1
|
Goonetilleke EC, Huang X. Targeting Bacterial RNA Polymerase: Harnessing Simulations and Machine Learning to Design Inhibitors for Drug-Resistant Pathogens. Biochemistry 2025; 64:1169-1179. [PMID: 40014017 PMCID: PMC12016775 DOI: 10.1021/acs.biochem.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The increase in antimicrobial resistance presents a major challenge in treating bacterial infections, underscoring the need for innovative drug discovery approaches and novel inhibitors. Bacterial RNA polymerase (RNAP) has emerged as a crucial target for antibiotic development due to its essential role in transcription. RNAP is a molecular motor, and its function relies heavily on the dynamic shifts between multiple conformational states. While biochemical and structural experimental methods offer crucial insights into static RNAP-drug interactions, they fall short in capturing the dynamics at a molecular level. By integrating experimental data with advanced computational techniques like Markov State Models (MSMs), Generalized Master Equation (GME) Models and other machine-learning models constructed from molecular dynamics (MD) simulations, researchers can elucidate novel cryptic pockets that open transiently for antibiotic compounds and gain a more nuanced and comprehensive understanding of RNAP-drug interactions. This integrated approach not only deepens our fundamental knowledge but also enables more targeted and efficient antibiotic design strategies. In this Perspective, we highlight how this synergy between experimental and computational methods has the potential to open new pathways for innovative drug design and combination therapies that may help turn the tide in the ongoing battle against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Eshani C. Goonetilleke
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Herrera-Asmat O, Tong AB, Lin W, Kong T, Valle JRD, Guerra DG, Ebright YW, Ebright RH, Bustamante C. Pleomorphic effects of three small-molecule inhibitors on transcription elongation by Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637008. [PMID: 39975155 PMCID: PMC11839117 DOI: 10.1101/2025.02.07.637008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The Mycobacterium tuberculosis RNA polymerase (MtbRNAP) is the target of the first-line anti-tuberculosis inhibitor rifampin, however, the emergence of rifampin resistance necessitates the development of new antibiotics. Here, we communicate the first single-molecule characterization of MtbRNAP elongation and its inhibition by three diverse small-molecule inhibitors: N(α)-aroyl-N-aryl-phenylalaninamide (D-IX216), streptolydigin (Stl), and pseudouridimycin (PUM) using high-resolution optical tweezers. Compared to Escherichia coli RNA polymerase (EcoRNAP), MtbRNAP transcribes more slowly, has similar mechanical robustness, and only weakly recognizes E. coli pause sequences. The three small-molecule inhibitors of MtbRNAP exhibit strikingly different effects on transcription elongation. In the presence of D-IX216, which inhibits RNAP active-center bridge-helix motions required for nucleotide addition, the enzyme exhibits transitions between slowly and super-slowly elongating inhibited states. Stl, which inhibits the RNAP trigger-loop motions also required for nucleotide addition, inhibits RNAP primarily by inducing pausing and backtracking. PUM, a nucleoside analog of UTP, in addition to acting as a competitive inhibitor, induces the formation of slowly elongating RNAP inhibited states. Our results indicate that the three classes of small-molecule inhibitors affect the enzyme in distinct ways and show that the combination of Stl and D-IX216, which both target the RNAP bridge helix, has a strong synergistic effect on the enzyme.
Collapse
Affiliation(s)
- Omar Herrera-Asmat
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima 15102, Peru
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
| | - Alexander B Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Wenxia Lin
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, IN 46556, USA
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima 15102, Peru
| | - Yon W Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Richard H Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Physics, University of California, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
3
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway early paused state intermediates as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. Nucleic Acids Res 2025; 53:gkae1135. [PMID: 39656915 PMCID: PMC11724273 DOI: 10.1093/nar/gkae1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes (ECs) of RNAP in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway early paused state intermediates of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the Stl-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182, Russia
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Georgii Pobegalov
- Department of Physics and Astronomy, University College London, Gower street, London, WC1E 6BT, UK
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| |
Collapse
|
4
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
5
|
Woodgate J, Mosaei H, Brazda P, Stevenson-Jones F, Zenkin N. Translation selectively destroys non-functional transcription complexes. Nature 2024; 626:891-896. [PMID: 38326611 PMCID: PMC10881389 DOI: 10.1038/s41586-023-07014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
Transcription elongation stalls at lesions in the DNA template1. For the DNA lesion to be repaired, the stalled transcription elongation complex (EC) has to be removed from the damaged site2. Here we show that translation, which is coupled to transcription in bacteria, actively dislodges stalled ECs from the damaged DNA template. By contrast, paused, but otherwise elongation-competent, ECs are not dislodged by the ribosome. Instead, they are helped back into processive elongation. We also show that the ribosome slows down when approaching paused, but not stalled, ECs. Our results indicate that coupled ribosomes functionally and kinetically discriminate between paused ECs and stalled ECs, ensuring the selective destruction of only the latter. This functional discrimination is controlled by the RNA polymerase's catalytic domain, the Trigger Loop. We show that the transcription-coupled DNA repair helicase UvrD, proposed to cause backtracking of stalled ECs3, does not interfere with ribosome-mediated dislodging. By contrast, the transcription-coupled DNA repair translocase Mfd4 acts synergistically with translation, and dislodges stalled ECs that were not destroyed by the ribosome. We also show that a coupled ribosome efficiently destroys misincorporated ECs that can cause conflicts with replication5. We propose that coupling to translation is an ancient and one of the main mechanisms of clearing non-functional ECs from the genome.
Collapse
Affiliation(s)
- Jason Woodgate
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Pavel Brazda
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Flint Stevenson-Jones
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
6
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. The A12.2 Subunit Plays an Integral Role in Pyrophosphate Release of RNA Polymerase I. J Mol Biol 2023; 435:168186. [PMID: 37355033 PMCID: PMC10529642 DOI: 10.1016/j.jmb.2023.168186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
RNA polymerase I (Pol I) synthesizes ribosomal RNA (rRNA), which is the first and rate-limiting step in ribosome biosynthesis. A12.2 (A12) is a critical subunit of Pol I that is responsible for activating Pol I's exonuclease activity. We previously reported a kinetic mechanism for single-nucleotide incorporation catalyzed by Pol I lacking the A12 subunit (ΔA12 Pol I) purified from S. cerevisae and revealed that ΔA12 Pol I exhibited much slower incorporation compared to Pol I. However, it is unknown if A12 influences each nucleotide incorporation in the context of transcription elongation. Here, we show that A12 contributes to every repeating cycle of nucleotide addition and that deletion of A12 results in an entirely different kinetic mechanism compared to WT Pol I. We found that instead of one irreversible step between each nucleotide addition cycle, as reported for wild type (WT) Pol I, the ΔA12 variant requires one reversible step to describe each nucleotide addition. Reversibility fundamentally requires slow PPi release. Consistently, we show that Pol I is more pyrophosphate (PPi) concentration dependent than ΔA12 Pol I. This observation supports the model that PPi is retained in the active site of ΔA12 Pol I longer than WT Pol I. These results suggest that A12 promotes PPi release, revealing a larger role for the A12.2 subunit in the nucleotide addition cycle beyond merely activating exonuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway elemental pause state as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.542125. [PMID: 37333075 PMCID: PMC10274647 DOI: 10.1101/2023.06.05.542125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes of RNAP (ECs) in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway elemental paused state of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the streptolydigin-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl-pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | | |
Collapse
|
8
|
Dutagaci B, Duan B, Qiu C, Kaplan CD, Feig M. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning. PLoS Comput Biol 2023; 19:e1010999. [PMID: 36947548 PMCID: PMC10069792 DOI: 10.1371/journal.pcbi.1010999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/03/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did so to determine relationships between individual mutations and phenotypes and to associate phenotypes with MD simulated structural alterations. Using fitness values of mutants under various stress conditions, we modeled phenotypes along a spectrum of continual values. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino acid sequences alone. It was more difficult to incorporate MD data to improve predictions from machine learning, presumably because MD data is too noisy and possibly incomplete to directly infer functional phenotypes. However, a variational auto-encoder model based on the MD data allowed the clustering of mutants with different phenotypes based on structural details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended to increase distances of TL residues to the NTP substrate, while another subset of LOF and lethal substitutions tended to confer an increase in distances between TL and bridge helix (BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of hydrophobic contacts among TL and nearby helices.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California Merced, Merced, California, United States of America
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
9
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
10
|
How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms 2022; 10:microorganisms10091824. [PMID: 36144426 PMCID: PMC9501531 DOI: 10.3390/microorganisms10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function.
Collapse
|
11
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
12
|
Mosaei H, Zenkin N. Two distinct pathways of RNA polymerase backtracking determine the requirement for the Trigger Loop during RNA hydrolysis. Nucleic Acids Res 2021; 49:8777-8784. [PMID: 34365509 PMCID: PMC8421135 DOI: 10.1093/nar/gkab675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
Transcribing RNA polymerase (RNAP) can fall into backtracking, phenomenon when the 3' end of the transcript disengages from the template DNA. Backtracking is caused by sequences of the nucleic acids or by misincorporation of erroneous nucleotides. To resume productive elongation backtracked complexes have to be resolved through hydrolysis of RNA. There is currently no consensus on the mechanism of catalysis of this reaction by Escherichia coli RNAP. Here we used Salinamide A, that we found inhibits RNAP catalytic domain Trigger Loop (TL), to show that the TL is required for RNA cleavage during proofreading of misincorporation events but plays little role during cleavage in sequence-dependent backtracked complexes. Results reveal that backtracking caused by misincorporation is distinct from sequence-dependent backtracking, resulting in different conformations of the 3' end of RNA within the active center. We show that the TL is required to transfer the 3' end of misincorporated transcript from cleavage-inefficient 'misincorporation site' into the cleavage-efficient 'backtracked site', where hydrolysis takes place via transcript-assisted catalysis and is largely independent of the TL. These findings resolve the controversy surrounding mechanism of RNA hydrolysis by E. coli RNA polymerase and indicate that the TL role in RNA cleavage has diverged among bacteria.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- To whom correspondence should be addressed. Tel: +44 0 1912083227; Fax: +44 0 1912083205;
| |
Collapse
|
13
|
Lv XJ, Ming YC, Wu HC, Liu YK. Brønsted acid-catalyzed dynamic kinetic resolution of in situ formed acyclic N,O-hemiaminals: cascade synthesis of chiral cyclic N,O-aminals. Org Chem Front 2021. [DOI: 10.1039/d1qo01135a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A H2O controlled dynamic kinetic resolution was involved in a Brønsted acid-catalyzed acyclic N,O-hemiaminal formation/oxa-Michael reaction cascade, leading to highly enantioenriched cis-2,6-disubstituted tetrahydropyrans bearing an exo amide group.
Collapse
Affiliation(s)
- Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yong-Chao Ming
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hui-Chun Wu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
14
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
15
|
Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol 2020; 19:95-109. [PMID: 33122819 DOI: 10.1038/s41579-020-00450-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.
Collapse
|
16
|
Cogan DP, Ly J, Nair SK. Structural Basis for Enzymatic Off-Loading of Hybrid Polyketides by Dieckmann Condensation. ACS Chem Biol 2020; 15:2783-2791. [PMID: 33017142 DOI: 10.1021/acschembio.0c00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While several bioactive natural products that contain tetramate or pyridone heterocycles have been described, information on the enzymology underpinning these functionalities has been limited. Here we biochemically characterize an off-loading Dieckmann cyclase, NcmC, that installs the tetramate headgroup in nocamycin, a hybrid polyketide/nonribosomal peptide natural product. Crystal structures of the enzyme (1.6 Å) and its covalent complex with the epoxide cerulenin (1.6 Å) guide additional structure-based mutagenesis and product-profile analyses. Our results offer mechanistic insights into how the conserved thioesterase-like scaffold has been adapted to perform a new chemical reaction, namely, heterocyclization. Additional bioinformatics combined with docking and modeling identifies likely candidates for heterocycle formation in underexplored gene clusters and uncovers a modular basis of substrate recognition by the two subdomains of these Dieckmann cyclases.
Collapse
|
17
|
Abstract
During transcription elongation at saturating nucleotide concentrations, RNA polymerase (RNAP) performs ∼50 nucleotide-addition cycles every second. The RNAP active center contains a structural element, termed the trigger loop (TL), that has been suggested, but not previously shown, to open to allow a nucleotide to enter and then to close to hold the nucleotide in each nucleotide-addition cycle. Here, using single-molecule fluorescence spectroscopy to monitor distances between a probe incorporated into the TL and a probe incorporated elsewhere in the transcription elongation complex, we show that TL closing and opening occur in solution, define time scales and functional roles of TL closing and opening, and, most crucially, demonstrate that one cycle of TL closing and opening occurs in each nucleotide-addition cycle. The RNA polymerase (RNAP) trigger loop (TL) is a mobile structural element of the RNAP active center that, based on crystal structures, has been proposed to cycle between an “unfolded”/“open” state that allows an NTP substrate to enter the active center and a “folded”/“closed” state that holds the NTP substrate in the active center. Here, by quantifying single-molecule fluorescence resonance energy transfer between a first fluorescent probe in the TL and a second fluorescent probe elsewhere in RNAP or in DNA, we detect and characterize TL closing and opening in solution. We show that the TL closes and opens on the millisecond timescale; we show that TL closing and opening provides a checkpoint for NTP complementarity, NTP ribo/deoxyribo identity, and NTP tri/di/monophosphate identity, and serves as a target for inhibitors; and we show that one cycle of TL closing and opening typically occurs in each nucleotide addition cycle in transcription elongation.
Collapse
|
18
|
Prajapati RK, Rosenqvist P, Palmu K, Mäkinen JJ, Malinen AM, Virta P, Metsä-Ketelä M, Belogurov GA. Oxazinomycin arrests RNA polymerase at the polythymidine sequences. Nucleic Acids Res 2019; 47:10296-10312. [PMID: 31495891 PMCID: PMC6821320 DOI: 10.1093/nar/gkz782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023] Open
Abstract
Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.
Collapse
Affiliation(s)
- Ranjit K Prajapati
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Petja Rosenqvist
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Kaisa Palmu
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Janne J Mäkinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Anssi M Malinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
19
|
Bacteriophage gene products as potential antimicrobials against tuberculosis. Biochem Soc Trans 2019; 47:847-860. [PMID: 31085613 DOI: 10.1042/bst20180506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
Tuberculosis (TB) is recognised as one of the most pressing global health threats among infectious diseases. Bacteriophages are adapted for killing of their host, and they were exploited in antibacterial therapy already before the discovery of antibiotics. Antibiotics as broadly active drugs overshadowed phage therapy for a long time. However, owing to the rapid spread of antibiotic resistance and the increasing complexity of treatment of drug-resistant TB, mycobacteriophages are being studied for their antimicrobial potential. Besides phage therapy, which is the administration of live phages to infected patients, the development of drugs of phage origin is gaining interest. This path of medical research might provide us with a new pool of previously undiscovered inhibition mechanisms and molecular interactions which are also of interest in basic research of cellular processes, such as transcription. The current state of research on mycobacteriophage-derived anti-TB treatment is reviewed in comparison with inhibitors from other phages, and with focus on transcription as the host target process.
Collapse
|
20
|
Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans 2019; 47:679-689. [DOI: 10.1042/bst20180508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
Abstract
Abstract
Transcription in cyanobacteria involves several fascinating features. Cyanobacteria comprise one of the very few groups in which no proofreading factors (Gre homologues) have been identified. Gre factors increase the efficiency of RNA cleavage, therefore helping to maintain the fidelity of the RNA transcript and assist in the resolution of stalled RNAPs to prevent genome damage. The vast majority of bacterial species encode at least one of these highly conserved factors and so their absence in cyanobacteria is intriguing. Additionally, the largest subunit of bacterial RNAP has undergone a split in cyanobacteria to form two subunits and the SI3 insertion within the integral trigger loop element is roughly 3.5 times larger than in Escherichia coli. The Rho termination factor also appears to be absent, leaving cyanobacteria to rely solely on an intrinsic termination mechanism. Furthermore, cyanobacteria must be able to respond to environment signals such as light intensity and tightly synchronise gene expression and other cell activities to a circadian rhythm.
Collapse
|
21
|
Mechanisms of antibiotics inhibiting bacterial RNA polymerase. Biochem Soc Trans 2019; 47:339-350. [PMID: 30647141 DOI: 10.1042/bst20180499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
Transcription, the first phase of gene expression, is performed by the multi-subunit RNA polymerase (RNAP). Bacterial RNAP is a validated target for clinical antibiotics. Many natural and synthetic compounds are now known to target RNAP, inhibiting various stages of the transcription cycle. However, very few RNAP inhibitors are used clinically. A detailed knowledge of inhibitors and their mechanisms of action (MOA) is vital for the future development of efficacious antibiotics. Moreover, inhibitors of RNAP are often useful tools with which to dissect RNAP function. Here, we review the MOA of antimicrobial transcription inhibitors.
Collapse
|
22
|
Unusual relatives of the multisubunit RNA polymerase. Biochem Soc Trans 2018; 47:219-228. [PMID: 30578347 DOI: 10.1042/bst20180505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Transcription, the first step of gene expression, is accomplished in all domains of life by the multisubunit RNA polymerase (msRNAP). Accordingly, the msRNAP is an ancient enzyme that is ubiquitous across all cellular organisms. Conserved in absolutely all msRNAPs is the catalytic magnesium-binding aspartate triad and the structural fold it is present on, the double ψ β barrel (DPBB). In-depth bioinformatics has begun to reveal a wealth of unusual proteins distantly related to msRNAP, identified due to their possession of the aspartate triad and DPBB folds. Three examples of these novel RNAPs are YonO of the Bacillus subtilis SPβ prophage, non-virion RNAP (nvRNAP) of the B. subtilis AR9 bacteriophage and ORF6 RNAP of the Kluyveromyces lactis cytoplasmic killer system. While YonO and AR9 nvRNAP are both bacteriophage enzymes, they drastically contrast. YonO is an incredibly minimal single-subunit RNAP, while AR9 nvRNAP is multisubunit bearing much more resemblance to the canonical msRNAP. ORF6 RNAP is an intermediate, given it is a single-subunit enzyme with substantial conservation with the msRNAP. Recent findings have begun to shed light on these polymerases, which have the potential to update our understanding of the mechanisms used for transcription and give new insights into the canonical msRNAP and its evolution. This mini-review serves to introduce and outline our current understanding of these three examples of novel, unusual RNAPs.
Collapse
|
23
|
Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. J Ind Microbiol Biotechnol 2018; 46:335-343. [PMID: 30465105 DOI: 10.1007/s10295-018-2109-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
Pseudouridimycin (PUM) is a novel pseudouridine-containing peptidyl-nucleoside antibiotic that inhibits bacterial RNA polymerase (RNAP) through a binding site and mechanism different from those of clinically approved RNAP inhibitors of the rifamycin and lipiarmycin (fidaxomicin) classes. PUM was discovered by screening microbial fermentation extracts for RNAP inhibitors. In this review, we describe the discovery and characterization of PUM. We also describe the RNAP-inhibitory and antibacterial properties of PUM. Finally, we review available information on the gene cluster and pathway for PUM biosynthesis and on the potential for discovering additional novel pseudouridine-containing nucleoside antibiotics by searching bacterial genome and metagenome sequences for sequences similar to pumJ, the pseudouridine-synthase gene of the PUM biosynthesis gene cluster.
Collapse
|
24
|
Turtola M, Mäkinen JJ, Belogurov GA. Active site closure stabilizes the backtracked state of RNA polymerase. Nucleic Acids Res 2018; 46:10870-10887. [PMID: 30256972 PMCID: PMC6237748 DOI: 10.1093/nar/gky883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023] Open
Abstract
All cellular RNA polymerases (RNAP) occasionally backtrack along the template DNA as part of transcriptional proofreading and regulation. Here, we studied the mechanism of RNAP backtracking by one nucleotide using two complementary approaches that allowed us to precisely measure the occupancy and lifetime of the backtracked state. Our data show that the stability of the backtracked state is critically dependent on the closure of the RNAP active site by a mobile domain, the trigger loop (TL). The lifetime and occupancy of the backtracked state measurably decreased by substitutions of the TL residues that interact with the nucleoside triphosphate (NTP) substrate, whereas amino acid substitutions that stabilized the closed active site increased the lifetime and occupancy. These results suggest that the same conformer of the TL closes the active site during catalysis of nucleotide incorporation into the nascent RNA and backtracking by one nucleotide. In support of this hypothesis, we construct a model of the 1-nt backtracked complex with the closed active site and the backtracked nucleotide in the entry pore area known as the E-site. We further propose that 1-nt backtracking mimics the reversal of the NTP substrate loading into the RNAP active site during on-pathway elongation.
Collapse
Affiliation(s)
- Matti Turtola
- University of Turku, Department of Biochemistry, FIN-20014 Turku, Finland
| | - Janne J Mäkinen
- University of Turku, Department of Biochemistry, FIN-20014 Turku, Finland
| | | |
Collapse
|
25
|
Portelli S, Phelan JE, Ascher DB, Clark TG, Furnham N. Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Sci Rep 2018; 8:15356. [PMID: 30337649 PMCID: PMC6193939 DOI: 10.1038/s41598-018-33370-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Genomic studies of Mycobacterium tuberculosis bacteria have revealed loci associated with resistance to anti-tuberculosis drugs. However, the molecular consequences of polymorphism within these candidate loci remain poorly understood. To address this, we have used computational tools to quantify the effects of point mutations conferring resistance to three major anti-tuberculosis drugs, isoniazid (n = 189), rifampicin (n = 201) and D-cycloserine (n = 48), within their primary targets, katG, rpoB, and alr. Notably, mild biophysical effects brought about by high incidence mutations were considered more tolerable, while different structural effects brought about by haplotype combinations reflected differences in their functional importance. Additionally, highly destabilising mutations such as alr Y388, highlighted a functional importance of the wildtype residue. Our qualitative analysis enabled us to relate resistance mutations onto a theoretical landscape linking enthalpic changes with phenotype. Such insights will aid the development of new resistance-resistant drugs and, via an integration into predictive tools, in pathogen surveillance.
Collapse
Affiliation(s)
- Stephanie Portelli
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Victoria, 3051, Australia
| | - Jody E Phelan
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Victoria, 3051, Australia
| | - Taane G Clark
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
26
|
Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin R, Zhang Z, Eng ET, Thomas D, Donadio S, Zhang H, Zhang C, Kapanidis AN, Ebright RH. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell 2018; 70:60-71.e15. [PMID: 29606590 PMCID: PMC6205224 DOI: 10.1016/j.molcel.2018.02.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.
Collapse
Affiliation(s)
- Wei Lin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kalyan Das
- Rega Institute and Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Abhishek Mazumder
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Duchi
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Dongye Wang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard Y Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena Sineva
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Aashish Srivastava
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sukhendu Mandal
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Jiang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Liu
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Ruiheng Yin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Dennis Thomas
- Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Haibo Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Changsheng Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
27
|
Yurieva O, Nikiforov V, Nikiforov V, O'Donnell M, Mustaev A. Insights into RNA polymerase catalysis and adaptive evolution gained from mutational analysis of a locus conferring rifampicin resistance. Nucleic Acids Res 2017; 45:11327-11340. [PMID: 29036608 PMCID: PMC5737076 DOI: 10.1093/nar/gkx813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
S531 of Escherichia coli RNA polymerase (RNAP) β subunit is a part of RNA binding domain in transcription complex. While highly conserved, S531 is not involved in interactions within the transcription complex as suggested by X-ray analysis. To understand the basis for S531 conservation we performed systematic mutagenesis of this residue. We find that the most of the mutations significantly decreased initiation-to-elongation transition by RNAP. Surprisingly, some changes enhanced the production of full-size transcripts by suppressing abortive loss of short RNAs. S531-R increased transcript retention by establishing a salt bridge with RNA, thereby explaining the R substitution at the equivalent position in extremophilic organisms, in which short RNAs retention is likely to be an issue. Generally, the substitutions had the same effect on bacterial doubling time when measured at 20°. Raising growth temperature to 37° ablated the positive influence of some mutations on the growth rate in contrast to their in vitro action, reflecting secondary effects of cellular environment on transcription and complex involvement of 531 locus in the cell biology. The properties of generated RNAP variants revealed an RNA/protein interaction network that is crucial for transcription, thereby explaining the details of initiation-to-elongation transition on atomic level.
Collapse
Affiliation(s)
- Olga Yurieva
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Vadim Nikiforov
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Vadim Nikiforov
- Public Health Research Institute, Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA.,Institute of molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Michael O'Donnell
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Arkady Mustaev
- Public Health Research Institute, Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
28
|
Transcription fidelity and its roles in the cell. Curr Opin Microbiol 2017; 42:13-18. [PMID: 28968546 PMCID: PMC5904569 DOI: 10.1016/j.mib.2017.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
Abstract
The Trigger Loop is one of the major determinants of transcription fidelity. Intrinsic proofreading occurs via transcript-assisted cleavage. Factor-assisted proofreading takes place via exchange of RNAP active centres. Misincorporation is a major source of transcription pausing. Another role of fidelity is the prevention of conflicts with other cellular processes.
Accuracy of transcription is essential for productive gene expression, and the past decade has brought new understanding of the mechanisms ensuring transcription fidelity. The discovery of a new catalytic domain, the Trigger Loop, revealed that RNA polymerase can actively choose the correct substrates. Also, the intrinsic proofreading activity was found to proceed via a ribozyme-like mechanism, whereby the erroneous nucleoside triphosphate (NTP) helps its own excision. Factor-assisted proofreading was shown to proceed through an exchange of active centres, a unique phenomenon among proteinaceous enzymes. Furthermore, most recent in vivo studies have revised the roles of transcription accuracy and proofreading factors, as not only required for production of errorless RNAs, but also for prevention of frequent misincorporation-induced pausing that may cause conflicts with fellow RNA polymerases and the replication machinery.
Collapse
|
29
|
Maffioli SI, Zhang Y, Degen D, Carzaniga T, Del Gatto G, Serina S, Monciardini P, Mazzetti C, Guglierame P, Candiani G, Chiriac AI, Facchetti G, Kaltofen P, Sahl HG, Dehò G, Donadio S, Ebright RH. Antibacterial Nucleoside-Analog Inhibitor of Bacterial RNA Polymerase. Cell 2017. [PMID: 28622509 DOI: 10.1016/j.cell.2017.05.042] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug-resistant bacterial pathogens pose an urgent public-health crisis. Here, we report the discovery, from microbial-extract screening, of a nucleoside-analog inhibitor that inhibits bacterial RNA polymerase (RNAP) and exhibits antibacterial activity against drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a natural product comprising a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine. PUM potently and selectively inhibits bacterial RNAP in vitro, inhibits bacterial growth in culture, and clears infection in a mouse model of Streptococcus pyogenes peritonitis. PUM inhibits RNAP through a binding site on RNAP (the NTP addition site) and mechanism (competition with UTP for occupancy of the NTP addition site) that differ from those of the RNAP inhibitor and current antibacterial drug rifampin (Rif). PUM exhibits additive antibacterial activity when co-administered with Rif, exhibits no cross-resistance with Rif, and exhibits a spontaneous resistance rate an order-of-magnitude lower than that of Rif. PUM is a highly promising lead for antibacterial therapy.
Collapse
Affiliation(s)
- Sonia I Maffioli
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy
| | - Yu Zhang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Thomas Carzaniga
- Department of Bioscience, University of Milan, 20122 Milan, Italy
| | | | - Stefania Serina
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy
| | - Paolo Monciardini
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy
| | | | | | | | - Alina Iulia Chiriac
- Institute of Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53012 Bonn, Germany
| | | | | | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53012 Bonn, Germany
| | - Gianni Dehò
- Department of Bioscience, University of Milan, 20122 Milan, Italy
| | - Stefano Donadio
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy.
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Mo X, Shi C, Gui C, Zhang Y, Ju J, Wang Q. Identification of nocamycin biosynthetic gene cluster from Saccharothrix syringae NRRL B-16468 and generation of new nocamycin derivatives by manipulating gene cluster. Microb Cell Fact 2017; 16:100. [PMID: 28599654 PMCID: PMC5466765 DOI: 10.1186/s12934-017-0718-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nocamycins I and II, produced by the rare actinomycete Saccharothrix syringae, belong to the tetramic acid family natural products. Nocamycins show potent antimicrobial activity and they hold great potential for antibacterial agent design. However, up to now, little is known about the exact biosynthetic mechanism of nocamycin. RESULTS In this report, we identified the gene cluster responsible for nocamycin biosynthesis from S. syringae and generated new nocamycin derivatives by manipulating its gene cluster. The biosynthetic gene cluster for nocamycin contains a 61 kb DNA locus, consisting of 21 open reading frames (ORFs). Five type I polyketide synthases (NcmAI, NcmAII, NcmAIII, NcmAIV, NcmAV) and a non-ribosomal peptide synthetase (NcmB) are proposed to be involved in synthesis of the backbone structure, a Dieckmann cyclase NcmC catalyze the releasing of linear chain and the formation of tetramic acid moiety, five enzymes (NcmEDGOP) are related to post-tailoring steps, and five enzymes (NcmNJKIM) function as regulators. Targeted inactivation of ncmB led to nocamycin production being completely abolished, which demonstrates that this gene cluster is involved in nocamycin biosynthesis. To generate new nocamycin derivatives, the gene ncmG, encoding for a cytochrome P450 oxidase, was inactivated. Two new nocamycin derivatives nocamycin III and nocamycin IV were isolated from the ncmG deletion mutant strain and their structures were elucidated by spectroscopic data analyses. Based on bioinformatics analysis and new derivatives isolated from gene inactivation mutant strains, a biosynthetic pathway of nocamycins was proposed. CONCLUSION These findings provide the basis for further understanding of nocamycin biosynthetic mechanism, and set the stage to rationally engineer new nocamycin derivatives via combinatorial biosynthesis strategy.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Chunrong Shi
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Rd., Guangzhou, 510301 China
| | - Yanjiao Zhang
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Rd., Guangzhou, 510301 China
| | - Qingji Wang
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
31
|
Forrest D, James K, Yuzenkova Y, Zenkin N. Single-peptide DNA-dependent RNA polymerase homologous to multi-subunit RNA polymerase. Nat Commun 2017; 8:15774. [PMID: 28585540 PMCID: PMC5467207 DOI: 10.1038/ncomms15774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/27/2017] [Indexed: 01/23/2023] Open
Abstract
Transcription in all living organisms is accomplished by multi-subunit RNA polymerases (msRNAPs). msRNAPs are highly conserved in evolution and invariably share a ∼400 kDa five-subunit catalytic core. Here we characterize a hypothetical ∼100 kDa single-chain protein, YonO, encoded by the SPβ prophage of Bacillus subtilis. YonO shares very distant homology with msRNAPs, but no homology with single-subunit polymerases. We show that despite homology to only a few amino acids of msRNAP, and the absence of most of the conserved domains, YonO is a highly processive DNA-dependent RNA polymerase. We demonstrate that YonO is a bona fide RNAP of the SPβ bacteriophage that specifically transcribes its late genes, and thus represents a novel type of bacteriophage RNAPs. YonO and related proteins present in various bacteria and bacteriophages have diverged from msRNAPs before the Last Universal Common Ancestor, and, thus, may resemble the single-subunit ancestor of all msRNAPs. Although all known RNA polymerases have multiple subunits, unrelated single-subunit polymerases have also been described. Here, the authors describe a single-subunit RNA polymerase from the SPβ prophage of Bacillus subtilis, which shares homology to multi-subunit enzymes.
Collapse
Affiliation(s)
- David Forrest
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Katherine James
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
32
|
Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci Rep 2017; 7:44786. [PMID: 28317865 PMCID: PMC5357945 DOI: 10.1038/srep44786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022] Open
Abstract
More and more new natural products have been found in Streptomyces species, which become the significant resource for antibiotics production. Among them, Streptomyces lydicus has been known as its ability of streptolydigin biosynthesis. Herein, we present the genome analysis of S. lydicus based on the complete genome sequencing. The circular chromosome of S. lydicus 103 comprises 8,201,357 base pairs with average GC content 72.22%. With the aid of KEGG analysis, we found that S. lydicus 103 can transfer propanoate to succinate, glutamine or glutamate to 2-oxoglutarate, CO2 and L-glutamate to ammonia, which are conducive to the the supply of amino acids. S. lydicus 103 encodes acyl-CoA thioesterase II that takes part in biosynthesis of unsaturated fatty acids, and harbors the complete biosynthesis pathways of lysine, valine, leucine, phenylalanine, tyrosine and isoleucine. Furthermore, a total of 27 putative gene clusters have been predicted to be involved in secondary metabolism, including biosynthesis of streptolydigin, erythromycin, mannopeptimycin, ectoine and desferrioxamine B. Comparative genome analysis of S. lydicus 103 will help us deeply understand its metabolic pathways, which is essential for enhancing the antibiotic production through metabolic engineering.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hao Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Department of Physics, Tianjin University, Tianjin, 300072, P. R. China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Department of Physics, Tianjin University, Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
33
|
Trost BM, Sharif EU, Cregg JJ. Ru-catalyzed sequence for the synthesis of cyclic amido-ethers. Chem Sci 2017; 8:770-774. [PMID: 28451225 PMCID: PMC5299796 DOI: 10.1039/c6sc02849g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/11/2016] [Indexed: 01/14/2023] Open
Abstract
Efficient synthesis of versatile building blocks for enabling medicinal chemistry research has always challenged synthetic chemists to develop innovative methods. Of particular interest are the methods that are amenable to the synthesis of chemically distinct and diverse classes of pharmaceutically relevant motifs. Herein we report a general method for the one-pot synthesis of cyclic α-amido-ethers containing different amide functionalities including lactams, tetramic acids and amino acids. For the incorporation of the nucleotide bases, a chemo and regioselective palladium-catalyzed transformation has been developed, providing rapid access to nucleoside analogs.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry , Stanford University , 333 Campus Dr. , Stanford , CA 94035 , USA .
| | - Ehesan U Sharif
- Department of Chemistry , Stanford University , 333 Campus Dr. , Stanford , CA 94035 , USA .
| | - James J Cregg
- Department of Chemistry , Stanford University , 333 Campus Dr. , Stanford , CA 94035 , USA .
| |
Collapse
|
34
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
35
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
36
|
Nusrath Unissa A, Hassan S, Indira Kumari V, Revathy R, Hanna LE. Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis. J Mol Graph Model 2016; 67:20-32. [DOI: 10.1016/j.jmgm.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
|
37
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
38
|
Mapping the Escherichia coli transcription elongation complex with exonuclease III. Methods Mol Biol 2015; 1276:1-12. [PMID: 25665555 DOI: 10.1007/978-1-4939-2392-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
RNA polymerase interactions with the nucleic acids control every step of the transcription cycle. These contacts mediate RNA polymerase recruitment to promoters, induce pausing during RNA chain synthesis, and control transcription termination. These interactions are dissected using footprinting assays, in which a bound protein protects nucleic acids from the digestion by nucleases or modification by chemical probes. Exonuclease III is frequently employed to study protein-DNA interactions owing to relatively simple procedures and low background. Exonuclease III has been used to determine RNA polymerase position in transcription initiation and elongation complexes and to infer the translocation register of the enzyme. In this chapter, we describe probing the location and the conformation of transcription elongation complexes formed by walking of the RNA polymerase along an immobilized template.
Collapse
|
39
|
Yakunina M, Artamonova T, Borukhov S, Makarova KS, Severinov K, Minakhin L. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nucleic Acids Res 2015; 43:10411-20. [PMID: 26490960 PMCID: PMC4666361 DOI: 10.1093/nar/gkv1095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/10/2015] [Indexed: 11/21/2022] Open
Abstract
The infection of Pseudomonas aeruginosa by the giant bacteriophage phiKZ is resistant to host RNA polymerase (RNAP) inhibitor rifampicin. phiKZ encodes two sets of polypeptides that are distantly related to fragments of the two largest subunits of cellular multisubunit RNAPs. Polypeptides of one set are encoded by middle phage genes and are found in the phiKZ virions. Polypeptides of the second set are encoded by early phage genes and are absent from virions. Here, we report isolation of a five-subunit RNAP from phiKZ-infected cells. Four subunits of this enzyme are cellular RNAP subunits homologs of the non-virion set; the fifth subunit is a protein of unknown function. In vitro, this complex initiates transcription from late phiKZ promoters in rifampicin-resistant manner. Thus, this enzyme is a non-virion phiKZ RNAP responsible for transcription of late phage genes. The phiKZ RNAP lacks identifiable assembly and promoter specificity subunits/factors characteristic for eukaryal, archaeal and bacterial RNAPs and thus provides a unique model for comparative analysis of the mechanism, regulation and evolution of this important class of enzymes.
Collapse
Affiliation(s)
- Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Tatyana Artamonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Sergei Borukhov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1501, USA
| | - Kira S Makarova
- National Center for Biotechnology Information NLM, National Institutes of Health Bethesda, MD 20894, USA
| | - Konstantin Severinov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russia
| | - Leonid Minakhin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
40
|
Antonopoulos IH, Warner BA, Carey PR. Concerted Protein and Nucleic Acid Conformational Changes Observed Prior to Nucleotide Incorporation in a Bacterial RNA Polymerase: Raman Crystallographic Evidence. Biochemistry 2015. [PMID: 26222797 DOI: 10.1021/acs.biochem.5b00484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription elongation requires the continuous incorporation of ribonucleotide triphosphates into a growing transcript. RNA polymerases (RNAPs) are able to processively synthesize a growing RNA chain via translocation of the RNAP enzyme along its nucleic acid template strand after each nucleotide addition cycle. In this work, a time-resolved Raman spectroscopic analysis of nucleotide addition in single crystals of the Thermus thermophilus elongation complex (TthEC) is reported. When [(13)C,(15)N]GTP (*GTP) is soaked into crystals of the TthEC, large reversible changes in the Raman spectrum that are assigned to protein and nucleic acid conformational events during a single-nucleotide incorporation are observed. The *GTP population in the TthEC crystal reaches a stable population at 37 min, while substantial and reversible protein conformational changes (mainly ascribed to changes in α-helical Raman features) maximize at approximately 50 min. At the same time, changes in nucleic acid bases and phosphodiester backbone Raman marker bands occur. Catalysis begins at approximately 65-70 min, soon after the maximal protein and DNA changes, and is monitored via the decline in a triphosphate vibrational Raman mode from *GTP. The Raman data indicate that approximately 40% of the total triphosphate population, present as *GTP, reacts in the crystal. This may suggest that a second population of noncovalently bound *GTP resides in a site distinct from the catalytic site. The data reported here are an extension of our recent work on the elongation complex (EC) of a bacterial RNAP, Thermus thermophilus (Tth), where Raman spectroscopy and polyacrylamide gel electrophoresis were employed to monitor incorporation and misincorporation in single TthEC crystals [Antonopoulos, I. H., et al. (2015) Biochemistry 54, 652-665]. Therefore, the initial study establishes the groundwork for this study. In contrast to our previous study, in which incorporation takes place very rapidly inside the crystals, the data on this single crystal exhibit a slower time regime, which allows the dissection of the structural dynamics associated with GMP incorporation within the TthEC crystal.
Collapse
Affiliation(s)
- Ioanna H Antonopoulos
- Department of Biochemistry, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | - Brittany A Warner
- Department of Biochemistry and Molecular Biology, The Center of RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Paul R Carey
- Department of Biochemistry, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| |
Collapse
|
41
|
CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci U S A 2015; 112:E4178-87. [PMID: 26195788 PMCID: PMC4534225 DOI: 10.1073/pnas.1502368112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase inhibitors like the CBR class that target the enzyme's complex catalytic center are attractive leads for new antimicrobials. Catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg(2+) ions from a preinsertion state to a reactive configuration. CBR inhibitors target a crevice between the N-terminal portion of the bridge helix and a surrounding cap region within which the bridge helix is thought to rearrange during the nucleotide addition cycle. We report crystal structures of CBR inhibitor/Escherichia coli RNA polymerase complexes as well as biochemical tests that establish two distinct effects of the inhibitors on the RNA polymerase catalytic site. One effect involves inhibition of trigger-loop folding via the F loop in the cap, which affects both nucleotide addition and hydrolysis of 3'-terminal dinucleotides in certain backtracked complexes. The second effect is trigger-loop independent, affects only nucleotide addition and pyrophosphorolysis, and may involve inhibition of bridge-helix movements that facilitate reactive triphosphate alignment.
Collapse
|
42
|
Feng Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M, Connell N, Ebright RH. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles. Structure 2015; 23:1470-1481. [PMID: 26190576 DOI: 10.1016/j.str.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
Abstract
CBR hydroxamidines are small-molecule inhibitors of bacterial RNA polymerase (RNAP) discovered through high-throughput screening of synthetic-compound libraries. CBR pyrazoles are structurally related RNAP inhibitors discovered through scaffold hopping from CBR hydroxamidines. CBR hydroxamidines and pyrazoles selectively inhibit Gram-negative bacterial RNAP and exhibit selective antibacterial activity against Gram-negative bacteria. Here, we report crystal structures of the prototype CBR hydroxamidine, CBR703, and a CBR pyrazole in complex with E. coli RNAP holoenzyme. In addition, we define the full resistance determinant for CBR703, show that the binding site and resistance determinant for CBR703 do not overlap the binding sites and resistance determinants of other characterized RNAP inhibitors, show that CBR703 exhibits no or minimal cross-resistance with other characterized RNAP inhibitors, and show that co-administration of CBR703 with other RNAP inhibitors results in additive antibacterial activities. The results set the stage for structure-based optimization of CBR inhibitors as antibacterial drugs.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David Degen
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinyue Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shuang Liu
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Deepankar Das
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Trevor Michalchuk
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
43
|
Structural biology of bacterial RNA polymerase. Biomolecules 2015; 5:848-64. [PMID: 25970587 PMCID: PMC4496699 DOI: 10.3390/biom5020848] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022] Open
Abstract
Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477-42485), an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP). In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank), describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.
Collapse
|
44
|
Mejia YX, Nudler E, Bustamante C. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase. Proc Natl Acad Sci U S A 2015; 112:743-8. [PMID: 25552559 PMCID: PMC4311812 DOI: 10.1073/pnas.1421067112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP's pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kinetic model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. This model suggests a finely tuned mechanism that balances transcription speed and fidelity.
Collapse
Affiliation(s)
- Yara X Mejia
- Jason L. Choy Laboratory of Single-Molecule Biophysics, the California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, the California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; Department of Molecular and Cell Biology, Department of Physics, Department of Chemistry, Biophysics Graduate Group and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, CA 94720
| |
Collapse
|
45
|
Severinov K, Minakhin L, Sekine SI, Lopatina A, Yokoyama S. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator. BACTERIOPHAGE 2014; 4:e29399. [PMID: 25105059 PMCID: PMC4124052 DOI: 10.4161/bact.29399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
Transcription initiation is the central point of gene expression regulation. Understanding of molecular mechanism of transcription regulation requires, ultimately, the structural understanding of consequences of transcription factors binding to DNA-dependent RNA polymerase (RNAP), the enzyme of transcription. We recently determined a structure of a complex between transcription factor gp39 encoded by a Thermus bacteriophage and Thermus RNAP holoenzyme. In this addendum to the original publication, we highlight structural insights that explain the ability of gp39 to act as an RNAP specificity switch which inhibits transcription initiation from a major class of bacterial promoters, while allowing transcription from a minor promoter class to continue.
Collapse
Affiliation(s)
- Konstantin Severinov
- Waksman Institute; Rutgers; The State University of New Jersey; Piscataway, NJ USA ; St. Petersburg Polytechnical State University; St. Petersburg, Russia ; Skolkovo Institute of Science and Technology; Skolkovo, Russia
| | - Leonid Minakhin
- Waksman Institute; Rutgers; The State University of New Jersey; Piscataway, NJ USA
| | - Shun-Ichi Sekine
- RIKEN Systems and Structural Biology Center; Tsurumi-ku, Yokohama Japan ; Division of Structural and Synthetic Biology; RIKEN Center for Life Science Technologies; Tsurumi-ku, Yokohama Japan
| | - Anna Lopatina
- St. Petersburg Polytechnical State University; St. Petersburg, Russia ; Institutes of Gene Biology and Molecular Genetics; Russian Academy of Sciences; Moscow, Russia
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center; Tsurumi-ku, Yokohama Japan ; RIKEN Structural Biology Laboratory; Tsurumi-ku, Yokohama Japan
| |
Collapse
|
46
|
Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH. Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 2014; 3:e02451. [PMID: 24843001 PMCID: PMC4029172 DOI: 10.7554/elife.02451] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/18/2014] [Indexed: 12/12/2022] Open
Abstract
We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center 'bridge-helix cap' comprising the 'bridge-helix N-terminal hinge', 'F-loop', and 'link region'. We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.DOI: http://dx.doi.org/10.7554/eLife.02451.001.
Collapse
Affiliation(s)
- David Degen
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Feng
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | - Yon W Ebright
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | - Sukhendu Mandal
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
| | | |
Collapse
|
47
|
Zenkin N. Multiple personalities of the RNA polymerase active centre. MICROBIOLOGY-SGM 2014; 160:1316-1320. [PMID: 24763425 DOI: 10.1099/mic.0.079020-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcription in all living organisms is accomplished by highly conserved multi-subunit RNA polymerases (RNAPs). Our understanding of the functioning of the active centre of RNAPs has transformed recently with the finding that a conserved flexible domain near the active centre, the trigger loop (TL), participates directly in the catalysis of RNA synthesis and serves as a major determinant for fidelity of transcription. It also appears that the TL is involved in the unique ability of RNAPs to exchange catalytic activities of the active centre. In this phenomenon the TL is replaced by a transcription factor which changes the amino acid content and, as a result, the catalytic properties of the active centre. The existence of a number of transcription factors that act through substitution of the TL suggests that the RNAP has several different active centres to choose from in response to external or internal signals. A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=79Z7iXVEPo4.
Collapse
Affiliation(s)
- Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
48
|
Wang B, Predeus AV, Burton ZF, Feig M. Energetic and structural details of the trigger-loop closing transition in RNA polymerase II. Biophys J 2014; 105:767-75. [PMID: 23931324 DOI: 10.1016/j.bpj.2013.05.060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022] Open
Abstract
An evolutionarily conserved element in RNA polymerase II, the trigger loop (TL), has been suggested to play an important role in the elongation rate, fidelity of selection of the matched nucleoside triphosphate (NTP), catalysis of transcription elongation, and translocation in both eukaryotes and prokaryotes. In response to NTP binding, the TL undergoes large conformational changes to switch between distinct open and closed states to tighten the active site and avail catalysis. A computational strategy for characterizing the conformational transition pathway is presented to bridge the open and closed states of the TL. Information from a large number of independent all-atom molecular dynamics trajectories from Hamiltonian replica exchange and targeted molecular dynamics simulations is gathered together to assemble a connectivity map of the conformational transition. The results show that with a cognate NTP, TL closing should be a spontaneous process. One major intermediate state is identified along the conformational transition pathway, and the key structural features are characterized. The complete pathway from the open TL to the closed TL provides a clear picture of the TL closing.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | | | | | | |
Collapse
|
49
|
Malinen AM, NandyMazumdar M, Turtola M, Malmi H, Grocholski T, Artsimovitch I, Belogurov GA. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase. Nat Commun 2014; 5:3408. [PMID: 24598909 PMCID: PMC3959191 DOI: 10.1038/ncomms4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (β' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-β subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the β' F-loop and the β fork loop. Collectively, our data are consistent with a model in which the β subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the β subunit.
Collapse
Affiliation(s)
- Anssi M. Malinen
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Monali NandyMazumdar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Henri Malmi
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Thadee Grocholski
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
50
|
Mo X, Li Q, Ju J. Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity. RSC Adv 2014. [DOI: 10.1039/c4ra09047k] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural products containing the tetramic acid core scaffold have been isolated from an assortment of terrestrial and marine species and often display wide ranging and potent biological activities including antibacterial, antiviral and antitumoral activities.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology
- School of Life Sciences
- Qingdao Agricultural University
- Qingdao, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| |
Collapse
|