity was discovered in Escherichia coli more than 50 years ago, its existence and role in prokaryotic RNA metabolism were neglected for many years. As a result, it was not until 1992 that E. coli poly(A) polymerase I was purified to homogeneity and its gene was finally identified. Further work revealed that, similar to its role in surveillance of aberrant nuclear RNAs of eukaryotes, the addition of poly(A) tails often destabilizes prokaryotic RNAs and their decay intermediates, thus facilitating RNA turnover. Moreover, numerous studies carried out over the last three decades have shown that polyadenylation greatly contributes to the control of prokaryotic gene expression by affecting the steady-state level of diverse protein-coding and non-coding transcripts including antisense RNAs involved in plasmid copy number control, expression of toxin-antitoxin systems and bacteriophage development. Here, we review the main findings related to the discovery of polyadenylation in prokaryotes, isolation, and characterization and regulation of bacterial poly(A)-adding activities, and discuss the impact of polyadenylation on prokaryotic mRNA metabolism and gene expression.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Eliane Hajnsdorf
- CNRS UMR8261 associated with University Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620 Plentzia, Spain
| |
Collapse
|
13
|
Leibovitch M, Hanic-Joyce PJ, Joyce PBM. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:527-540. [PMID: 29454993 DOI: 10.1016/j.bbapap.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022]
Abstract
Mutations in the human TRNT1 gene encoding tRNA nucleotidyltransferase (tRNA-NT), an essential enzyme responsible for addition of the CCA (cytidine-cytidine-adenosine) sequence to the 3'-termini of tRNAs, have been linked to disease phenotypes including congenital sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD) or retinitis pigmentosa with erythrocyte microcytosis. The effects of these disease-linked mutations on the structure and function of tRNA-NT have not been explored. Here we use biochemical and biophysical approaches to study how five SIFD-linked amino acid substitutions (T154I, M158V, L166S, R190I and I223T), residing in the N-terminal head and neck domains of the enzyme, affect the structure and activity of human tRNA-NT in vitro. Our data suggest that the SIFD phenotype is linked to poor stability of the T154I and L166S variant proteins, and to a combination of reduced stability and altered catalytic efficiency in the M158 V, R190I and I223T variants.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
14
|
A tRNA's fate is decided at its 3' end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:433-441. [PMID: 29374586 DOI: 10.1016/j.bbagrm.2018.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
tRNAs are key players in translation and are additionally involved in a wide range of distinct cellular processes. The vital importance of tRNAs becomes evident in numerous diseases that are linked to defective tRNA molecules. It is therefore not surprising that the structural intactness of tRNAs is continuously scrutinized and defective tRNAs are eliminated. In this process, erroneous tRNAs are tagged with single-stranded RNA sequences that are recognized by degrading exonucleases. Recent discoveries have revealed that the CCA-adding enzyme - actually responsible for the de novo synthesis of the 3'-CCA end - plays an indispensable role in tRNA quality control by incorporating a second CCA triplet that is recognized as a degradation tag. In this review, we give an update on the latest findings regarding tRNA quality control that turns out to represent an interplay of the CCA-adding enzyme and RNases involved in tRNA degradation and maturation. In particular, the RNase-induced turnover of the CCA end is now recognized as a trigger for the CCA-adding enzyme to repeatedly scrutinize the structural intactness of a tRNA. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
|
15
|
Ernst FGM, Erber L, Sammler J, Jühling F, Betat H, Mörl M. Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity. RNA Biol 2017; 15:144-155. [PMID: 29099323 DOI: 10.1080/15476286.2017.1391445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cold adaptation is an evolutionary process that has dramatic impact on enzymatic activity. Increased flexibility of the protein structure represents the main evolutionary strategy for efficient catalysis and reaction rates in the cold, but is achieved at the expense of structural stability. This results in a significant activity-stability tradeoff, as it was observed for several metabolic enzymes. In polymerases, however, not only reaction rates, but also fidelity plays an important role, as these enzymes have to synthesize copies of DNA and RNA as exact as possible. Here, we investigate the effects of cold adaptation on the highly accurate CCA-adding enzyme, an RNA polymerase that uses an internal amino acid motif within the flexible catalytic core as a template to synthesize the CCA triplet at tRNA 3'-ends. As the relative orientation of these residues determines nucleotide selection, we characterized how cold adaptation impacts template reading and fidelity. In a comparative analysis of closely related psychro-, meso-, and thermophilic enzymes, the cold-adapted polymerase shows a remarkable error rate during CCA synthesis in vitro as well as in vivo. Accordingly, CCA-adding activity at low temperatures is not only achieved at the expense of structural stability, but also results in a reduced polymerization fidelity.
Collapse
Affiliation(s)
- Felix G M Ernst
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Lieselotte Erber
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Joana Sammler
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Frank Jühling
- b INSERM Unit 1110 , Institute of Viral and Liver Diseases, University of Strasbourg , Strasbourg , France
| | - Heike Betat
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Mario Mörl
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| |
Collapse
|
16
|
Franz P, Betat H, Mörl M. Genotyping bacterial and fungal pathogens using sequence variation in the gene for the CCA-adding enzyme. BMC Microbiol 2016; 16:47. [PMID: 26987313 PMCID: PMC4797355 DOI: 10.1186/s12866-016-0670-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To allow an immediate treatment of an infection with suitable antibiotics and bactericides or fungicides, there is an urgent need for fast and precise identification of the causative human pathogens. Methods based on DNA sequence comparison like 16S rRNA analysis have become standard tools for pathogen verification. However, the distinction of closely related organisms remains a challenging task. To overcome such limitations, we identified a new genomic target sequence located in the single copy gene for tRNA nucleotidyltransferase fulfilling the requirements for a ubiquitous, yet highly specific DNA marker. In the present study, we demonstrate that this sequence marker has a higher discriminating potential than commonly used genotyping markers in pro- as well as eukaryotes, underscoring its applicability as an excellent diagnostic tool in infectology. RESULTS Based on phylogenetic analyses, a region within the gene for tRNA nucleotidyltransferase (CCA-adding enzyme) was identified as highly heterogeneous. As prominent examples for pro- and eukaryotic pathogens, several Vibrio and Aspergillus species were used for genotyping and identification in a multiplex PCR approach followed by gel electrophoresis and fluorescence-based product detection. Compared to rRNA analysis, the selected gene region of the tRNA nucleotidyltransferase revealed a seven to 30-fold higher distinction potential between closely related Vibrio or Aspergillus species, respectively. The obtained data exhibit a superb genome specificity in the diagnostic analysis. Even in the presence of a 1,000-fold excess of human genomic DNA, no unspecific amplicons were produced. CONCLUSIONS These results indicate that a relatively short segment of the coding region for tRNA nucleotidyltransferase has a higher discriminatory potential than most established diagnostic DNA markers. Besides identifying microbial pathogens in infections, further possible applications of this new marker are food hygiene controls or metagenome analyses.
Collapse
Affiliation(s)
- Paul Franz
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| |
Collapse
|
17
|
Betat H, Mörl M. The CCA-adding enzyme: A central scrutinizer in tRNA quality control. Bioessays 2015; 37:975-82. [DOI: 10.1002/bies.201500043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heike Betat
- Institute for Biochemistry; University of Leipzig; Leipzig Germany
| | - Mario Mörl
- Institute for Biochemistry; University of Leipzig; Leipzig Germany
| |
Collapse
|
18
|
Polyuridylation in Eukaryotes: A 3'-End Modification Regulating RNA Life. BIOMED RESEARCH INTERNATIONAL 2015; 2015:968127. [PMID: 26078976 PMCID: PMC4442281 DOI: 10.1155/2015/968127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022]
Abstract
In eukaryotes, mRNA polyadenylation is a well-known modification that is essential for many aspects of the protein-coding RNAs life cycle. However, modification of the 3′ terminal nucleotide within various RNA molecules is a general and conserved process that broadly modulates RNA function in all kingdoms of life. Numerous types of modifications have been characterized, which are generally specific for a given type of RNA such as the CCA addition found in tRNAs. In recent years, the addition of nontemplated uridine nucleotides or uridylation has been shown to occur in various types of RNA molecules and in various cellular compartments with significantly different outcomes. Indeed, uridylation is able to alter RNA half-life both in positive and in negative ways, highlighting the importance of the enzymes in charge of performing this modification. The present review aims at summarizing the current knowledge on the various processes leading to RNA 3′-end uridylation and on their potential impacts in various diseases.
Collapse
|
19
|
Wende S, Bonin S, Götze O, Betat H, Mörl M. The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Res 2015; 43:5617-29. [PMID: 25958396 PMCID: PMC4477674 DOI: 10.1093/nar/gkv471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
CCA-adding enzymes synthesize and maintain the C-C-A sequence at the tRNA 3'-end, generating the attachment site for amino acids. While tRNAs are the most prominent substrates for this polymerase, CCA additions on non-tRNA transcripts are described as well. To identify general features for substrate requirement, a pool of randomized transcripts was incubated with the human CCA-adding enzyme. Most of the RNAs accepted for CCA addition carry an acceptor stem-like terminal structure, consistent with tRNA as the main substrate group for this enzyme. While these RNAs show no sequence conservation, the position upstream of the CCA end was in most cases represented by an adenosine residue. In tRNA, this position is described as discriminator base, an important identity element for correct aminoacylation. Mutational analysis of the impact of the discriminator identity on CCA addition revealed that purine bases (with a preference for adenosine) are strongly favoured over pyrimidines. Furthermore, depending on the tRNA context, a cytosine discriminator can cause a dramatic number of misincorporations during CCA addition. The data correlate with a high frequency of adenosine residues at the discriminator position observed in vivo. Originally identified as a prominent identity element for aminoacylation, this position represents a likewise important element for efficient and accurate CCA addition.
Collapse
Affiliation(s)
- Sandra Wende
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sonja Bonin
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Oskar Götze
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Goring ME, Leibovitch M, Gea-Mallorqui E, Karls S, Richard F, Hanic-Joyce PJ, Joyce PBM. The ability of an arginine to tryptophan substitution in Saccharomyces cerevisiae tRNA nucleotidyltransferase to alleviate a temperature-sensitive phenotype suggests a role for motif C in active site organization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2097-106. [PMID: 23872483 DOI: 10.1016/j.bbapap.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/15/2022]
Abstract
We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures.
Collapse
Affiliation(s)
- Mark E Goring
- Department of Biology, Concordia University, Montréal, H4B 1R6, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Mohanty BK, Kushner SR. Deregulation of poly(A) polymerase I in Escherichia coli inhibits protein synthesis and leads to cell death. Nucleic Acids Res 2013; 41:1757-66. [PMID: 23241393 PMCID: PMC3561954 DOI: 10.1093/nar/gks1280] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/13/2022] Open
Abstract
Polyadenylation plays important roles in RNA metabolism in both prokaryotes and eukaryotes. Surprisingly, deregulation of polyadenylation by poly(A) polymerase I (PAP I) in Escherichia coli leads to toxicity and cell death. We show here that mature tRNAs, which are normally not substrates for PAP I in wild-type cells, are rapidly polyadenylated as PAP I levels increase, leading to dramatic reductions in the fraction of aminoacylated tRNAs, cessation of protein synthesis and cell death. The toxicity associated with PAP I is exacerbated by the absence of either RNase T and/or RNase PH, the two major 3' → 5' exonucleases involved in the final step of tRNA 3'-end maturation, confirming their role in the regulation of tRNA polyadenylation. Furthermore, our data demonstrate that regulation of PAP I is critical not for preventing the decay of mRNAs, but rather for maintaining normal levels of functional tRNAs and protein synthesis in E. coli, a function for polyadenylation that has not been observed previously in any organism.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Dickinson H, Tretbar S, Betat H, Mörl M. The TRAMP complex shows tRNA editing activity in S. cerevisiae. Mol Biol Evol 2011; 29:1451-9. [PMID: 22319136 DOI: 10.1093/molbev/msr312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transfer RNA (tRNA) editing is a widespread processing phenomenon that alters the sequence of primary transcripts by base substitutions as well as nucleotide deletions and insertions at internal or terminal transcript positions. In the corresponding tRNAs, these events are an important prerequisite for the generation of functional transcripts. Although many editing events are well characterized at the reaction level, it is unclear in most cases from which ancestral activities the modern editing enzymes evolved. Here, we show that in Saccharomyces cerevisiae, the noncanonical poly(A) polymerase Trf4p in the TRAMP complex can be recruited for such an editing reaction at an introduced tRNA transcript. As a distributive polymerase involved in RNA surveillance and quality control, it has a broad substrate spectrum and binds only transiently to the transcripts, limiting the number of added nucleotides at the editing position. These features exactly meet the criteria for an ancestral enzyme of a modern editing activity. Accordingly, our observations are a strong experimental support for the hypothesis that enzymatic promiscuity serves as an evolutionary starting point for the emergence of new functions and activities.
Collapse
Affiliation(s)
- Helena Dickinson
- Institute for Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
23
|
An inhibitory C-terminal region dictates the specificity of A-adding enzymes. Proc Natl Acad Sci U S A 2011; 108:21040-5. [PMID: 22167803 DOI: 10.1073/pnas.1116117108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For efficient aminoacylation, tRNAs carry the conserved 3'-terminal sequence C-C-A, which is synthesized by highly specific tRNA nucleotidyltransferases (CCA-adding enzymes). In several prokaryotes, this function is accomplished by separate enzymes for CC- and A-addition. As A-adding enzymes carry an N-terminal catalytic core identical to that of CCA-adding enzymes, it is unclear why their activity is restricted. Here, it is shown that C-terminal deletion variants of A-adding enzymes acquire full and precise CCA-incorporating activity. The deleted region seems to be responsible for tRNA primer selection, restricting the enzyme's specificity to tRNAs ending with CC. The data suggest that A-adding enzymes carry an intrinsic CCA-adding activity that can be reactivated by the introduction of deletions in the C-terminal domain. Furthermore, a unique subtype of CCA-adding enzymes could be identified that evolved out of A-adding enzymes, suggesting that mutations and deletions in nucleotidyltransferases can lead to altered and even more complex activities, as a simple A-incorporation is converted into sequence-specific addition of C and A residues. Such activity-modifying events may have had an important role in the evolution of tRNA nucleotidyltransferases.
Collapse
|
24
|
Rammelt C, Bilen B, Zavolan M, Keller W. PAPD5, a noncanonical poly(A) polymerase with an unusual RNA-binding motif. RNA (NEW YORK, N.Y.) 2011; 17:1737-46. [PMID: 21788334 PMCID: PMC3162338 DOI: 10.1261/rna.2787011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PAPD5 is one of the seven members of the family of noncanonical poly(A) polymerases in human cells. PAPD5 was shown to polyadenylate aberrant pre-ribosomal RNAs in vivo, similar to degradation-mediating polyadenylation by the noncanonical poly(A) polymerase Trf4p in yeast. PAPD5 has been reported to be also involved in the uridylation-dependent degradation of histone mRNAs. To test whether PAPD5 indeed catalyzes adenylation as well as uridylation of RNA substrates, we analyzed the in vitro properties of recombinant PAPD5 expressed in mammalian cells as well as in bacteria. Our results show that PAPD5 catalyzes the polyadenylation of different types of RNA substrates in vitro. Interestingly, PAPD5 is active without a protein cofactor, whereas its yeast homolog Trf4p is the catalytic subunit of a bipartite poly(A) polymerase in which a separate RNA-binding subunit is needed for activity. In contrast to the yeast protein, the C terminus of PAPD5 contains a stretch of basic amino acids that is involved in binding the RNA substrate.
Collapse
Affiliation(s)
- Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
- Corresponding authors.E-mail .E-mail .
| | - Biter Bilen
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Walter Keller
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
- Corresponding authors.E-mail .E-mail .
| |
Collapse
|
25
|
Mechanism for the alteration of the substrate specificities of template-independent RNA polymerases. Structure 2011; 19:232-43. [PMID: 21300291 DOI: 10.1016/j.str.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/09/2010] [Accepted: 12/12/2010] [Indexed: 11/21/2022]
Abstract
PolyA polymerase (PAP) adds a polyA tail onto the 3'-end of RNAs without a nucleic acid template, using adenosine-5'-triphosphate (ATP) as a substrate. The mechanism for the substrate selection by eubacterial PAP remains obscure. Structural and biochemical studies of Escherichia coli PAP (EcPAP) revealed that the shape and size of the nucleobase-interacting pocket of EcPAP are maintained by an intra-molecular hydrogen-network, making it suitable for the accommodation of only ATP, using a single amino acid, Arg(197). The pocket structure is sustained by interactions between the catalytic domain and the RNA-binding domain. EcPAP has a flexible basic C-terminal region that contributes to optimal RNA translocation for processive adenosine 5'-monophosphate (AMP) incorporations onto the 3'-end of RNAs. A comparison of the EcPAP structure with those of other template-independent RNA polymerases suggests that structural changes of domain(s) outside the conserved catalytic core domain altered the substrate specificities of the template-independent RNA polymerases.
Collapse
|
26
|
Mohanty BK, Kushner SR. Bacterial/archaeal/organellar polyadenylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:256-76. [PMID: 21344039 PMCID: PMC3041983 DOI: 10.1002/wrna.51] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the first poly(A) polymerase (PAP) was discovered in Escherichia coli in 1962, the study of polyadenylation in bacteria was largely ignored for the next 30 years. However, with the identification of the structural gene for E. coli PAP I in 1992, it became possible to analyze polyadenylation using both biochemical and genetic approaches. Subsequently, it has been shown that polyadenylation plays a multifunctional role in prokaryotic RNA metabolism. Although the bulk of our current understanding of prokaryotic polyadenylation comes from studies on E. coli, recent limited experiments with Cyanobacteria, organelles, and Archaea have widened our view on the diversity, complexity, and universality of the polyadenylation process. For example, the identification of polynucleotide phosphorylase (PNPase), a reversible phosphorolytic enzyme that is highly conserved in bacteria, as an additional PAP in E. coli caught everyone by surprise. In fact, PNPase has now been shown to be the source of post-transcriptional RNA modifications in a wide range of cells of prokaryotic origin including those that lack a eubacterial PAP homolog. Accordingly, the past few years have witnessed increased interest in the mechanism and role of post-transcriptional modifications in all species of prokaryotic origin. However, the fact that many of the poly(A) tails are very short and unstable as well as the presence of polynucleotide tails has posed significant technical challenges to the scientific community trying to unravel the mystery of polyadenylation in prokaryotes. This review discusses the current state of knowledge regarding polyadenylation and its functions in bacteria, organelles, and Archaea.
Collapse
Affiliation(s)
- Bijoy K. Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30605, Tel No. 706-542-8000,
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30605, Tel No. 706-542-8000,
| |
Collapse
|
27
|
Chung DH, Min Z, Wang BC, Kushner SR. Single amino acid changes in the predicted RNase H domain of Escherichia coli RNase G lead to complementation of RNase E deletion mutants. RNA (NEW YORK, N.Y.) 2010; 16:1371-1385. [PMID: 20507976 PMCID: PMC2885686 DOI: 10.1261/rna.2104810] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/12/2010] [Indexed: 05/29/2023]
Abstract
The endoribonuclease RNase E of Escherichia coli is an essential enzyme that plays a major role in all aspects of RNA metabolism. In contrast, its paralog, RNase G, seems to have more limited functions. It is involved in the maturation of the 5' terminus of 16S rRNA, the processing of a few tRNAs, and the initiation of decay of a limited number of mRNAs but is not required for cell viability and cannot substitute for RNase E under normal physiological conditions. Here we show that neither the native nor N-terminal extended form of RNase G can restore the growth defect associated with either the rne-1 or rneDelta1018 alleles even when expressed at very high protein levels. In contrast, two distinct spontaneously derived single amino acid substitutions within the predicted RNase H domain of RNase G, generating the rng-219 and rng-248 alleles, result in complementation of the growth defect associated with various RNase E mutants, suggesting that this region of the two proteins may help distinguish their in vivo biological activities. Analysis of rneDelta1018/rng-219 and rneDelta1018/rng-248 double mutants has provided interesting insights into the distinct roles of RNase E and RNase G in mRNA decay and tRNA processing.
Collapse
Affiliation(s)
- Dae-hwan Chung
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
28
|
Betat H, Rammelt C, Mörl M. tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci 2010; 67:1447-63. [PMID: 20155482 PMCID: PMC11115931 DOI: 10.1007/s00018-010-0271-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
RNA polymerases are important enzymes involved in the realization of the genetic information encoded in the genome. Thereby, DNA sequences are used as templates to synthesize all types of RNA. Besides these classical polymerases, there exists another group of RNA polymerizing enzymes that do not depend on nucleic acid templates. Among those, tRNA nucleotidyltransferases show remarkable and unique features. These enzymes add the nucleotide triplet C-C-A to the 3'-end of tRNAs at an astonishing fidelity and are described as "CCA-adding enzymes". During this incorporation of exactly three nucleotides, the enzymes have to switch from CTP to ATP specificity. How these tasks are fulfilled by rather simple and small enzymes without the help of a nucleic acid template is a fascinating research area. Surprising results of biochemical and structural studies allow scientists to understand at least some of the mechanistic principles of the unique polymerization mode of these highly unusual enzymes.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | - Christiane Rammelt
- Institute for Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Hoffmeier A, Betat H, Bluschke A, Günther R, Junghanns S, Hofmann HJ, Mörl M. Unusual evolution of a catalytic core element in CCA-adding enzymes. Nucleic Acids Res 2010; 38:4436-47. [PMID: 20348137 PMCID: PMC2910056 DOI: 10.1093/nar/gkq176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CCA-adding enzymes are polymerases existing in two distinct enzyme classes that both synthesize the C-C-A triplet at tRNA 3′-ends. Class II enzymes (found in bacteria and eukaryotes) carry a flexible loop in their catalytic core required for switching the specificity of the nucleotide binding pocket from CTP- to ATP-recognition. Despite this important function, the loop sequence varies strongly between individual class II CCA-adding enzymes. To investigate whether this loop operates as a discrete functional entity or whether it depends on the sequence context of the enzyme, we introduced reciprocal loop replacements in several enzymes. Surprisingly, many of these replacements are incompatible with enzymatic activity and inhibit ATP-incorporation. A phylogenetic analysis revealed the existence of conserved loop families. Loop replacements within families did not interfere with enzymatic activity, indicating that the loop function depends on a sequence context specific for individual enzyme families. Accordingly, modeling experiments suggest specific interactions of loop positions with important elements of the protein, forming a lever-like structure. Hence, although being part of the enzyme’s catalytic core, the loop region follows an extraordinary evolutionary path, independent of other highly conserved catalytic core elements, but depending on specific sequence features in the context of the individual enzymes.
Collapse
Affiliation(s)
- Andrea Hoffmeier
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Vörtler S, Mörl M. tRNA-nucleotidyltransferases: highly unusual RNA polymerases with vital functions. FEBS Lett 2009; 584:297-302. [PMID: 19883645 DOI: 10.1016/j.febslet.2009.10.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/29/2009] [Indexed: 02/04/2023]
Abstract
tRNA-nucleotidyltransferases are fascinating and unusual RNA polymerases responsible for the synthesis of the nucleotide triplet CCA at the 3'-terminus of tRNAs. As this CCA end represents an essential functional element for aminoacylation and translation, these polymerases (CCA-adding enzymes) are of vital importance in all organisms. With a possible origin of ancient telomerase-like activity, the CCA-adding enzymes obviously emerged twice during evolution, leading to structurally different, but functionally identical enzymes. The evolution as well as the unique polymerization features of these interesting proteins will be discussed in this review.
Collapse
Affiliation(s)
- Stefan Vörtler
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany.
| | | |
Collapse
|
31
|
Zimmer SL, Schein A, Zipor G, Stern DB, Schuster G. Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:88-99. [PMID: 19309454 DOI: 10.1111/j.1365-313x.2009.03853.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The polyadenylation-stimulated RNA degradation pathway takes place in plant and algal organelles, yet the identities of the enzymes that catalyze the addition of the tails remain to be clarified. In a search for the enzymes responsible for adding poly(A) tails in Chlamydomonas and Arabidopsis organelles, reverse genetic and biochemical approaches were employed. The involvement of candidate enzymes including members of the nucleotidyltransferase (Ntr) family and polynucleotide phosphorylase (PNPase) was examined. For several of the analyzed nuclear-encoded proteins, mitochondrial localization was established and possible dual targeting to mitochondria and chloroplasts could be predicted. We found that certain members of the Ntr family, when expressed in bacteria, displayed poly(A) polymerase (PAP) activity and partially complemented an Escherichia coli strain lacking the endogenous PAP1 enzyme. Other Ntr proteins appeared to be specific for tRNA maturation. When the expression of PNPase was down-regulated by RNAi in Chlamydomonas, very few poly(A) tails were detected in chloroplasts for the atpB transcript, suggesting that this enzyme may be solely responsible for chloroplast polyadenylation activity in this species. Depletion of PNPase did not affect the number or sequence of mitochondrial mRNA poly(A) tails, where unexpectedly we found, in addition to polyadenylation, poly(U)-rich tails. Together, our results identify several Ntr-PAPs and PNPase in organelle polyadenylation, and reveal novel poly(U)-rich sequences in Chlamydomonas mitochondria.
Collapse
Affiliation(s)
- Sarah L Zimmer
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
32
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
33
|
Just A, Butter F, Trenkmann M, Heitkam T, Mörl M, Betat H. A comparative analysis of two conserved motifs in bacterial poly(A) polymerase and CCA-adding enzyme. Nucleic Acids Res 2008; 36:5212-20. [PMID: 18682528 PMCID: PMC2532741 DOI: 10.1093/nar/gkn494] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Showing a high sequence similarity, the evolutionary closely related bacterial poly(A) polymerases (PAP) and CCA-adding enzymes catalyze quite different reactions—PAP adds poly(A) tails to RNA 3′-ends, while CCA-adding enzymes synthesize the sequence CCA at the 3′-terminus of tRNAs. Here, two highly conserved structural elements of the corresponding Escherichia coli enzymes were characterized. The first element is a set of amino acids that was identified in CCA-adding enzymes as a template region determining the enzymes' specificity for CTP and ATP. The same element is also present in PAP, where it confers ATP specificity. The second investigated region corresponds to a flexible loop in CCA-adding enzymes and is involved in the incorporation of the terminal A-residue. Although, PAP seems to carry a similar flexible region, the functional relevance of this element in PAP is not known. The presented results show that the template region has an essential function in both enzymes, while the second element is surprisingly dispensable in PAP. The data support the idea that the bacterial PAP descends from CCA-adding enzymes and still carries some of the structural elements required for CCA-addition as an evolutionary relic and is now fixed in a conformation specific for A-addition.
Collapse
Affiliation(s)
- Andrea Just
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Evolution of tRNA nucleotidyltransferases: a small deletion generated CC-adding enzymes. Proc Natl Acad Sci U S A 2008; 105:7953-8. [PMID: 18523015 DOI: 10.1073/pnas.0801971105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CCA-adding enzymes are specialized polymerases that add a specific sequence (C-C-A) to tRNA 3' ends without requiring a nucleic acid template. In some organisms, CCA synthesis is accomplished by the collaboration of evolutionary closely related enzymes with partial activities (CC and A addition). These enzymes carry all known motifs of the catalytic core found in CCA-adding enzymes. Therefore, it is a mystery why these polymerases are restricted in their activity and do not synthesize a complete CCA terminus. Here, a region located outside of the conserved motifs was identified that is missing in CC-adding enzymes. When recombinantly introduced from a CCA-adding enzyme, the region restores full CCA-adding activity in the resulting chimera. Correspondingly, deleting the region in a CCA-adding enzyme abolishes the A-incorporating activity, also leading to CC addition. The presence of the deletion was used to predict the CC-adding activity of putative bacterial tRNA nucleotidyltransferases. Indeed, two such enzymes were experimentally identified as CC-adding enzymes, indicating that the existence of the deletion is a hallmark for this activity. Furthermore, phylogenetic analysis of identified and putative CC-adding enzymes indicates that this type of tRNA nucleotidyltransferases emerged several times during evolution. Obviously, these enzymes descend from CCA-adding enzymes, where the occurrence of the deletion led to the restricted activity of CC addition. A-adding enzymes, however, seem to represent a monophyletic group that might also be ancestral to CCA-adding enzymes. Yet, experimental data indicate that it is possible that A-adding activities also evolved from CCA-adding enzymes by the occurrence of individual point mutations.
Collapse
|
35
|
Martin G, Doublié S, Keller W. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:206-16. [PMID: 18177750 PMCID: PMC2676681 DOI: 10.1016/j.bbagrm.2007.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/23/2007] [Accepted: 12/06/2007] [Indexed: 01/28/2023]
Abstract
Poly(A) polymerases were identified almost 50 years ago as enzymes that add multiple AMP residues to the 3' ends of primer RNAs without use of a template from ATP as cosubstrate and with release of pyrophosphate. Based on sequence homology of a signature motif in the catalytic domain, poly(A) polymerases were later found to belong to a superfamily of nucleotidyl transferases acting on a very diverse array of substrates. Enzymes belonging to the superfamily can add from single nucleotides of AMP, CMP or UMP to RNA, antibiotics and proteins but also homopolymers of many hundred residues to the 3' ends of RNA molecules. The recently reported structures of several nucleotidyl transferases facilitate the study of the catalytic mechanisms of these very diverse enzymes. Numerous structures of CCA-adding enzymes have now revealed all steps in the formation of a CCA tail at the 3' end of tRNAs. In addition, structures of poly(A) polymerases and uridylyl transferases are now available as binary and ternary complexes with incoming nucleotide and RNA primer. Some of these proteins undergo significant conformational changes after substrate binding. This is proposed to be an indication for an induced fit mechanism that drives substrate selection and leads to catalysis. Insights from recent structures of ternary complexes indicate an important role for the primer molecule in selecting the incoming nucleotide.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Given Building E314-A, Burlington, VT 05405 USA
| | - Walter Keller
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
36
|
Lizano E, Scheibe M, Rammelt C, Betat H, Mörl M. A comparative analysis of CCA-adding enzymes from human and E. coli: differences in CCA addition and tRNA 3'-end repair. Biochimie 2008; 90:762-72. [PMID: 18226598 DOI: 10.1016/j.biochi.2007.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 12/27/2007] [Indexed: 11/19/2022]
Abstract
Representing one of the most fascinating RNA polymerases, the CCA-adding enzyme (tRNA nucleotidyltransferase) is responsible for synthesis and repair of the 3'-terminal CCA sequence in tRNA transcripts. As a consequence of this important function, this enzyme is found in all organisms analyzed so far. Here, it is shown that the closely related enzymes of Homo sapiens and Escherichia coli differ substantially in their substrate preferences for the incorporation of CTP and ATP. While both enzymes require helical structures (mimicking the upper part of tRNAs) for C addition, the data indicate that the E. coli enzyme--in contrast to the human version--is quite promiscuous concerning the incorporation of ATP, where any RNA ending with two C residues is accepted. This feature is consistent with the primary function of the E. coli protein as a repair enzyme. Furthermore, even if the amino acid motif that interacts with the incoming nucleotides in the NTP binding pocket of these enzymes is destroyed and does no longer discriminate between individual bases, both nucleotidyltransferases have a back-up mechanism that ensures CCA addition with considerable accuracy and efficiency in order to guarantee functional protein synthesis and, consequently, the survival of the cell.
Collapse
Affiliation(s)
- Esther Lizano
- University of Leipzig, Institute for Biochemistry, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
37
|
Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G. Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:247-55. [PMID: 18177749 DOI: 10.1016/j.bbagrm.2007.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/29/2007] [Accepted: 12/06/2007] [Indexed: 02/02/2023]
Abstract
The addition of poly(A)-tails to RNA is a phenomenon common to almost all organisms. Not only homopolymeric poly(A)-tails, comprised exclusively of adenosines, but also heteropolymeric poly(A)-rich extensions, which include the other three nucleotides as well, have been observed in bacteria, archaea, chloroplasts, and human cells. Polynucleotide phosphorylase (PNPase) and the archaeal exosome, which bear strong similarities to one another, both functionally and structurally, were found to polymerize the heteropolymeric tails in bacteria, spinach chloroplasts, and archaea. As phosphorylases, these enzymes use diphosphate nucleotides as substrates and can reversibly polymerize or degrade RNA, depending on the relative concentrations of nucleotides and inorganic phosphate. A possible scenario, illustrating the evolution of RNA polyadenylation and its related functions, is presented, in which PNPase (or the archaeal exosome) was the first polyadenylating enzyme to evolve and the heteropolymeric tails that it produced, functioned in a polyadenylation-stimulated RNA degradation pathway. Only at a later stage in evolution, did the poly(A)-polymerases that use only ATP as a substrate, hence producing homopolymeric adenosine extensions, arise. Following the appearance of homopolymeric tails, a new role for polyadenylation evolved; RNA stability. This was accomplished by utilizing stable poly(A)-tails associated with the mature 3' ends of transcripts. Today, stable polyadenylation coexists with unstable heteropolymeric and homopolymeric tails. Therefore, the heteropolymeric poly(A)-rich tails, observed in bacteria, organelles, archaea, and human cells, represent an ancestral stage in the evolution of polyadenylation.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
38
|
Abstract
RNA-specific nucleotidyl transferases (rNTrs) are a diverse family of template-independent polymerases that add ribonucleotides to the 3'-ends of RNA molecules. All rNTrs share a related active-site architecture first described for DNA polymerase beta and a catalytic mechanism conserved among DNA and RNA polymerases. The best known examples are the nuclear poly(A) polymerases involved in the 3'-end processing of eukaryotic messenger RNA precursors and the ubiquitous CCA-adding enzymes that complete the 3'-ends of tRNA molecules. In recent years, a growing number of new enzymes have been added to the list that now includes the "noncanonical" poly(A) polymerases involved in RNA quality control or in the readenylation of dormant messenger RNAs in the cytoplasm. Other members of the group are terminal uridylyl transferases adding single or multiple UMP residues in RNA-editing reactions or upon the maturation of small RNAs and poly(U) polymerases, the substrates of which are still not known. 2'-5'Oligo(A) synthetases differ from the other rNTrs by synthesizing oligonucleotides with 2'-5'-phosphodiester bonds de novo.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
39
|
Scheibe M, Bonin S, Hajnsdorf E, Betat H, Mörl M. Hfq stimulates the activity of the CCA-adding enzyme. BMC Mol Biol 2007; 8:92. [PMID: 17949481 PMCID: PMC2175515 DOI: 10.1186/1471-2199-8-92] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 10/18/2007] [Indexed: 11/25/2022] Open
Abstract
Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A) polymerase I (PAP). As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme). Therefore, it was assumed that Hfq might not only influence the poly(A) polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq). So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.
Collapse
Affiliation(s)
- Marion Scheibe
- Institute for Biochemistry, University of Leipzig, Brüderstr, 34, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
40
|
Cho HD, Verlinde CLMJ, Weiner AM. Reengineering CCA-adding enzymes to function as (U,G)- or dCdCdA-adding enzymes or poly(C,A) and poly(U,G) polymerases. Proc Natl Acad Sci U S A 2006; 104:54-9. [PMID: 17179213 PMCID: PMC1765476 DOI: 10.1073/pnas.0606961104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CCA-adding enzymes build and repair the 3'-terminal CCA sequence of tRNA. These unusual RNA polymerases use either a ribonucleoprotein template (class I) or pure protein template (class II) to form mock base pairs with the Watson-Crick edges of incoming CTP and ATP. Guided by the class II Bacillus stearothermophilus CCA-adding enzyme structure, we introduced mutations designed to reverse the polarity of hydrogen bonds between the nucleobases and protein template. We were able to transform the CCA-adding enzyme into a (U,G)-adding enzyme that incorporates UTP and GTP instead of CTP and ATP; we transformed the related Aquifex aeolicus CC- and A-adding enzymes into UU- and G-adding enzymes and Escherichia coli poly(A) polymerase into a poly(G) polymerase; and we transformed the B. stearothermophilus CCA-adding enzyme into a poly(C,A) polymerase by mutations in helix J that appear, based on the apoenzyme structure, to sterically limit addition to CCA. We also transformed the B. stearothermophilus CCA-adding enzyme into a dCdCdA-adding enzyme by mutating an arginine that interacts with the incoming ribose 2' hydroxyl. Most importantly, we found that mutations in helix J can affect the specificity of the nucleotide binding site some 20 A away, suggesting that the specificity of both class I and II enzymes may be dictated by an intricate network of hydrogen bonds involving the protein, incoming nucleotide, and 3' end of the tRNA. Collaboration between RNA and protein in the form of a ribonucleoprotein template may help to explain the evolutionary diversity of the nucleotidyltransferase family.
Collapse
Affiliation(s)
- HyunDae D. Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350
| | | | - Alan M. Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350
- *To whom correspondence should be addressed at:
Department of Biochemistry, University of Washington, J417 Health Sciences Building, Box 357350, Seattle, WA 98195-7350. E-mail:
| |
Collapse
|
41
|
Lizano E, Schuster J, Müller M, Kelso J, Mörl M. A splice variant of the human CCA-adding enzyme with modified activity. J Mol Biol 2006; 366:1258-65. [PMID: 17204286 DOI: 10.1016/j.jmb.2006.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 11/28/2006] [Accepted: 12/07/2006] [Indexed: 11/21/2022]
Abstract
The human CCA-adding enzyme (tRNA nucleotidyltransferase) is an essential enzyme that catalyzes the addition of the CCA terminus to the 3' end of tRNA precursors, a reaction which is a fundamental prerequisite for mature tRNAs to become aminoacylated and to participate in protein biosynthesis. To date only one form of this enzyme has been identified in humans. Here, we describe the sequence and activity of a splice variant of the human CCA-adding enzyme identified in public cDNA databases. The in silico analyses performed on this splice variant indicate that there is conservation of the alternative splice donor site among species and indicate that it seems to be used in vivo. Moreover, the recombinantly expressed protein is active in vitro and accepts tRNA transcripts as substrates incorporating the dinucleotide sequence CC to their 3' end, in contrast to the activity of the full length enzyme. These findings strongly suggest that the splice variant of the human CCA-adding enzyme is expressed in the cell although the in vivo function remains unclear.
Collapse
Affiliation(s)
- Esther Lizano
- University of Leipzig, Institute for Biochemistry, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
42
|
Schuster J, Betat H, Mörl M. Is yeast on its way to evolving tRNA editing? EMBO Rep 2005; 6:367-72. [PMID: 15791267 PMCID: PMC1299291 DOI: 10.1038/sj.embor.7400381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/18/2005] [Accepted: 02/22/2005] [Indexed: 11/08/2022] Open
Abstract
In human mitochondria, genes for tRNA(Tyr) and tRNA(Cys) overlap by a single nucleotide. From polycistronic precursors, a 3'-truncated upstream tRNA(Tyr) is released, missing the overlapping position. A subsequent editing reaction restores this position. Similar mitochondrial tRNA gene overlaps exist in all metazoans, but not in organisms such as yeast or Escherichia coli. Therefore, we asked whether tRNA overlaps are processed in these organisms. Corresponding constructs were introduced and transcripts tested for processing and editing in E. coli and yeast. E. coli produces only one functional tRNA from these precursors, indicating that tRNA overlaps are incompatible with its processing pathway. In contrast, yeast processes overlapping tRNAs similar to human mitochondria, releasing a 3'-truncated upstream tRNA. This tRNA is restored in an editing-like event, although yeast does not carry a corresponding endogenous editing substrate. These findings support the hypothesis of the evolution of editing by recruitment of a pre-existing and promiscuous editing enzyme.
Collapse
Affiliation(s)
- Jens Schuster
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Heike Betat
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
- Tel: +49 341 3550 507; Fax: +49 341 3550 555; E-mail:
| |
Collapse
|
43
|
Levinger L, Mörl M, Florentz C. Mitochondrial tRNA 3' end metabolism and human disease. Nucleic Acids Res 2004; 32:5430-41. [PMID: 15477393 PMCID: PMC524294 DOI: 10.1093/nar/gkh884] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over 150 mutations in the mitochondrial genome have been shown to be associated with human disease. Remarkably, two-thirds of them are found in tRNA genes, which constitute only one-tenth of the mitochondrial genome. A total of 22 tRNAs punctuate the genome and are produced together with 11 mRNAs and 2 rRNAs from long polycistronic primary transcripts with almost no spacers. Pre-tRNAs thus require precise endonucleolytic excision. Furthermore, the CCA triplet which forms the 3' end of all tRNAs is not encoded, but must be synthesized by the CCA-adding enzyme after 3' end cleavage. Amino acid attachment to the CCA of mature tRNA is performed by aminoacyl-tRNA synthetases, which, like the preceding processing enzymes, are nuclear-encoded and imported into mitochondria. Here, we critically review the effectiveness and reliability of evidence obtained from reactions with in vitro transcripts that pathogenesis-associated mutant mitochondrial tRNAs can lead to deficiencies in tRNA 3' end metabolism (3' end cleavage, CCA addition and aminoacylation) toward an understanding of molecular mechanisms underlying human tRNA disorders. These defects probably contribute, individually and cumulatively, to the progression of human mitochondrial diseases.
Collapse
Affiliation(s)
- Louis Levinger
- York College/CUNY, 94-20 Guy R. Brewer Boulevard, Jamaica, NY 11451, USA.
| | | | | |
Collapse
|