1
|
Maclay T, Whalen J, Johnson M, Freudenreich CH. The DNA Replication Checkpoint Targets the Kinetochore for Relocation of Collapsed Forks to the Nuclear Periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599319. [PMID: 38948692 PMCID: PMC11212917 DOI: 10.1101/2024.06.17.599319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hairpin forming expanded CAG/CTG repeats pose significant challenges to DNA replication which can lead to replication fork collapse. Long CAG/CTG repeat tracts relocate to the nuclear pore complex to maintain their integrity. Forks impeded by DNA structures are known to activate the DNA damage checkpoint, thus we asked whether checkpoint proteins play a role in relocation of collapsed forks to the nuclear periphery in S. cerevisiae . We show that relocation of a (CAG/CTG) 130 tract is dependent on activation of the Mrc1/Rad53 replication checkpoint. Further, checkpoint-mediated phosphorylation of the kinetochore protein Cep3 is required for relocation, implicating detachment of the centromere from the spindle pole body. Activation of this pathway leads to DNA damage-induced microtubule recruitment to the repeat. These data suggest a role for the DNA replication checkpoint in facilitating movement of collapsed replication forks to the nuclear periphery by centromere release and microtubule-directed motion. Highlights The DNA replication checkpoint initiates relocation of a structure-forming CAG repeat tract to the nuclear pore complex (NPC)The importance of Mrc1 (hClaspin) implicates fork uncoupling as the initial checkpoint signalPhosphorylation of the Cep3 kinetochore protein by Dun1 kinase allows for centromere release, which is critical for collapsed fork repositioningDamage-inducible nuclear microtubules (DIMs) colocalize with the repeat locus and are required for relocation to the NPCEstablishes a new role for the DNA replication and DNA damage checkpoint response to trigger repositioning of collapsed forks within the nucleus.
Collapse
|
2
|
Gall-Duncan T, Luo J, Jurkovic CM, Fischer LA, Fujita K, Deshmukh AL, Harding RJ, Tran S, Mehkary M, Li V, Leib DE, Chen R, Tanaka H, Mason AG, Lévesque D, Khan M, Razzaghi M, Prasolava T, Lanni S, Sato N, Caron MC, Panigrahi GB, Wang P, Lau R, Castel AL, Masson JY, Tippett L, Turner C, Spies M, La Spada AR, Campos EI, Curtis MA, Boisvert FM, Faull RLM, Davidson BL, Nakamori M, Okazawa H, Wold MS, Pearson CE. Antagonistic roles of canonical and Alternative-RPA in disease-associated tandem CAG repeat instability. Cell 2023; 186:4898-4919.e25. [PMID: 37827155 PMCID: PMC11209935 DOI: 10.1016/j.cell.2023.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Luo
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Laura A Fischer
- Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyota Fujita
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amit L Deshmukh
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephanie Tran
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mustafa Mehkary
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa Li
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David E Leib
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Ran Chen
- Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hikari Tanaka
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amanda G Mason
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Lévesque
- Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mahreen Khan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mortezaali Razzaghi
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Tanya Prasolava
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stella Lanni
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nozomu Sato
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marie-Christine Caron
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Gagan B Panigrahi
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peixiang Wang
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rachel Lau
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand; University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maria Spies
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Albert R La Spada
- Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA, USA; Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Eric I Campos
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Richard L M Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand; Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Beverly L Davidson
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Masayuki Nakamori
- Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitoshi Okazawa
- Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marc S Wold
- Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
3
|
Polleys EJ, Del Priore I, Haber JE, Freudenreich CH. Structure-forming CAG/CTG repeats interfere with gap repair to cause repeat expansions and chromosome breaks. Nat Commun 2023; 14:2469. [PMID: 37120647 PMCID: PMC10148874 DOI: 10.1038/s41467-023-37901-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
Expanded CAG/CTG repeats are sites of DNA damage, leading to repeat length changes. Homologous recombination (HR) is one cause of repeat instability and we hypothesized that gap filling was a driver of repeat instability during HR. To test this, we developed an assay such that resection and ssDNA gap fill-in would occur across a (CAG)70 or (CTG)70 repeat tract. When the ssDNA template was a CTG sequence, there were increased repeat contractions and a fragile site was created leading to large-scale deletions. When the CTG sequence was on the resected strand, resection was inhibited, resulting in repeat expansions. Increased nucleolytic processing by deletion of Rad9, the ortholog of 53BP1, rescued repeat instability and chromosome breakage. Loss of Rad51 increased contractions implicating a protective role for Rad51 on ssDNA. Together, our work implicates structure-forming repeats as an impediment to resection and gap-filling which can lead to mutations and large-scale deletions.
Collapse
Affiliation(s)
- Erica J Polleys
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| | | | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA
| | | |
Collapse
|
4
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
5
|
Masnovo C, Lobo AF, Mirkin SM. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst) 2022; 118:103385. [PMID: 35952488 PMCID: PMC9675320 DOI: 10.1016/j.dnarep.2022.103385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA)n repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA)n repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA)n repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA)n repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA)n repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA)n repeat expansions.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ayesha F Lobo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
6
|
Peng S, Guo P, Lin X, An Y, Sze KH, Lau MHY, Chen ZS, Wang Q, Li W, Sun JKL, Ma SY, Chan TF, Lau KF, Ngo JCK, Kwan KM, Wong CH, Lam SL, Zimmerman SC, Tuccinardi T, Zuo Z, Au-Yeung HY, Chow HM, Chan HYE. CAG RNAs induce DNA damage and apoptosis by silencing NUDT16 expression in polyglutamine degeneration. Proc Natl Acad Sci U S A 2021; 118:e2022940118. [PMID: 33947817 PMCID: PMC8126783 DOI: 10.1073/pnas.2022940118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.
Collapse
Affiliation(s)
- Shaohong Peng
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Matthew Ho Yan Lau
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Sum Yi Ma
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China;
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Gellon L, Kaushal S, Cebrián J, Lahiri M, Mirkin SM, Freudenreich CH. Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function. Nucleic Acids Res 2019; 47:794-805. [PMID: 30476303 PMCID: PMC6344861 DOI: 10.1093/nar/gky1195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Fork stabilization at DNA impediments is key to maintaining replication fork integrity and preventing chromosome breaks. Mrc1 and Tof1 are two known stabilizers that travel with the replication fork. In addition to a structural role, Mrc1 has a DNA damage checkpoint function. Using a yeast model system, we analyzed the role of Mrc1 and Tof1 at expanded CAG repeats of medium and long lengths, which are known to stall replication forks and cause trinucleotide expansion diseases such as Huntington's disease and myotonic dystrophy. We demonstrate that the fork stabilizer but not the checkpoint activation function of Mrc1 is key for preventing DNA breakage and death of cells containing expanded CAG tracts. In contrast, both Mrc1 functions are important in preventing repeat length instability. Mrc1 has a general fork protector role that is evident at forks traversing both repetitive and non-repetitive DNA, though it becomes crucial at long CAG repeat lengths. In contrast, the role of Tof1 in preventing fork breakage is specific to long CAG tracts of 85 or more repeats. Our results indicate that long CAG repeats have a particular need for Tof1 and highlight the importance of fork stabilizers in maintaining fork integrity during replication of structure-forming repeats.
Collapse
Affiliation(s)
- Lionel Gellon
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Simran Kaushal
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Jorge Cebrián
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Mayurika Lahiri
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
8
|
Genome-wide Identification of Structure-Forming Repeats as Principal Sites of Fork Collapse upon ATR Inhibition. Mol Cell 2018; 72:222-238.e11. [PMID: 30293786 DOI: 10.1016/j.molcel.2018.08.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 07/11/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023]
Abstract
DNA polymerase stalling activates the ATR checkpoint kinase, which in turn suppresses fork collapse and breakage. Herein, we describe use of ATR inhibition (ATRi) as a means to identify genomic sites of problematic DNA replication in murine and human cells. Over 500 high-resolution ATR-dependent sites were ascertained using two distinct methods: replication protein A (RPA)-chromatin immunoprecipitation (ChIP) and breaks identified by TdT labeling (BrITL). The genomic feature most strongly associated with ATR dependence was repetitive DNA that exhibited high structure-forming potential. Repeats most reliant on ATR for stability included structure-forming microsatellites, inverted retroelement repeats, and quasi-palindromic AT-rich repeats. Notably, these distinct categories of repeats differed in the structures they formed and their ability to stimulate RPA accumulation and breakage, implying that the causes and character of replication fork collapse under ATR inhibition can vary in a DNA-structure-specific manner. Collectively, these studies identify key sources of endogenous replication stress that rely on ATR for stability.
Collapse
|
9
|
Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet 2018; 65:17-28. [DOI: 10.1007/s00294-018-0865-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
|
10
|
Abstract
The instability of microsatellite DNA repeats is responsible for at least 40 neurodegenerative diseases. Recently, Mirkin and co-workers presented a novel mechanism for microsatellite expansions based on break-induced replication (BIR) at sites of microsatellite-induced replication stalling and fork collapse. The BIR model aims to explain single-step, large expansions of CAG/CTG trinucleotide repeats in dividing cells. BIR has been characterized extensively in Saccharomyces cerevisiae as a mechanism to repair broken DNA replication forks (single-ended DSBs) and degraded telomeric DNA. However, the structural footprints of BIR-like DSB repair have been recognized in human genomic instability and tied to the etiology of diverse developmental diseases; thus, the implications of the paper by Kim et al. (Kim JC, Harris ST, Dinter T, Shah KA, et al., Nat Struct Mol Biol 24: 55-60) extend beyond trinucleotide repeat expansion in yeast and microsatellite instability in human neurological disorders. Significantly, insight into BIR-like repair can explain certain pathways of complex genome rearrangements (CGRs) initiated at non-B form microsatellite DNA in human cancers.
Collapse
Affiliation(s)
- Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
11
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
12
|
Cinesi C, Aeschbach L, Yang B, Dion V. Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase. Nat Commun 2016; 7:13272. [PMID: 27827362 PMCID: PMC5105158 DOI: 10.1038/ncomms13272] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
CAG/CTG repeat expansions cause over 13 neurological diseases that remain without a cure. Because longer tracts cause more severe phenotypes, contracting them may provide a therapeutic avenue. No currently known agent can specifically generate contractions. Using a GFP-based chromosomal reporter that monitors expansions and contractions in the same cell population, here we find that inducing double-strand breaks within the repeat tract causes instability in both directions. In contrast, the CRISPR-Cas9 D10A nickase induces mainly contractions independently of single-strand break repair. Nickase-induced contractions depend on the DNA damage response kinase ATM, whereas ATR inhibition increases both expansions and contractions in a MSH2- and XPA-dependent manner. We propose that DNA gaps lead to contractions and that the type of DNA damage present within the repeat tract dictates the levels and the direction of CAG repeat instability. Our study paves the way towards deliberate induction of CAG/CTG repeat contractions in vivo.
Collapse
Affiliation(s)
- Cinzia Cinesi
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Lorène Aeschbach
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bin Yang
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Dion
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Engineered Nucleases and Trinucleotide Repeat Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Su XA, Dion V, Gasser SM, Freudenreich CH. Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability. Genes Dev 2015; 29:1006-17. [PMID: 25940904 PMCID: PMC4441049 DOI: 10.1101/gad.256404.114] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, Su et al. find that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery and that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process. Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.
Collapse
Affiliation(s)
- Xiaofeng A Su
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA; Program in Genetics, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
15
|
Abstract
Genome instability is a hallmark of cancer, and DNA replication is the most vulnerable cellular process that can lead to it. Any condition leading to high levels of DNA damage will result in replication stress, which is a source of genome instability and a feature of pre-cancerous and cancerous cells. Therefore, understanding the molecular basis of replication stress is crucial to the understanding of tumorigenesis. Although a negative aspect of replication stress is its prominent role in tumorigenesis, a positive aspect is that it provides a potential target for cancer therapy. In this Review, we discuss the link between persistent replication stress and tumorigenesis, with the goal of shedding light on the mechanisms underlying the initiation of an oncogenic process, which should open up new possibilities for cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| | - Tatiana García-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| |
Collapse
|
16
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
17
|
House NCM, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 2014; 5:296. [PMID: 25250043 PMCID: PMC4155812 DOI: 10.3389/fgene.2014.00296] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions.
Collapse
Affiliation(s)
| | - Melissa R Koch
- Department of Biology, Tufts University Medford, MA, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University Medford, MA, USA ; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| |
Collapse
|
18
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
19
|
Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability. Mol Cell Biol 2012; 33:571-81. [PMID: 23166299 DOI: 10.1128/mcb.01265-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
(CTG)(n) · (CAG)(n) trinucleotide repeat (TNR) expansion in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene causes myotonic dystrophy type 1. However, a direct link between TNR instability, the formation of noncanonical (CTG)(n) · (CAG)(n) structures, and replication stress has not been demonstrated. In a human cell model, we found that (CTG)(45) · (CAG)(45) causes local replication fork stalling, DNA hairpin formation, and TNR instability. Oligodeoxynucleotides (ODNs) complementary to the (CTG)(45) · (CAG)(45) lagging-strand template eliminated DNA hairpin formation on leading- and lagging-strand templates and relieved fork stalling. Prolonged cell culture, emetine inhibition of lagging-strand synthesis, or slowing of DNA synthesis by low-dose aphidicolin induced (CTG)(45) · (CAG)(45) expansions and contractions. ODNs targeting the lagging-strand template blocked the time-dependent or emetine-induced instability but did not eliminate aphidicolin-induced instability. These results show directly that TNR replication stalling, replication stress, hairpin formation, and instability are mechanistically linked in vivo.
Collapse
|
20
|
Liu G, Myers S, Chen X, Bissler JJ, Sinden RR, Leffak M. Replication fork stalling and checkpoint activation by a PKD1 locus mirror repeat polypurine-polypyrimidine (Pu-Py) tract. J Biol Chem 2012; 287:33412-23. [PMID: 22872635 DOI: 10.1074/jbc.m112.402503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences prone to forming noncanonical structures (hairpins, triplexes, G-quadruplexes) cause DNA replication fork stalling, activate DNA damage responses, and represent hotspots of genomic instability associated with human disease. The 88-bp asymmetric polypurine-polypyrimidine (Pu-Py) mirror repeat tract from the human polycystic kidney disease (PKD1) intron 21 forms non-B DNA secondary structures in vitro. We show that the PKD1 mirror repeat also causes orientation-dependent fork stalling during replication in vitro and in vivo. When integrated alongside the c-myc replicator at an ectopic chromosomal site in the HeLa genome, the Pu-Py mirror repeat tract elicits a polar replication fork barrier. Increased replication protein A (RPA), Rad9, and ataxia telangiectasia- and Rad3-related (ATR) checkpoint protein binding near the mirror repeat sequence suggests that the DNA damage response is activated upon replication fork stalling. Moreover, the proximal c-myc origin of replication was not required to cause orientation-dependent checkpoint activation. Cells expressing the replication fork barrier display constitutive Chk1 phosphorylation and continued growth, i.e. checkpoint adaptation. Excision of the Pu-Py mirror repeat tract abrogates the DNA damage response. Adaptation to Chk1 phosphorylation in cells expressing the replication fork barrier may allow the accumulation of mutations that would otherwise be remediated by the DNA damage response.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Liu G, Leffak M. Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci 2012; 2:7. [PMID: 22369689 PMCID: PMC3310812 DOI: 10.1186/2045-3701-2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
22
|
Altered replication in human cells promotes DMPK (CTG)(n) · (CAG)(n) repeat instability. Mol Cell Biol 2012; 32:1618-32. [PMID: 22354993 DOI: 10.1128/mcb.06727-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is associated with expansion of (CTG)(n) · (CAG)(n) trinucleotide repeats (TNRs) in the 3' untranslated region (UTR) of the DMPK gene. Replication origins are cis-acting elements that potentiate TNR instability; therefore, we mapped replication initiation sites and prereplication complex protein binding within the ~10-kb DMPK/SIX5 locus in non-DM1 and DM1 cells. Two origins, IS(DMPK) and IS(SIX5), flanked the (CTG)(n) · (CAG)(n) TNRs in control cells and in DM1 cells. Orc2 and Mcm4 bound near each of the replication initiation sites, but a dramatic change in (CTG)(n) · (CAG)(n) replication polarity was not correlated with TNR expansion. To test whether (CTG)(n) · (CAG)(n) TNRs are cis-acting elements of instability in human cells, model cell lines were created by integration of cassettes containing the c-myc replication origin and (CTG)(n) · (CAG)(n) TNRs in HeLa cells. Replication forks were slowed by (CTG)(n) · (CAG)(n) TNRs in a length-dependent manner independent of replication polarity, implying that expanded (CTG)(n) · (CAG)(n) TNRs lead to replication stress. Consistent with this prediction, TNR instability increased in the HeLa model cells and DM1 cells upon small interfering RNA (siRNA) knockdown of the fork stabilization protein Claspin, Timeless, or Tipin. These results suggest that aberrant DNA replication and TNR instability are linked in DM1 cells.
Collapse
|
23
|
|
24
|
Sundararajan R, Freudenreich CH. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1001339. [PMID: 21437275 PMCID: PMC3060079 DOI: 10.1371/journal.pgen.1001339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/15/2011] [Indexed: 11/18/2022] Open
Abstract
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. Expansion of a CAG/CTG trinucleotide repeat is the causative mutation for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and multiple types of spinocerebellar ataxias. Two reasons for the cell death that occurs in these diseases are toxicity of the repeat-containing RNA and of the polyglutamine-containing protein product. Although the expanded repeat can interfere with DNA replication and repair, it was not known whether the presence of the repeat within the DNA causes any additional cellular toxicity. In this study, we show that an expanded CAG/CTG tract placed within the chromosome of the model eukaryote, budding yeast, elicits a cellular response that interferes with cell growth and division. The effect is enhanced when DNA repair pathways, particularly double-strand break repair, are compromised. Moreover, cells experiencing an arrest were more likely to have undergone further repeat expansions. We show that the conserved MRX protein complex locates to the expanded repeat and is required to sense the damage and activate the DNA damage response. Our results suggest that DNA damage at expanded CAG/CTG repeats could contribute to both tissue degeneration and further repeat instability in affected individuals.
Collapse
|
25
|
Gellon L, Razidlo DF, Gleeson O, Verra L, Schulz D, Lahue RS, Freudenreich CH. New functions of Ctf18-RFC in preserving genome stability outside its role in sister chromatid cohesion. PLoS Genet 2011; 7:e1001298. [PMID: 21347277 PMCID: PMC3037408 DOI: 10.1371/journal.pgen.1001298] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/07/2011] [Indexed: 12/30/2022] Open
Abstract
Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.
Collapse
Affiliation(s)
- Lionel Gellon
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - David F. Razidlo
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Olive Gleeson
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Danae Schulz
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Robert S. Lahue
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail: (CHF); (RSL)
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail: (CHF); (RSL)
| |
Collapse
|
26
|
Kleiman RJ, Kimmel LH, Bove SE, Lanz TA, Harms JF, Romegialli A, Miller KS, Willis A, des Etages S, Kuhn M, Schmidt CJ. Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington's disease. J Pharmacol Exp Ther 2011; 336:64-76. [PMID: 20923867 DOI: 10.1124/jpet.110.173294] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhibition of phosphodiesterase 10A (PDE10A) promotes cyclic nucleotide signaling, increases striatal activation, and decreases behavioral activity. Enhanced cyclic nucleotide signaling is a well established route to producing changes in gene expression. We hypothesized that chronic suppression of PDE10A activity would have significant effects on gene expression in the striatum. A comparison of the expression profile of PDE10A knockout (KO) mice and wild-type mice after chronic PDE10A inhibition revealed altered expression of 19 overlapping genes with few significant changes outside the striatum or after administration of a PDE10A inhibitor to KO animals. Chronic inhibition of PDE10A produced up-regulation of mRNAs encoding genes that included prodynorphin, synaptotagmin10, phosphodiesterase 1C, glutamate decarboxylase 1, and diacylglycerol O-acyltransferase and a down-regulation of mRNAs encoding choline acetyltransferase and Kv1.6, suggesting long-term suppression of the PDE10A enzyme is consistent with altered striatal excitability and potential utility as a antipsychotic therapy. In addition, up-regulation of mRNAs encoding histone 3 (H3) and down-regulation of histone deacetylase 4, follistatin, and claspin mRNAs suggests activation of molecular cascades capable of neuroprotection. We used lentiviral delivery of cAMP response element (CRE)-luciferase reporter constructs into the striatum and live animal imaging of 2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid (TP-10)-induced luciferase activity to further demonstrate PDE10 inhibition results in CRE-mediated transcription. Consistent with potential neuroprotective cascades, we also demonstrate phosphorylation of mitogen- and stress-activated kinase 1 and H3 in vivo after TP-10 treatment. The observed changes in signaling and gene expression are predicted to provide neuroprotective effects in models of Huntington's disease.
Collapse
Affiliation(s)
- Robin J Kleiman
- Neuroscience Research Unit, Eastern Point Road, Pfizer Global Research and Development, Groton, CT 06379, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wagner JM, Kaufmann SH. Prospects for the Use of ATR Inhibitors to Treat Cancer. Pharmaceuticals (Basel) 2010; 3:1311-1334. [PMID: 27713304 PMCID: PMC4033983 DOI: 10.3390/ph3051311] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 01/08/2023] Open
Abstract
ATR is an apical kinase in one of the DNA-damage induced checkpoint pathways. Despite the development of inhibitors of kinases structurally related to ATR, as well as inhibitors of the ATR substrate Chk1, no ATR inhibitors have yet been developed. Here we review the effects of ATR downregulation in cancer cells and discuss the potential for development of ATR inhibitors for clinical use.
Collapse
Affiliation(s)
- Jill M Wagner
- Division of Oncology Research, College of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, College of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Abstract
Aberrant DNA replication is a major source of the mutations and chromosome rearrangements that are associated with pathological disorders. When replication is compromised, DNA becomes more prone to breakage. Secondary structures, highly transcribed DNA sequences and damaged DNA stall replication forks, which then require checkpoint factors and specialized enzymatic activities for their stabilization and subsequent advance. These mechanisms ensure that the local DNA damage response, which enables replication fork progression and DNA repair in S phase, is coupled with cell cycle transitions. The mechanisms that operate in eukaryotic cells to promote replication fork integrity and coordinate replication with other aspects of chromosome maintenance are becoming clear.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
29
|
Yang JH, Freudenreich CH. The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions. DNA Repair (Amst) 2010; 9:414-20. [PMID: 20083442 DOI: 10.1016/j.dnarep.2009.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
Abstract
Lysine 56 is acetylated on newly synthesized histone H3 in yeast, Drosophila and mammalian cells. All of the proteins involved in histone H3 lysine 56 (H3K56) acetylation are important for maintaining genome integrity. These include Rtt109, a histone acetyltransferase, responsible for acetylating H3K56, Asf1, a histone H3/H4 chaperone, and Hst3 and Hst4, histone deacetylases which remove the acetyl group from H3K56. Here we demonstrate a new role for Rtt109 and H3K56 acetylation in maintaining repetitive DNA sequences in Saccharomyces cerevisiae. We found that cells lacking RTT109 had a high level of CAG/CTG repeat contractions and a twofold increase in breakage at CAG/CTG repeats. In addition, repeat contractions were significantly increased in cells lacking ASF1 and in an hst3Deltahst4Delta double mutant. Because the Rtt107/Rtt101 complex was previously shown to be recruited to stalled replication forks in an Rtt109-dependent manner, we tested whether this complex was involved. However, contractions in rtt109Delta cells were not due to an inability to recruit the Rtt107/Rtt101 complex to repeats, as absence of these proteins had no effect on repeat stability. On the other hand, Dnl4 and Rad51-dependent pathways did play a role in creating some of the repeat contractions in rtt109Delta cells. Our results show that H3K56 acetylation by Rtt109 is important for stabilizing DNA repeats, likely by facilitating proper nucleosome assembly at the replication fork to prevent DNA structure formation and subsequent slippage events or fork breakage.
Collapse
Affiliation(s)
- Jiahui H Yang
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
30
|
Focarelli ML, Soza S, Mannini L, Paulis M, Montecucco A, Musio A. Claspin inhibition leads to fragile site expression. Genes Chromosomes Cancer 2009; 48:1083-90. [PMID: 19760606 DOI: 10.1002/gcc.20710] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fragile sites are hot spots for sister chromatid exchanges, translocations, deletions, complex rearrangements, and gene amplification. It has been hypothesized that rearrangements at fragile sites derive from unreplicated regions resulting from stalled forks that escape the ATR replication checkpoint. In the present study, we investigated the role of the Claspin (CLSPN) gene, which codes for an adaptor protein in the ATR pathway, during DNA replication stress in human cells. We show that the inhibition of the CLSPN gene leads to both genome instability and fragile site expression. Following aphidicolin treatment, we found a transient increase of Claspin synthesis due to its requirement to checkpoint activation. However, Claspin synthesis decreased after a prolonged aphidicolin treatment. We propose that CLSPN modulation, following an extreme replication block, allows rare cells to escape checkpoint mechanisms and enter mitosis with a defect in genome assembly. Our observations provide the basis for a better understanding of cell cycle checkpoints deregulation in cancer.
Collapse
Affiliation(s)
- Maria Luisa Focarelli
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (Mi), Italy
| | | | | | | | | | | |
Collapse
|
31
|
Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae. Genetics 2009; 184:65-77. [PMID: 19901069 DOI: 10.1534/genetics.109.111039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trinucleotide repeats can form secondary structures, whose inappropriate repair or replication can lead to repeat expansions. There are multiple loci within the human genome where expansion of trinucleotide repeats leads to disease. Although it is known that expanded repeats accumulate double-strand breaks (DSBs), it is not known which DSB repair pathways act on such lesions and whether inaccurate DSB repair pathways contribute to repeat expansions. Using Saccharomyces cerevisiae, we found that CAG/CTG tracts of 70 or 155 repeats exhibited significantly elevated levels of breakage and expansions in strains lacking MRE11, implicating the Mre11/Rad50/Xrs2 complex in repairing lesions at structure-forming repeats. About two-thirds of the expansions that occurred in the absence of MRE11 were dependent on RAD52, implicating aberrant homologous recombination as a mechanism for generating expansions. Expansions were also elevated in a sae2 deletion background and these were not dependent on RAD52, supporting an additional role for Mre11 in facilitating Sae2-dependent hairpin processing at the repeat. Mre11 nuclease activity and Tel1-dependent checkpoint functions were largely dispensable for repeat maintenance. In addition, we found that intact homologous recombination and nonhomologous end-joining pathways of DSB repair are needed to prevent repeat fragility and that both pathways also protect against repeat instability. We conclude that failure of principal DSB repair pathways to repair breaks that occur within the repeats can result in the accumulation of atypical intermediates, whose aberrant resolution will then lead to CAG expansions, contractions, and repeat-mediated chromosomal fragility.
Collapse
|
32
|
Voineagu I, Freudenreich CH, Mirkin SM. Checkpoint responses to unusual structures formed by DNA repeats. Mol Carcinog 2009; 48:309-18. [PMID: 19306277 PMCID: PMC2705927 DOI: 10.1002/mc.20512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA sequences that are prone to adopting non-B DNA secondary structures are associated with hotspots of genomic instability. The fine mechanisms by which alternative DNA structures induce phenomena such as repeat expansions, chromosomal fragility, or gross chromosomal rearrangements are under intensive studies. It is well established that DNA damage checkpoint responses play a crucial role in maintaining a stable genome. It is far less clear, however, whether and how the checkpoint machinery responds to alternative DNA structures. This review discusses the role of the interplay between DNA damage checkpoints and alternative DNA structures in genome maintenance.
Collapse
Affiliation(s)
- Irina Voineagu
- Department of Biology, Tufts University, Medford, MA 02155
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | | | | |
Collapse
|
33
|
Wang G, Vasquez KM. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog 2009; 48:286-98. [PMID: 19123200 PMCID: PMC2766916 DOI: 10.1002/mc.20508] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
34
|
Suppression of a DNA polymerase delta mutation by the absence of the high mobility group protein Hmo1 in Saccharomyces cerevisiae. Curr Genet 2009; 55:127-38. [PMID: 19184026 DOI: 10.1007/s00294-009-0229-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/13/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
The deletion of the gene encoding the high mobility group protein Hmo1 suppresses the growth retardation of the DNA pol delta mutation, pol3-14, at the restrictive temperature. pol3-14 mutant cells undergo cell cycle arrest, and hmo1Delta alleviates the arrest permitting continual division of the double mutant. Bypass of cell cycle control occurs with an increased rate of mutation. Both pol3-14 and hmo1Delta are mutators and their combination provokes a synergistic rate of CAN1 mutations. RAD18 controls branches of DNA repair pathways and its deletion also suppresses pol3 mutations. Comparing hmo1Delta and rad18Delta suppression of pol3-14 shows that while both require the presence of RAD52-mediated repair, their suppression is independent in that both can suppress in the presence of the other. We conclude that hmo1Delta suppression of pol3-14 occurs by a mechanism whereby normal controls on DNA integrity are breached and lesions flow into RAD52-mediated repair and error-prone pathways.
Collapse
|
35
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
36
|
Razidlo DF, Lahue RS. Mrc1, Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms. DNA Repair (Amst) 2008; 7:633-40. [PMID: 18321795 PMCID: PMC2396238 DOI: 10.1016/j.dnarep.2008.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/07/2008] [Indexed: 01/22/2023]
Abstract
Trinucleotide repeats frequently expand and contract in humans and model organisms. Protein factors that modulate this process have been found by candidate gene approaches or mutant screens for increased expansion rates. To extend this effort, Saccharomyces cerevisiae mutants with higher CAG.CTG repeat contraction rates were sought using a disruption library. This screen identified Mrc1, the homolog of human Claspin, which mediates the replication and DNA damage checkpoints, and also couples the replicative helicase and polymerase. Genetic analysis showed that Mrc1, along with Tof1 and Csm3, inhibits instability in two distinct ways. Contraction rates of (CAG)(20) tracts are elevated by loss of Mrc1, Tof1 or Csm3, but not by defects in most replication checkpoint or DNA damage checkpoint proteins. The three proteins likely inhibit contractions primarily through their coupling activity, which would prevent accumulation of single-strand template DNA prior to the formation of aberrant secondary structure. In contrast, expansion rates of (CTG)(13) are elevated in strains defective for Mrc1, Tof1, Csm3, Mec1, Ddc2, Rad24, Ddc1, Mec3, Rad17, Rad9, Rad53 or Chk1, suggesting that the DNA damage checkpoint inhibits expansions after formation of repeat-dependent structures. Together, these results indicate that at least two Mrc1-dependent mechanisms function to reduce CAG.CTG repeat instability.
Collapse
Affiliation(s)
- David F. Razidlo
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805 USA
| | - Robert S. Lahue
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805 USA
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
37
|
Aguilera A, Gómez-González B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 2008; 9:204-17. [PMID: 18227811 DOI: 10.1038/nrg2268] [Citation(s) in RCA: 571] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic instability in the form of mutations and chromosome rearrangements is usually associated with pathological disorders, and yet it is also crucial for evolution. Two types of elements have a key role in instability leading to rearrangements: those that act in trans to prevent instability--among them are replication, repair and S-phase checkpoint factors--and those that act in cis--chromosomal hotspots of instability such as fragile sites and highly transcribed DNA sequences. Taking these elements as a guide, we review the causes and consequences of instability with the aim of providing a mechanistic perspective on the origin of genomic instability.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biologia Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Avd. Américo Vespucio s/n, 41092 Sevilla, Spain.
| | | |
Collapse
|
38
|
Marek LR, Kottemann MC, Glazer PM, Bale AE. MEN1 and FANCD2 mediate distinct mechanisms of DNA crosslink repair. DNA Repair (Amst) 2008; 7:476-86. [PMID: 18258493 PMCID: PMC2277339 DOI: 10.1016/j.dnarep.2007.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/06/2007] [Accepted: 12/09/2007] [Indexed: 11/22/2022]
Abstract
Cells mutant for multiple endocrine neoplasia type I (MEN1) or any of the Fanconi anemia (FA) genes are hypersensitive to the killing effects of crosslinking agents, but the precise roles of these genes in the response to interstrand crosslinks (ICLs) are unknown. To determine if MEN1 and the FA genes function cooperatively in the same repair process or in distinct repair processes, we exploited Drosophila genetics to compare the mutation frequency and spectra of MEN1 and FANCD2 mutants and to perform genetic interaction studies. We created a novel in vivo reporter system in Drosophila based on the supF gene and showed that MEN1 mutant flies were extremely prone to single base deletions within a homopolymeric tract. FANCD2 mutants, on the other hand, had a mutation frequency and spectrum similar to wild type using this assay. In contrast to the supF results, both MEN1 and FANCD2 mutants were hypermutable using a different assay based on the lats tumor suppressor gene. The lats assay showed that FANCD2 mutants had a high frequency of large deletions, which the supF assay was not able to detect, while large deletions were rare in MEN1 mutants. Genetic interaction studies showed that neither overexpression nor loss of MEN1 modified the ICL sensitivity of FANCD2 mutants. The strikingly different mutation spectra of MEN1 and FANCD2 mutants together with lack of evidence for genetic interaction between these genes indicate MEN1 plays an essential role in ICL repair distinct from the Fanconi anemia genes.
Collapse
Affiliation(s)
- Lorri R Marek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurodegenerative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by different mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic and developmental factors.
Collapse
|
40
|
Entezam A, Usdin K. ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice. Nucleic Acids Res 2007; 36:1050-6. [PMID: 18160412 PMCID: PMC2241920 DOI: 10.1093/nar/gkm1136] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X mental retardation syndrome is a repeat expansion disease caused by expansion of a CGG.CCG-repeat tract in the 5' UTR of the FMR1 gene. In humans, small expansions occur more frequently on paternal transmission while large expansions are exclusively maternal in origin. It has been suggested that expansion is the result of aberrant DNA replication, repair or recombination. To distinguish amongst these possibilities we crossed mice containing 120 CGG.CCG-repeats in the 5' UTR of the mouse Fmr1 gene to mice with mutations in ATR, a protein important in the cellular response to stalled replication forks and bulky DNA lesions. We show here that ATR heterozygosity results in increased expansion rates of maternally, but not paternally, transmitted alleles. In addition, age-related somatic expansions occurred in mice of both genders that were not seen in ATR wild-type animals. Some ATR-sensitive expansion occurs in postmitotic cells including haploid gametes suggesting that aberrant DNA repair is responsible. Our data suggest that two mechanisms of repeat expansion exist that may explain the small and large expansions seen in humans. In addition, our data provide an explanation for the maternal bias of large expansions in humans and the lower incidence of these expansions in mice.
Collapse
Affiliation(s)
- Ali Entezam
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
41
|
Zhang H, Freudenreich CH. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 2007; 27:367-79. [PMID: 17679088 PMCID: PMC2144737 DOI: 10.1016/j.molcel.2007.06.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/11/2007] [Accepted: 06/12/2007] [Indexed: 11/21/2022]
Abstract
Common fragile sites are regions of human chromosomes prone to breakage. Fragile site FRA16D spans the WWOX/FOR tumor suppressor gene and has been linked to cancer-causing deletions and translocations. Using a genetic assay in yeast, we found that a short AT-rich region (Flex1) within FRA16D increases chromosome fragility, whereas three other sequences within FRA16D do not. To our knowledge, this is the first identification of a sequence element within a common fragile site that increases chromosome fragility. The fragility of Flex1 was exacerbated by the absence of Rad52 or the presence of hydroxyurea. Flex1 contains a polymorphic AT repeat predicted to form a DNA structure, and two-dimensional gel analysis showed accumulation of stalled replication forks at the Flex1 sequence that was dependent on AT length. Our data suggest that the FRA16D Flex1 sequence causes increased chromosome breakage by forming secondary structures that stall replication fork progression.
Collapse
Affiliation(s)
- Haihua Zhang
- Department of Biology, Tufts University, Medford MA 02155
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford MA 02155
- Program in Genetics, Sackler School of Biomedical Sciences, Tufts University, Boston MA, 02111
| |
Collapse
|
42
|
Niwa O. Indirect mechanisms of genomic instability and the biological significance of mutations at tandem repeat loci. Mutat Res 2006; 598:61-72. [PMID: 16504216 DOI: 10.1016/j.mrfmmm.2006.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Radiation induction of genomic instability has two features: induction of untargeted mutation and delayed mutation. These phenomena have been studied mostly in tissue culture cells, but analyses have also been conducted in whole body systems. The study of response in whole body systems frequently applies repeat sequences as markers to detect mutations. These studies have generated conflicting findings. In addition, lack of knowledge of the mechanisms involved in repeat mutation confounds the interpretation of the biological significance of increased rates of repeat mutation. In this review, some of the existing controversies of genomic instability are discussed in relation to the mechanism of repeat mutation. Analyses of published and unpublished studies indicate a mechanistic similarity between radiation-induced genomic instability at repeat loci and dynamic mutations of triplet repeats. Because of their repetitive nature, repeat sequences frequently block progression of replication forks and are consequently resolved by slippage and/or recombination. Irradiation of cells induces S checkpoints and promotes slippage/recombination mediated repeat mutations. Thus, genomic instability at repeat loci might be viewed as a consequence of cellular attempts to restore the stability of replication in the face of the stalled replication fork; this process can occur both spontaneously as well as after exposure to radiation.
Collapse
Affiliation(s)
- Ohtsura Niwa
- Kyoto University Radiation Biology Center, Yoshida-Konoe, Kyoto 606-8501, Japan.
| |
Collapse
|
43
|
Mirkin EV, Castro Roa D, Nudler E, Mirkin SM. Transcription regulatory elements are punctuation marks for DNA replication. Proc Natl Acad Sci U S A 2006; 103:7276-81. [PMID: 16670199 PMCID: PMC1464333 DOI: 10.1073/pnas.0601127103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collisions between DNA replication and transcription significantly affect genome organization, regulation, and stability. Previous studies have described collisions between replication forks and elongating RNA polymerases. Although replication collisions with the transcription-initiation or -termination complexes are potentially even more important because most genes are not actively transcribed during DNA replication, their existence and mechanisms remained unproven. To address this matter, we have designed a bacterial promoter that binds RNA polymerase and maintains it in the initiating mode by precluding the transition into the elongation mode. By using electrophoretic analysis of replication intermediates, we have found that this steadfast transcription-initiation complex inhibits replication fork progression in an orientation-dependent manner during head-on collisions. Transcription terminators also appeared to attenuate DNA replication, but in the opposite, codirectional orientation. Thus, transcription regulatory signals may serve as "punctuation marks" for DNA replication in vivo.
Collapse
Affiliation(s)
- Ekaterina V Mirkin
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
44
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
45
|
Walter K, Warnecke G, Bowater R, Deppert W, Kim E. tumor suppressor p53 binds with high affinity to CTG.CAG trinucleotide repeats and induces topological alterations in mismatched duplexes. J Biol Chem 2005; 280:42497-507. [PMID: 16230356 DOI: 10.1074/jbc.m507038200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA binding is central to the ability of p53 to function as a tumor suppressor. In line with the remarkable functional versatility of p53, which can act on DNA as a transcription, repair, recombination, replication, and chromatin accessibility factor, the modes of p53 interaction with DNA are also versatile. One feature common to all modes of p53-DNA interaction is the extraordinary sensitivity of p53 to the topology of its target DNA. Whereas the strong impact of DNA topology has been demonstrated for p53 binding to sequence-specific sites or to DNA lesions, the possibility that DNA structure-dependent recognition may underlie p53 interaction with other types of DNA has not been addressed until now. We demonstrate for the first time that conformationally flexible CTG.CAG trinucleotide repeats comprise a novel class of p53-binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in vivo. Our major finding is that p53 binds to CTG.CAG tracts by different modes depending on the conformation of DNA. Although p53 binds preferentially to hairpins formed by either CTG or CAG strands, it can also bind to linear forms of CTG.CAG tracts such as canonic B DNA or mismatched duplex. Intriguingly, by binding to a mismatched duplex p53 can induce further topological alterations in DNA, indicating that p53 may act as a DNA topology-modulating factor.
Collapse
Affiliation(s)
- Korden Walter
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Martinistrasse 52, D-20251, Hamburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Cleary JD, Pearson CE. Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet 2005; 21:272-80. [PMID: 15851063 DOI: 10.1016/j.tig.2005.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gene-specific repeat instability is responsible for >36 human diseases. Active instability varies in a tissue-, developmental stage- and locus-specific manner and occurs in both proliferative and non-proliferative cells. In proliferative cells, DNA replication can contribute to repeat instability either by switching the direction of replication, which changes the repeat sequence that serves as the lagging-strand template (origin switching), or by shifting the location of the origin of replication without altering the replication direction (origin shifting). We propose that changes in the dynamics of replication-fork progression, or architecture, will alter the location of the repeat within the single-stranded lagging-strand template, thereby influencing instability (fork shifting). The fork-shift model, which does not require origin relocation, is influenced by cis-elements and trans-factors associated with driving and maintaining replication forks. The fork-shift model can explain some of the complex behaviours of repeat instability because it is dynamic and responsive to variations in epigenomic and locus activity.
Collapse
Affiliation(s)
- John D Cleary
- Department of Molecular and Medical Genetics, University of Toronto, The Hospital for Sick Children, Ontario, Canada M5G 1X8
| | | |
Collapse
|
47
|
Abstract
The group of spinocerebellar ataxias (SCAs) includes more than 20 subgroups based only on genetic research. The "ataxia genes" are autosomal; the "disease-alleles" are dominant, and many of them, but not all, encode a protein with an abnormally long polyglutamine domain. In DNA, this domain can be detected as an elongated CAG repeat region, which is the basis of genetic diagnostics. The polyglutamine tails often tend to aggregate and form inclusions. In some cases, protein-protein interactions are the key to understanding the disease. Protein partners of ataxia proteins include phosphatases and components of chromatin and the transcriptional machinery. To date, investigation of spinocerebellar ataxias involves population genetics, molecular methods, and studying model organisms. However, there is still no efficient therapy for patients. Here, we review the genetic and molecular data gained on spinocerebellar ataxias.
Collapse
Affiliation(s)
- Viktor Honti
- Department of Neurology, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
48
|
Wojciechowska M, Bacolla A, Larson JE, Wells RD. The Myotonic Dystrophy Type 1 Triplet Repeat Sequence Induces Gross Deletions and Inversions. J Biol Chem 2005; 280:941-52. [PMID: 15489504 DOI: 10.1074/jbc.m410427200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The capacity of (CTG.CAG)n and (GAA.TTC)n repeat tracts in plasmids to induce mutations in DNA flanking regions was evaluated in Escherichia coli. Long repeats of these sequences are involved in the etiology of myotonic dystrophy type 1 and Friedreich's ataxia, respectively. Long (CTG.CAG)n (where n = 98 and 175) caused the deletion of most, or all, of the repeats and the flanking GFP gene. Deletions of 0.6-1.8 kbp were found as well as inversions. Shorter repeat tracts (where n = 0 or 17) were essentially inert, as observed for the (GAA.TTC)176-containing plasmid. The orientation of the triplet repeat sequence (TRS) relative to the unidirectional origin of replication had a pronounced effect, signaling the participation of replication and/or repair systems. Also, when the TRS was transcribed, the level of deletions was greatly elevated. Under certain conditions, 30-50% of the products contained gross deletions. DNA sequence analyses of the breakpoint junctions in 47 deletions revealed the presence of 1-8-bp direct or inverted homologies in all cases. Also, the presence of non-B folded conformations (i.e. slipped structures, cruciforms, or triplexes) at or near the breakpoints was predicted in all cases. This genetic behavior, which was previously unrecognized for a TRS, may provide the basis for a new type of instability of the myotonic dystrophy protein kinase (DMPK) gene in patients with a full mutation.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Center for Genome Research Institute of Biosciences and Technology, Texas A & M University System Health Science Center, Texas Medical Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
49
|
Hashem VI, Pytlos MJ, Klysik EA, Tsuji K, Khajavi M, Khajav M, Ashizawa T, Sinden RR. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res 2004; 32:6334-46. [PMID: 15576360 PMCID: PMC535684 DOI: 10.1093/nar/gkh976] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a (CTG).(CAG) repeat in the DMPK gene on chromosome 19q13.3. At least 17 neurological diseases have similar genetic mutations, the expansion of DNA repeats. In most of these disorders, the disease severity is related to the length of the repeat expansion, and in DM1 the expanded repeat undergoes further elongation in somatic and germline tissues. At present, in this class of diseases, no therapeutic approach exists to prevent or slow the repeat expansion and thereby reduce disease severity or delay disease onset. We present initial results testing the hypothesis that repeat deletion may be mediated by various chemotherapeutic agents. Three lymphoblast cell lines derived from two DM1 patients treated with either ethylmethanesulfonate (EMS), mitomycin C, mitoxantrone or doxorubicin, at therapeutic concentrations, accumulated deletions following treatment. Treatment with EMS frequently prevented the repeat expansion observed during growth in culture. A significant reduction of CTG repeat length by 100-350 (CTG).(CAG) repeats often occurred in the cell population following treatment with these drugs. Potential mechanisms of drug-induced deletion are presented.
Collapse
Affiliation(s)
- Vera I Hashem
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kovtun IV, Thornhill AR, McMurray CT. Somatic deletion events occur during early embryonic development and modify the extent of CAG expansion in subsequent generations. Hum Mol Genet 2004; 13:3057-68. [PMID: 15496421 DOI: 10.1093/hmg/ddh325] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alterations in trinucleotide repeat length during transmission are important in the pathophysiology of Huntington's disease (HD). However, it is not well understood where, when and by what mechanism expansion occurs. We have followed the fate of CAG repeats during development in mice that can [hHD(-/+)/Msh2(+/+)] or cannot [hHD(-/+)/Msh2(-/-)] expand their repeats. Here we show that long repeats are shortened during somatic replication early in the embryo of the progeny. Our data point to different mechanisms for expansion and deletion. Deletions arise during replication, do not depend on the presence of Msh2 and are largely restricted to early development. In contrast, expansions depend on strand break repair, require the presence of Msh2 and occur later in development. Overall, these results suggest that deletions in early development serve as a safeguard of the genome and protect against expansion of the disease-range repeats during transmission.
Collapse
Affiliation(s)
- I V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|