1
|
Jaiswal R, Braud B, Hernandez-Ramirez K, Santosh V, Washington A, Escalante C. Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting. Nucleic Acids Res 2025; 53:gkaf033. [PMID: 39883011 PMCID: PMC11780844 DOI: 10.1093/nar/gkaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states. In the nucleotide-free state, Rep68 forms a heptameric complex around DNA, with three origin-binding domains (OBDs) bound to the Rep-binding element sequence, while three remaining OBDs form transient dimers with them. The AAA+ domains form an open ring without interactions between subunits and DNA. We hypothesize that the heptameric structure is crucial for loading Rep68 onto double-stranded DNA. The ATPγS complex shows that only three subunits associate with the nucleotide, leading to a conformational change that promotes the formation of both intersubunit and DNA interactions. Moreover, three phenylalanine residues in the AAA+ domain induce a steric distortion in the DNA. Our study provides insights into how an SF3 helicase assembles on DNA and provides insights into the DNA melting process.
Collapse
Affiliation(s)
- Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Brandon Braud
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Karen C Hernandez-Ramirez
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Vishaka Santosh
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Alexander Washington
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| |
Collapse
|
2
|
Xu Y, Wu Y, Zhang Y, Gao K, Wu X, Yang Y, Li D, Yang B, Zhang Z, Dong C. Essential and multifunctional mpox virus E5 helicase-primase in double and single hexamer. SCIENCE ADVANCES 2024; 10:eadl1150. [PMID: 39167653 PMCID: PMC11338233 DOI: 10.1126/sciadv.adl1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
An outbreak of mpox virus in May 2022 has spread over 110 nonpandemic regions in the world, posing a great threat to global health. Mpox virus E5, a helicase-primase, plays an essential role in DNA replication, but the molecular mechanisms are elusive. Here, we report seven structures of mpox virus E5 in a double hexamer (DH) and six in single hexamer in different conformations, indicating a rotation mechanism for helicase and a coupling action for primase. The DH is formed through the interface of zinc-binding domains, and the central channel density indicates potential double-stranded DNA (dsDNA), which helps to identify dsDNA binding residues Arg249, Lys286, Lys315, and Lys317. Our work is important not only for understanding poxviral DNA replication but also for the development of novel therapeutics for serious poxviral infections including smallpox virus and mpox virus.
Collapse
Affiliation(s)
- Yunxia Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaqi Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kaiting Gao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoying Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaxue Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Danyang Li
- The Cryo-EM Center, Core facility of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Biao Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhengyu Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Changjiang Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Jaiswal R, Santosh V, Braud B, Washington A, Escalante CR. Cryo-EM Structure of AAV2 Rep68 bound to integration site AAVS1: Insights into the mechanism of DNA melting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587759. [PMID: 38617369 PMCID: PMC11014581 DOI: 10.1101/2024.04.02.587759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions required for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin and catalyzes the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. Here, we report the Cryo-EM structures of Rep68 bound to double-stranded DNA (dsDNA) containing the sequence of the AAVS1 integration site in different nucleotide-bound states. In the apo state, Rep68 forms a heptameric complex around DNA, with three Origin Binding Domains (OBDs) bound to the Rep Binding Site (RBS) sequence and three other OBDs forming transient dimers with them. The AAA+ domains form an open ring with no interactions between subunits and with DNA. We hypothesize the heptameric quaternary structure is necessary to load onto dsDNA. In the ATPγS-bound state, a subset of three subunits binds the nucleotide, undergoing a large conformational change, inducing the formation of intersubunit interactions interaction and interaction with three consecutive DNA phosphate groups. Moreover, the induced conformational change positions three phenylalanine residues to come in close contact with the DNA backbone, producing a distortion in the DNA. We propose that the phenylalanine residues can potentially act as a hydrophobic wedge in the DNA melting process.
Collapse
Affiliation(s)
- R. Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Department of Biochemistry and Molecular Biology, University of Arkansas for the Medical Sciences, Little Rock AR 72205
| | - V. Santosh
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: US Army DEVCOM Chemical Biological Center, Gunpowder MD
| | - B. Braud
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| | - A. Washington
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Mayo Clinic Graduate School of Biomedical Research, Department of Biochemistry and Molecular Biology, Rochester, MN 55905
| | - Carlos R. Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| |
Collapse
|
4
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
5
|
Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA. Persistent Human Papillomavirus Infection. Viruses 2021; 13:v13020321. [PMID: 33672465 PMCID: PMC7923415 DOI: 10.3390/v13020321] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The success of HPV as an infectious agent lies not within its ability to cause disease, but rather in the adeptness of the virus to establish long-term persistent infection. The ability of HPV to replicate and maintain its genome in a stratified epithelium is contingent on the manipulation of many host pathways. HPVs must abrogate host anti-viral defense programs, perturb the balance of cellular proliferation and differentiation, and hijack DNA damage signaling and repair pathways to replicate viral DNA in a stratified epithelium. Together, these characteristics contribute to the ability of HPV to achieve long-term and persistent infection and to its evolutionary success as an infectious agent. Abstract Persistent infection with oncogenic human papillomavirus (HPV) types is responsible for ~5% of human cancers. The HPV infectious cycle can sustain long-term infection in stratified epithelia because viral DNA is maintained as low copy number extrachromosomal plasmids in the dividing basal cells of a lesion, while progeny viral genomes are amplified to large numbers in differentiated superficial cells. The viral E1 and E2 proteins initiate viral DNA replication and maintain and partition viral genomes, in concert with the cellular replication machinery. Additionally, the E5, E6, and E7 proteins are required to evade host immune responses and to produce a cellular environment that supports viral DNA replication. An unfortunate consequence of the manipulation of cellular proliferation and differentiation is that cells become at high risk for carcinogenesis.
Collapse
|
6
|
Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020; 477:3499-3525. [PMID: 32970141 PMCID: PMC7574821 DOI: 10.1042/bcj20200065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic DNA replication is a highly dynamic and tightly regulated process. Replication involves several dozens of replication proteins, including the initiators ORC and Cdc6, replicative CMG helicase, DNA polymerase α-primase, leading-strand DNA polymerase ε, and lagging-strand DNA polymerase δ. These proteins work together in a spatially and temporally controlled manner to synthesize new DNA from the parental DNA templates. During DNA replication, epigenetic information imprinted on DNA and histone proteins is also copied to the daughter DNA to maintain the chromatin status. DNA methyltransferase 1 is primarily responsible for copying the parental DNA methylation pattern into the nascent DNA. Epigenetic information encoded in histones is transferred via a more complex and less well-understood process termed replication-couple nucleosome assembly. Here, we summarize the most recent structural and biochemical insights into DNA replication initiation, replication fork elongation, chromatin assembly and maintenance, and related regulatory mechanisms.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, Michigan, U.S.A
| |
Collapse
|
7
|
Joo S, Chung BH, Lee M, Ha TH. Ring-shaped replicative helicase encircles double-stranded DNA during unwinding. Nucleic Acids Res 2020; 47:11344-11354. [PMID: 31665506 PMCID: PMC6868380 DOI: 10.1093/nar/gkz893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/29/2019] [Accepted: 10/23/2019] [Indexed: 11/14/2022] Open
Abstract
Ring-shaped replicative helicases are hexameric and play a key role in cellular DNA replication. Despite their importance, our understanding of the unwinding mechanism of replicative helicases is far from perfect. Bovine papillomavirus E1 is one of the best-known model systems for replicative helicases. E1 is a multifunctional initiator that senses and melts the viral origin and unwinds DNA. Here, we study the unwinding mechanism of E1 at the single-molecule level using magnetic tweezers. The result reveals that E1 as a single hexamer is a poorly processive helicase with a low unwinding rate. Tension on the DNA strands impedes unwinding, indicating that the helicase interacts strongly with both DNA strands at the junction. While investigating the interaction at a high force (26–30 pN), we discovered that E1 encircles dsDNA. By comparing with the E1 construct without a DNA binding domain, we propose two possible encircling modes of E1 during active unwinding.
Collapse
Affiliation(s)
- Sihwa Joo
- BioNanoTechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Nanobiotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong H Chung
- BioNanoTechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Nanobiotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| | - Mina Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Tai H Ha
- BioNanoTechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Nanobiotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Helicobacter pylori helicase loader protein Hp0897 shows unique functions of N- and C-terminal regions. Biochem J 2019; 476:3261-3279. [PMID: 31548270 DOI: 10.1042/bcj20190430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022]
Abstract
Helicase loaders are required for the loading of helicases at the vicinity of replication origins. In Helicobacter pylori, Hp0897 has been shown to be a potential helicase loader for replicative helicase (HpDnaB) although it does not show any sequence homology with conventional DnaC like helicase loader proteins. Therefore, it is important to investigate the in vivo role of Hp0897 and structure-function analysis with respect to domain mapping of Hp0897 and HpDnaB. Although HporiC is divided into oriC1 and oriC2, the latter has been assigned as functional origin based on loading of initiator protein HpDnaA. Using chromatin immunoprecipitation (ChIP) experiment, we show preferential binding of Hp0897 at oriC2 over oriC1 like HpDnaA highlighting its helicase loader function in vivo. Furthermore, we generated series of deletion mutants for HpDnaB and Hp0897 that enabled us to map the domains of interaction between these two proteins. Interestingly, the C-terminal domain of Hp0897 (Hp0897CTD) shows stronger interaction with HpDnaB over the N-terminal region of Hp0897 (Hp0897NTD). Similar to the full-length protein, Hp0897CTD also stimulates the DNA binding activity of HpDnaB. Furthermore, overexpression of Hp0897 full-length protein in H. pylori leads to an elongated cell phenotype. While the overexpression of Hp0897CTD does not show a phenotype of cell elongation, overexpression of Hp0897NTD shows extensive cell elongation. These results highlight the possible role of Hp0897CTD in helicase loading and Hp0897NTD's unique function linked to cell division that make Hp0897 as a potential drug target against H. pylori.
Collapse
|
9
|
The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 2018; 25:122-130. [PMID: 29379175 DOI: 10.1038/s41594-018-0024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.
Collapse
|
10
|
Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance. J Virol 2017; 91:JVI.01046-17. [PMID: 28701406 DOI: 10.1128/jvi.01046-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.
Collapse
|
11
|
Origin DNA Melting-An Essential Process with Divergent Mechanisms. Genes (Basel) 2017; 8:genes8010026. [PMID: 28085061 PMCID: PMC5295021 DOI: 10.3390/genes8010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Origin DNA melting is an essential process in the various domains of life. The replication fork helicase unwinds DNA ahead of the replication fork, providing single-stranded DNA templates for the replicative polymerases. The replication fork helicase is a ring shaped-assembly that unwinds DNA by a steric exclusion mechanism in most DNA replication systems. While one strand of DNA passes through the central channel of the helicase ring, the second DNA strand is excluded from the central channel. Thus, the origin, or initiation site for DNA replication, must melt during the initiation of DNA replication to allow for the helicase to surround a single-DNA strand. While this process is largely understood for bacteria and eukaryotic viruses, less is known about how origin DNA is melted at eukaryotic cellular origins. This review describes the current state of knowledge of how genomic DNA is melted at a replication origin in bacteria and eukaryotes. We propose that although the process of origin melting is essential for the various domains of life, the mechanism for origin melting may be quite different among the different DNA replication initiation systems.
Collapse
|
12
|
Gai D, Wang D, Li SX, Chen XS. The structure of SV40 large T hexameric helicase in complex with AT-rich origin DNA. eLife 2016; 5. [PMID: 27921994 PMCID: PMC5140265 DOI: 10.7554/elife.18129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-to-head hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells.
Collapse
Affiliation(s)
- Dahai Gai
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Program, University of Southern California, Los Angeles, United States
| | - Damian Wang
- Department of Biological Sciences, Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Shu-Xing Li
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, United States
| | - Xiaojiang S Chen
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Program, University of Southern California, Los Angeles, United States.,Department of Biological Sciences, Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
| |
Collapse
|
13
|
Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 2014; 28:2291-303. [PMID: 25319829 PMCID: PMC4201289 DOI: 10.1101/gad.242313.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex (pre-RC) that contains a Mcm2–7 double hexamer. In this study, Sun et al. examined the helicase loading reaction in the presence of ATP, revealing the basic architecture of a number of pre-RC assembly reaction intermediates, including a newly identified ORC–Cdc6–Mcm2–7–Mcm2–7 complex. The detailed architecture of the Mcm2–7 double hexamer was also established. Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex and an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alejandra Fernandez-Cid
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Alberto Riera
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Zuanning Yuan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christian Speck
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom;
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
14
|
A conserved regulatory module at the C terminus of the papillomavirus E1 helicase domain controls E1 helicase assembly. J Virol 2014; 89:1129-42. [PMID: 25378487 DOI: 10.1128/jvi.01903-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Viruses frequently combine multiple activities into one polypeptide to conserve coding capacity. This strategy creates regulatory challenges to ascertain that the combined activities are compatible and do not interfere with each other. The papillomavirus E1 protein, as many other helicases, has the intrinsic ability to form hexamers and double hexamers (DH) that serve as the replicative DNA helicase. However, E1 also has the more unusual ability to generate local melting by forming a double trimer (DT) complex that can untwist the double-stranded origin of DNA replication (ori) DNA in preparation for DH formation. Here we describe a switching mechanism that allows the papillomavirus E1 protein to form these two different kinds of oligomers and to transition between them. We show that a conserved regulatory module attached to the E1 helicase domain blocks hexamer and DH formation and promotes DT formation. In the presence of the appropriate trigger, the inhibitory effect of the regulatory module is relieved and the transition to DH formation can occur. IMPORTANCE This study provides a mechanistic understanding into how a multifunctional viral polypeptide can provide different, seemingly incompatible activities. A conserved regulatory sequence module attached to the AAA+ helicase domain in the papillomavirus E1 protein allows the formation of different oligomers with different biochemical activities.
Collapse
|
15
|
E1-mediated recruitment of a UAF1-USP deubiquitinase complex facilitates human papillomavirus DNA replication. J Virol 2014; 88:8545-55. [PMID: 24850727 DOI: 10.1128/jvi.00379-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The human papillomavirus (HPV) E1 helicase promotes viral DNA replication through its DNA unwinding activity and association with host factors. The E1 proteins from anogenital HPV types interact with the cellular WD repeat-containing factor UAF1 (formerly known as p80). Specific amino acid substitutions in E1 that impair this interaction inhibit maintenance of the viral episome in immortalized keratinocytes and reduce viral DNA replication by up to 70% in transient assays. In this study, we determined by affinity purification of UAF1 that it interacts with three deubiquitinating enzymes in C33A cervical carcinoma cells: USP1, a nuclear protein, and the two cytoplasmic enzymes USP12 and USP46. Coimmunoprecipitation experiments indicated that E1 assembles into a ternary complex with UAF1 and any one of these three USPs. Moreover, expression of E1 leads to a redistribution of USP12 and USP46 from the cytoplasm to the nucleus. Chromatin immunoprecipitation studies further revealed that E1 recruits these threes USPs to the viral origin in association with UAF1. The function of USP1, USP12, and USP46 in viral DNA replication was investigated by overproduction of catalytically inactive versions of these enzymes in transient assays. All three dominant negative USPs reduced HPV31 DNA replication by up to 60%, an effect that was specific, as it was not observed in assays performed with a truncated E1 lacking the UAF1-binding domain or with bovine papillomavirus 1 E1, which does not bind UAF1. These results highlight the importance of the USP1, USP12, and USP46 deubiquitinating enzymes in anogenital HPV DNA replication. IMPORTANCE Human papillomaviruses are small DNA tumor viruses that induce benign and malignant lesions of the skin and mucosa. HPV types that infect the anogenital tract are the etiological agents of cervical cancer, the majority of anal cancers, and a growing proportion of head-and-neck cancers. Replication of the HPV genome requires the viral protein E1, a DNA helicase that also interacts with host factors to promote viral DNA synthesis. We previously reported that the E1 helicase from anogenital HPV types associates with the WD40 repeat-containing protein UAF1. Here, we show that UAF1 bridges the interaction of E1 with three deubiquitinating enzymes, USP1, USP12, and USP46. We further show that these deubiquitinases are recruited by E1/UAF1 to the viral origin of DNA replication and that overexpression of catalytically inactive versions of these enzymes reduces viral DNA replication. These results highlight the need for an E1-associated deubiquitinase activity in anogenital HPV genome replication.
Collapse
|
16
|
O'Shea VL, Berger JM. Loading strategies of ring-shaped nucleic acid translocases and helicases. Curr Opin Struct Biol 2014; 25:16-24. [PMID: 24878340 PMCID: PMC4040187 DOI: 10.1016/j.sbi.2013.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022]
Abstract
Ring-shaped nucleic acid translocases and helicases catalyze the directed and processive movement of nucleic acid strands to support essential transactions such as replication, transcription, and chromosome partitioning. Assembled typically as hexamers, ring helicase/translocase systems use coordinated cycles of nucleoside triphosphate (NTP) hydrolysis to translocate extended DNA or RNA substrates through a central pore. Ring formation presents a topological challenge to the engagement of substrate oligonucleotides, and is frequently overcome by distinct loading strategies for shepherding specific motors onto their respective substrates. Recent structural studies that capture different loading intermediates have begun to reveal how different helicase/translocase rings either assemble around substrates or crack open to allow DNA or RNA strand entry, and how dedicated chaperones facilitate these events in some instances. Both prevailing mechanistic models and remaining knowledge gaps are discussed.
Collapse
Affiliation(s)
- Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94705, USA.
| |
Collapse
|
17
|
Abstract
A prerequisite for DNA replication is the unwinding of duplex DNA catalyzed by a replicative hexameric helicase. Despite a growing body of research, key elements of helicase mechanism remain under substantial debate. In particular, the number of DNA strands encircled by the helicase ring during unwinding and the ring orientation at the replication fork completely contrast in contemporary mechanistic models. Here we use single-molecule and ensemble assays to address these questions for the papillomavirus E1 helicase. We find that E1 unwinds DNA with a strand-exclusion mechanism, with the N-terminal side of the helicase ring facing the replication fork. We show that E1 generates strikingly heterogeneous unwinding patterns stemming from varying degrees of repetitive movements, which is modulated by the DNA-binding domain. Together, our studies reveal previously unrecognized dynamic facets of replicative helicase unwinding mechanisms.
Collapse
|
18
|
Mori S, Kusumoto-Matsuo R, Ishii Y, Takeuchi T, Kukimoto I. Replication interference between human papillomavirus types 16 and 18 mediated by heterologous E1 helicases. Virol J 2014; 11:11. [PMID: 24456830 PMCID: PMC3904167 DOI: 10.1186/1743-422x-11-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/21/2014] [Indexed: 11/20/2022] Open
Abstract
Background Co-infection of multiple genotypes of human papillomavirus (HPV) is commonly observed among women with abnormal cervical cytology, but how different HPVs interact with each other in the same cell is not clearly understood. A previous study using cultured keratinocytes revealed that genome replication of one HPV type is inhibited by co-existence of the genome of another HPV type, suggesting that replication interference occurs between different HPV types when co-infected; however, molecular mechanisms underlying inter-type replication interference have not been fully explored. Methods Replication interference between two most prevalent HPV types, HPV16 and HPV18, was examined in HPV-negative C33A cervical carcinoma cells co-transfected with genomes of HPV16 and HPV18 together with expression plasmids for E1/E2 of both types. Levels of HPV16/18 genome replication were measured by quantitative real-time PCR. Physical interaction between HPV16/18 E1s was assessed by co-immunoprecipitation assays in the cell lysates. Results The replication of HPV16 and HPV18 genomes was suppressed by co-expression of E1/E2 of heterologous types. The interference was mediated by the heterologous E1, but not E2. The oligomerization domain of HPV16 E1 was essential for HPV18 replication inhibition, whereas the helicase domain was dispensable. HPV16 E1 co-precipitated with HPV18 E1 in the cell lysates, and an HPV16 E1 mutant Y379A, which bound to HPV18 E1 less efficiently, failed to inhibit HPV18 replication. Conclusions Co-infection of a single cell with both HPV16 and HPV18 results in replication interference between them, and physical interaction between the heterologous E1s is responsible for the interference. Heterooligomers composed of HPV16/18 E1s may lack the ability to support HPV genome replication.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan.
| | | | | | | | | |
Collapse
|
19
|
Papillomavirus associated diseases of the horse. Vet Microbiol 2013; 167:159-67. [DOI: 10.1016/j.vetmic.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 08/05/2013] [Indexed: 12/30/2022]
|
20
|
Domsic JF, Chen HS, Lu F, Marmorstein R, Lieberman PM. Molecular basis for oligomeric-DNA binding and episome maintenance by KSHV LANA. PLoS Pathog 2013; 9:e1003672. [PMID: 24146617 PMCID: PMC3798644 DOI: 10.1371/journal.ppat.1003672] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022] Open
Abstract
LANA is the KSHV-encoded terminal repeat binding protein essential for viral replication and episome maintenance during latency. We have determined the X-ray crystal structure of LANA C-terminal DNA binding domain (LANADBD) to reveal its capacity to form a decameric ring with an exterior DNA binding surface. The dimeric core is structurally similar to EBV EBNA1 with an N-terminal arm that regulates DNA binding and is required for replication function. The oligomeric interface between LANA dimers is dispensable for single site DNA binding, but is required for cooperative DNA binding, replication function, and episome maintenance. We also identify a basic patch opposite of the DNA binding surface that is responsible for the interaction with BRD proteins and contributes to episome maintenance function. The structural features of LANADBD suggest a novel mechanism of episome maintenance through DNA-binding induced oligomeric assembly. Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latent infections that are associated with several cancers including Kaposi's sarcoma, pleural effusion lymphoma, and multicentric Caslteman's disease. One of the major viral proteins required for establishment and maintenance of the latent state is the latency-associated nuclear antigen (LANA). LANA binds to DNA sequences within the terminal repeats (TR) of the viral genome and stimulates both DNA replication and episome maintenance during latency. Here we present the X-ray crystal structure of the DNA binding domain of LANA (LANADBD) and show that it has the capacity to form oligomeric complexes upon DNA binding. We characterize structural features of LANADBD that are required for oligomerization, DNA binding, and interaction with host cell BET proteins, BRD2 and BRD4, which are important for mediating multiple functions of LANA, including episome maintenance.
Collapse
MESH Headings
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Cell Line, Tumor
- DNA Replication
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Herpesvirus 8, Human/chemistry
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Humans
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Protein Binding
- Protein Multimerization
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Structure-Activity Relationship
Collapse
Affiliation(s)
- John F. Domsic
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Horng-Shen Chen
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Fang Lu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Ronen Marmorstein
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RM); (PML)
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RM); (PML)
| |
Collapse
|
21
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Abstract
E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA using a spiral escalator mechanism. E1 is tightly regulated in vivo, in particular by post-translational modifications that restrict its accumulation in the nucleus. Here we review how different functional domains of E1 orchestrate viral DNA replication, with an emphasis on their interactions with substrate DNA, host DNA replication factors and modifying enzymes. These studies have made E1 one of the best characterized helicases and provided unique insights on how PVs usurp different host-cell machineries to replicate and amplify their genome in a tightly controlled manner.
Collapse
|
23
|
Mutations in DNA binding and transactivation domains affect the dynamics of parvovirus NS1 protein. J Virol 2013; 87:11762-74. [PMID: 23986577 DOI: 10.1128/jvi.01678-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional replication protein of autonomous parvoviruses, NS1, is vital for viral genome replication and for the control of viral protein production. Two DNA-interacting domains of NS1, the N-terminal and helicase domains, are necessary for these functions. In addition, the N and C termini of NS1 are required for activation of viral promoter P38. By comparison with the structural and biochemical data from other parvoviruses, we identified potential DNA-interacting amino acid residues from canine parvovirus NS1. The role of the identified amino acids in NS1 binding dynamics was studied by mutagenesis, fluorescence recovery after photobleaching, and computer simulations. Mutations in the predicted DNA-interacting amino acids of the N-terminal and helicase domains increased the intranuclear binding dynamics of NS1 dramatically. A substantial increase in binding dynamics was also observed for NS1 mutants that targeted the metal ion coordination site in the N terminus. Interestingly, contrary to other mutants, deletion of the C terminus resulted in slower binding dynamics of NS1. P38 transactivation was severely reduced in both N-terminal DNA recognition and in C-terminal deletion mutants. These data suggest that the intranuclear dynamics of NS1 are largely characterized by its sequence-specific and -nonspecific binding to double-stranded DNA. Moreover, binding of NS1 is equally dependent on the N-terminal domain and conserved β-loop of the helicase domain.
Collapse
|
24
|
Recombination-dependent oligomerization of human papillomavirus genomes upon transient DNA replication. J Virol 2013; 87:12051-68. [PMID: 23986589 DOI: 10.1128/jvi.01798-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the extensive and progressive oligomerization of human papillomavirus (HPV) genomes after transfection into the U2OS cell line. The HPV genomic oligomers are extrachromosomal concatemeric molecules containing the viral genome in a head-to-tail orientation. The process of oligomerization does not depend on the topology of the input DNA, and it does not require any other viral factors besides replication proteins E1 and E2. We provide evidence that oligomerization of the HPV18 and HPV11 genomes involves homologous recombination. We also demonstrate oligomerization of the HPV18 and HPV11 genomes in SiHa, HeLa, and C-33 A cell lines and provide examples of oligomeric HPV genomes in clinical samples obtained from HPV-infected patients.
Collapse
|
25
|
Chow LT, Broker TR. Human papillomavirus infections: warts or cancer? Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012997. [PMID: 23685995 DOI: 10.1101/cshperspect.a012997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human papillomaviruses (HPVs) are prevalent pathogens of mucosal and cutaneous epithelia. Productive infections of squamous epithelia lead to benign hyperproliferative warts, condylomata, or papillomas. Persistent infections of the anogenital mucosa by high-risk HPV genotypes 16 and 18 and closely related types can infrequently progress to high-grade intraepithelial neoplasias, carcinomas-in-situ, and invasive cancers in women and men. HPV-16 is also associated with a fraction of head and neck cancers. We discuss the interactions of the mucosotropic HPVs with the host regulatory proteins and pathways that lead to benign coexistence and enable HPV DNA amplification or, alternatively, to cancers that no longer support viral production.
Collapse
Affiliation(s)
- Louise T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
26
|
CK2 phosphorylation inactivates DNA binding by the papillomavirus E1 and E2 proteins. J Virol 2013; 87:7668-79. [PMID: 23637413 DOI: 10.1128/jvi.00345-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses have complex life cycles that are understood only superficially. Although it is well established that the viral E1 and E2 proteins play key roles in controlling viral transcription and DNA replication, how these factors are regulated is not well understood. Here, we demonstrate that phosphorylation by the protein kinase CK2 controls the biochemical activities of the bovine papillomavirus E1 and E2 proteins by modifying their DNA binding activity. Phosphorylation at multiple sites in the N-terminal domain in E1 results in the loss of sequence-specific DNA binding activity, a feature that is also conserved in human papillomavirus (HPV) E1 proteins. The bovine papillomavirus (BPV) E2 protein, when phosphorylated by CK2 on two specific sites in the hinge, also loses its site-specific DNA binding activity. Mutation of these sites in E2 results in greatly increased levels of latent viral DNA replication, indicating that CK2 phosphorylation of E2 is a negative regulator of viral DNA replication during latent viral replication. In contrast, mutation of the N-terminal phosphorylation sites in E1 has no effect on latent viral DNA replication. We propose that the phosphorylation of the N terminus of E1 plays a role only in vegetative viral DNA replication, and consistent with such a role, caspase 3 cleavage of E1, which has been shown to be necessary for vegetative viral DNA replication, restores the DNA binding activity to phosphorylated E1.
Collapse
|
27
|
Chang YP, Xu M, Machado ACD, Yu XJ, Rohs R, Chen XS. Mechanism of origin DNA recognition and assembly of an initiator-helicase complex by SV40 large tumor antigen. Cell Rep 2013; 3:1117-27. [PMID: 23545501 DOI: 10.1016/j.celrep.2013.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/10/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022] Open
Abstract
The DNA tumor virus Simian virus 40 (SV40) is a model system for studying eukaryotic replication. SV40 large tumor antigen (LTag) is the initiator/helicase that is essential for genome replication. LTag recognizes and assembles at the viral replication origin. We determined the structure of two multidomain LTag subunits bound to origin DNA. The structure reveals that the origin binding domains (OBDs) and Zn and AAA+ domains are involved in origin recognition and assembly. Notably, the OBDs recognize the origin in an unexpected manner. The histidine residues of the AAA+ domains insert into a narrow minor groove region with enhanced negative electrostatic potential. Computational analysis indicates that this region is intrinsically narrow, demonstrating the role of DNA shape readout in origin recognition. Our results provide important insights into the assembly of the LTag initiator/helicase at the replication origin and suggest that histidine contacts with the minor groove serve as a mechanism of DNA shape readout.
Collapse
Affiliation(s)
- Y Paul Chang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
28
|
Duderstadt KE, Berger JM. A structural framework for replication origin opening by AAA+ initiation factors. Curr Opin Struct Biol 2012; 23:144-53. [PMID: 23266000 DOI: 10.1016/j.sbi.2012.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
ATP-dependent initiation factors help process replication origins and coordinate replisome assembly to control the onset of DNA synthesis. Although the specific properties and regulatory mechanisms of initiator proteins can vary greatly between different organisms, certain nucleotide-binding elements and assembly patterns appear preserved not only within the three domains of cellular life (bacteria, archaea, and eukaryotes), but also with certain classes of double-stranded DNA viruses. Structural studies of replication initiation proteins, both as higher-order oligomers and in complex with cognate DNA substrates, are revealing how an evolutionarily related ATPase fold can support different modes of macromolecular assembly and function. Comparative studies between initiation systems in turn provide clues as to how duplex origin regions may be melted during initiation events.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
29
|
Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J Virol 2012; 87:951-64. [PMID: 23135710 DOI: 10.1128/jvi.01943-12] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously demonstrated that the human papillomavirus (HPV) genome replicates effectively in U2OS cells after transfection using electroporation. The transient extrachromosomal replication, stable maintenance, and late amplification of the viral genome could be studied for high- and low-risk mucosal and cutaneous papillomaviruses. Recent findings indicate that the cellular DNA damage response (DDR) is activated during the HPV life cycle and that the viral replication protein E1 might play a role in this process. We used a U2OS cell-based system to study E1-dependent DDR activation and the involvement of these pathways in viral transient replication. We demonstrated that the E1 protein could cause double-strand DNA breaks in the host genome by directly interacting with DNA. This activity leads to the induction of an ATM-dependent signaling cascade and cell cycle arrest in the S and G(2) phases. However, the transient replication of HPV genomes in U2OS cells induces the ATR-dependent pathway, as shown by the accumulation of γH2AX, ATR-interacting protein (ATRIP), and topoisomerase IIβ-binding protein 1 (TopBP1) in viral replication centers. Viral oncogenes do not play a role in this activation, which is induced only through DNA replication or by replication proteins E1 and E2. The ATR pathway in viral replication centers is likely activated through DNA replication stress and might play an important role in engaging cellular DNA repair/recombination machinery for effective replication of the viral genome upon active amplification.
Collapse
|
30
|
Abstract
Threading of DNA through the central channel of a replicative ring helicase is known as helicase loading, and is a pivotal event during replication initiation at replication origins. Once loaded, the helicase recruits the primase through a direct protein-protein interaction to complete the initial 'priming step' of DNA replication. Subsequent assembly of the polymerases and processivity factors completes the structure of the replisome. Two replisomes are assembled, one on each strand, and move in opposite directions to replicate the parental DNA during the 'elongation step' of DNA replication. Replicative helicases are the motor engines of replisomes powered by the conversion of chemical energy to mechanical energy through ATP binding and hydrolysis. Bidirectional loading of two ring helicases at a replication origin is achieved by strictly regulated and intricately choreographed mechanisms, often through the action of replication initiation and helicase-loader proteins. Current structural and biochemical data reveal a wide range of different helicase-loading mechanisms. Here we review advances in this area and discuss their implications.
Collapse
Affiliation(s)
- Panos Soultanas
- School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
31
|
Stelter M, Gutsche I, Kapp U, Bazin A, Bajic G, Goret G, Jamin M, Timmins J, Terradot L. Architecture of a Dodecameric Bacterial Replicative Helicase. Structure 2012; 20:554-64. [DOI: 10.1016/j.str.2012.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 10/28/2022]
|
32
|
Inhibition of human papillomavirus DNA replication by an E1-derived p80/UAF1-binding peptide. J Virol 2012; 86:3486-500. [PMID: 22278251 DOI: 10.1128/jvi.07003-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E1 helicase is recruited by E2 to the viral origin, where it assembles into a double hexamer that orchestrates replication of the viral genome. We previously identified the cellular WD40 repeat-containing protein p80/UAF1 as a novel interaction partner of E1 from anogenital human papillomavirus (HPV) types. p80 was found to interact with the first 40 residues of HPV type 31 (HPV31) E1, and amino acid substitutions within this domain abrogated the maintenance of the viral episome in keratinocytes. In this study, we report that these p80-binding substitutions reduce by 70% the ability of E1 to support transient viral DNA replication without affecting its interaction with E2 and assembly at the origin in vivo. Microscopy studies revealed that p80 is relocalized from the cytoplasm to discrete subnuclear foci by E1 and E2. Chromatin immunoprecipitation assays further revealed that p80 is recruited to the viral origin in an E1- and E2-dependent manner. Interestingly, overexpression of a 40-amino-acid-long p80-binding peptide, derived from HPV31 E1, was found to inhibit viral DNA replication by preventing the recruitment of endogenous p80 to the origin. Mutant peptides defective for p80 interaction were not inhibitory, demonstrating the specificity of this effect. Characterization of this E1 peptide by nuclear magnetic resonance (NMR) showed that it is intrinsically disordered in solution, while mapping studies indicated that the WD repeats of p80 are required for E1 interaction. These results provide additional evidence for the requirement for p80 in anogenital HPV DNA replication and highlight the potential of E1-p80 interaction as a novel antiviral target.
Collapse
|
33
|
Abstract
In eukaryotes, the Mcm2-7 complex forms the core of the replicative helicase - the molecular motor that uses ATP binding and hydrolysis to fuel the unwinding of double-stranded DNA at the replication fork. Although it is a toroidal hexameric helicase superficially resembling better-studied homohexameric helicases from prokaryotes and viruses, Mcm2-7 is the only known helicase formed from six unique and essential subunits. Recent biochemical and structural analyses of both Mcm2-7 and a higher-order complex containing additional activator proteins (the CMG complex) shed light on the reason behind this unique subunit assembly: whereas only a limited number of specific ATPase active sites are needed for DNA unwinding, one particular ATPase active site has evolved to form a reversible discontinuity (gate) in the toroidal complex. The activation of Mcm2-7 helicase during S-phase requires physical association of the accessory proteins Cdc45 and GINS; structural data suggest that these accessory factors activate DNA unwinding through closure of the Mcm2-7 gate. Moreover, studies capitalizing on advances in the biochemical reconstitution of eukaryotic DNA replication demonstrate that Mcm2-7 loads onto origins during initiation as a double hexamer, yet does not act as a double-stranded DNA pump during elongation.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | |
Collapse
|
34
|
Schuck S, Stenlund A. Mechanistic analysis of local ori melting and helicase assembly by the papillomavirus E1 protein. Mol Cell 2011; 43:776-87. [PMID: 21884978 DOI: 10.1016/j.molcel.2011.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/22/2011] [Accepted: 06/28/2011] [Indexed: 11/16/2022]
Abstract
Preparation of DNA templates for replication requires opening of the duplex to expose single-stranded (ss) DNA. The locally melted DNA is required for replicative DNA helicases to initiate unwinding. How local melting is generated in eukaryotic replicons is unknown, but initiator proteins from a handful of eukaryotic viruses can perform this function. Here we dissect the local melting process carried out by the papillomavirus E1 protein. We characterize the melting process kinetically and identify mutations in the E1 helicase and in the ori that arrest the local melting process. We show that a subset of these mutants have specific defects for melting of the center of the ori containing the binding sites for E1 and demonstrate that these mutants fail to untwist the ori DNA. This understanding of how E1 generates local melting suggests possible mechanisms for local melting in other replicons.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
35
|
Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J Virol 2011; 85:8996-9012. [PMID: 21734051 DOI: 10.1128/jvi.00542-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Replication of the papillomavirus genome is initiated by the assembly of a complex between the viral E1 and E2 proteins at the origin. The E1 helicase is comprised of a C-terminal ATPase/helicase domain, a central domain that binds to the origin, and an N-terminal regulatory region that contains nuclear import and export signals mediating its nucleocytoplasmic shuttling. We previously reported that nuclear accumulation of E1 has a deleterious effect on cellular proliferation which can be prevented by its nuclear export. Here we have shown that nuclear accumulation of E1 from different papillomavirus types blocks cell cycle progression in early S phase and triggers the activation of a DNA damage response (DDR) and of the ATM pathway in a manner that requires both the origin-binding and ATPase activities of E1. Complex formation with E2 reduces the ability of E1 to induce a DDR but does not prevent cell cycle arrest. Transient viral DNA replication still occurs in S-phase-arrested cells but surprisingly is neither affected by nor dependent on induction of a DDR and of the ATM kinase. Finally, we provide evidence that a DDR is also induced in human papillomavirus type 31 (HPV31)-immortalized keratinocytes expressing a mutant E1 protein defective for nuclear export. We propose that nuclear export of E1 prevents cell cycle arrest and the induction of a DDR during the episomal maintenance phase of the viral life cycle and that complex formation with E2 further safeguards undifferentiated cells from undergoing a DDR when E1 is in the nucleus.
Collapse
|
36
|
Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 2011; 18:471-7. [PMID: 21378962 PMCID: PMC4184033 DOI: 10.1038/nsmb.2004] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/09/2010] [Indexed: 11/09/2022]
Abstract
Two central steps for initiating eukaryotic DNA replication involve loading of the Mcm2-7 helicase onto double-stranded DNA and its activation by GINS-Cdc45. To better understand these events, we determined the structures of Mcm2-7 and the CMG complex by using single-particle electron microscopy. Mcm2-7 adopts two conformations--a lock-washer-shaped spiral state and a planar, gapped-ring form--in which Mcm2 and Mcm5 flank a breach in the helicase perimeter. GINS and Cdc45 bridge this gap, forming a topologically closed assembly with a large interior channel; nucleotide binding further seals off the discontinuity between Mcm2 and Mcm5, partitioning the channel into two smaller pores. Together, our data help explain how GINS and Cdc45 activate Mcm2-7, indicate that Mcm2-7 loading may be assisted by a natural predisposition of the hexamer to form open rings, and suggest a mechanism by which the CMG complex assists DNA strand separation.
Collapse
Affiliation(s)
- Alessandro Costa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
The inhibitory action of P56 on select functions of E1 mediates interferon's effect on human papillomavirus DNA replication. J Virol 2010; 84:13036-9. [PMID: 20926571 DOI: 10.1128/jvi.01194-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interferon (IFN)-induced protein P56 inhibits human papillomavirus (HPV) DNA replication by binding to HPV E1, which has several distinct functions in initiating viral DNA replication. Here, we determined that P56 inhibited HPV type 18 (HPV18) E1's DNA helicase activity, E2 binding, and HPV Ori sequence-specific DNA binding but not nonspecific DNA binding. We observed that deletion of a single amino acid, F399, produced an E1 mutant that could not bind P56. This E1 mutant retained its ability to support Ori DNA replication, but this activity was not inhibited by IFN, demonstrating that P56 is the principal executor of the anti-HPV action of IFN.
Collapse
|
38
|
Gai D, Chang YP, Chen XS. Origin DNA melting and unwinding in DNA replication. Curr Opin Struct Biol 2010; 20:756-62. [PMID: 20870402 DOI: 10.1016/j.sbi.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/25/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on recent advances in the structural and biochemical studies of the initiators and the replicative helicases in multiple replication systems, with emphasis on the systems in archaeal and eukaryotic cells. These studies have yielded insights into the plausible mechanisms of the early stages of DNA replication.
Collapse
Affiliation(s)
- Dahai Gai
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
39
|
Nuclear export of human papillomavirus type 31 E1 is regulated by Cdk2 phosphorylation and required for viral genome maintenance. J Virol 2010; 84:11747-60. [PMID: 20844047 DOI: 10.1128/jvi.01445-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The initiator protein E1 from human papillomavirus (HPV) is a helicase essential for replication of the viral genome. E1 contains three functional domains: a C-terminal enzymatic domain that has ATPase/helicase activity, a central DNA-binding domain that recognizes specific sequences in the origin of replication, and a N-terminal region necessary for viral DNA replication in vivo but dispensable in vitro. This N-terminal portion of E1 contains a conserved nuclear export signal (NES) whose function in the viral life cycle remains unclear. In this study, we provide evidence that nuclear export of HPV31 E1 is inhibited by cyclin E/A-Cdk2 phosphorylation of two serines residues, S92 and S106, located near and within the E1 NES, respectively. Using E1 mutant proteins that are confined to the nucleus, we determined that nuclear export of E1 is not essential for transient viral DNA replication but is important for the long-term maintenance of the HPV episome in undifferentiated keratinocytes. The findings that E1 nuclear export is not required for viral DNA replication but needed for genome maintenance over multiple cell divisions raised the possibility that continuous nuclear accumulation of E1 is detrimental to cellular growth. In support of this possibility, we observed that nuclear accumulation of E1 dramatically reduces cellular proliferation by delaying cell cycle progression in S phase. On the basis of these results, we propose that nuclear export of E1 is required, at least in part, to limit accumulation of this viral helicase in the nucleus in order to prevent its detrimental effect on cellular proliferation.
Collapse
|
40
|
Sweeney TR, Cisnetto V, Bose D, Bailey M, Wilson JR, Zhang X, Belsham GJ, Curry S. Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism. J Biol Chem 2010; 285:24347-59. [PMID: 20507978 PMCID: PMC2915670 DOI: 10.1074/jbc.m110.129940] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-terminal membrane-binding amphipathic helix attached to the main ATPase domain. In infected cells, 2C is involved in the formation of membrane vesicles, where it co-localizes with viral RNA replication complexes, but its precise role in virus replication has not been elucidated. We show here that deletion of the predicted N-terminal amphipathic helix enables overexpression in Escherichia coli of a highly soluble truncated protein, 2C(34–318), that has ATPase and RNA binding activity. ATPase activity was abrogated by point mutations in the Walker A (K116A) and B (D160A) motifs and Motif C (N207A) in the active site. Unliganded 2C(34–318) exhibits concentration-dependent self-association to yield oligomeric forms, the largest of which is tetrameric. Strikingly, in the presence of ATP and RNA, FMDV 2C(34–318) containing the N207A mutation, which binds but does not hydrolyze ATP, was found to oligomerize specifically into hexamers. Visualization of FMDV 2C-ATP-RNA complexes by negative stain electron microscopy revealed hexameric ring structures with 6-fold symmetry that are characteristic of AAA+ ATPases. ATPase assays performed by mixing purified active and inactive 2C(34–318) subunits revealed a coordinated mechanism of ATP hydrolysis. Our results provide new insights into the structure and mechanism of picornavirus 2C proteins that will facilitate new investigations of their roles in infection.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|
42
|
Structure-based mutational analysis of the bovine papillomavirus E1 helicase domain identifies residues involved in the nonspecific DNA binding activity required for double trimer formation. J Virol 2010; 84:4264-76. [PMID: 20147403 DOI: 10.1128/jvi.02214-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E1 protein is a multifunctional initiator protein responsible for preparing the viral DNA template for initiation of DNA replication. The E1 protein encodes two DNA binding activities that are required for initiation of DNA replication. A well-characterized sequence-specific DNA binding activity resides in the E1 DBD and is used to tether E1 to the papillomavirus ori. A non-sequence-specific DNA binding activity is also required for formation of the E1 double trimer (DT) complex, which is responsible for the local template melting that precedes loading of the E1 helicase. This DNA binding activity is very poorly understood. We use a structure-based mutagenesis approach to identify residues in the E1 helicase domain that are required for the non-sequence-specific DNA binding and DT formation. We found that three groups of residues are involved in nonspecific DNA binding: the E1 beta-hairpin structure containing R505, K506, and H507; a hydrophobic loop containing F464; and a charged loop containing K461 together generate the binding surface involved in nonspecific DNA binding. These residues are well conserved in the T antigens from the polyomaviruses, indicating that the polyomaviruses share this nonspecific DNA binding activity.
Collapse
|
43
|
Abstract
The loading of replicative helicases onto DNA is tightly regulated in all organisms, yet the molecular mechanisms for this event remain poorly defined. Remus et al. (2009) provide important insights into helicase loading in eukaryotes, showing that the Mcm2-7 replicative helicase encircles double-stranded DNA as head-to-head double hexamers.
Collapse
Affiliation(s)
- Thomas J Takara
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
44
|
Mutations in Sensor 1 and Walker B in the bovine papillomavirus E1 initiator protein mimic the nucleotide-bound state. J Virol 2009; 84:1912-9. [PMID: 19939914 DOI: 10.1128/jvi.01756-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral replication initiator proteins are multifunctional proteins that utilize ATP binding and hydrolysis by their AAA+ modules for multiple functions in the replication of their viral genomes. These proteins are therefore of particular interest for understanding how AAA+ proteins carry out multiple ATP driven functions. We have performed a comprehensive mutational analysis of the residues involved in ATP binding and hydrolysis in the papillomavirus E1 initiator protein based on the recent structural data. Ten of the eleven residues that were targeted were defective for ATP hydrolysis, and seven of these were also defective for ATP binding. The three mutants that could still bind nucleotide represent the Walker B motif (D478 and D479) and Sensor 1 (N523), three residues that are in close proximity to each other and generally are considered to be involved in ATP hydrolysis. Surprisingly, however, two of these mutants, D478A and N523A, mimicked the nucleotide bound state and were capable of binding DNA in the absence of nucleotide. However, these mutants could not form the E1 double trimer in the absence of nucleotide, demonstrating that there are two qualitatively different consequences of ATP binding by E1, one that can be mimicked by D478A and N523A and one which cannot.
Collapse
|
45
|
Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009; 139:719-30. [PMID: 19896182 PMCID: PMC2804858 DOI: 10.1016/j.cell.2009.10.015] [Citation(s) in RCA: 525] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/05/2009] [Accepted: 09/24/2009] [Indexed: 01/06/2023]
Abstract
The licensing of eukaryotic DNA replication origins, which ensures once-per-cell-cycle replication, involves the loading of six related minichromosome maintenance proteins (Mcm2-7) into prereplicative complexes (pre-RCs). Mcm2-7 forms the core of the replicative DNA helicase, which is inactive in the pre-RC. The loading of Mcm2-7 onto DNA requires the origin recognition complex (ORC), Cdc6, and Cdt1, and depends on ATP. We have reconstituted Mcm2-7 loading with purified budding yeast proteins. Using biochemical approaches and electron microscopy, we show that single heptamers of Cdt1*Mcm2-7 are loaded cooperatively and result in association of stable, head-to-head Mcm2-7 double hexamers connected via their N-terminal rings. DNA runs through a central channel in the double hexamer, and, once loaded, Mcm2-7 can slide passively along double-stranded DNA. Our work has significant implications for understanding how eukaryotic DNA replication origins are chosen and licensed, how replisomes assemble during initiation, and how unwinding occurs during DNA replication.
Collapse
Affiliation(s)
- Dirk Remus
- Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | | | | | | | | | | |
Collapse
|
46
|
A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 2009; 106:20240-5. [PMID: 19910535 DOI: 10.1073/pnas.0911500106] [Citation(s) in RCA: 422] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks.
Collapse
|
47
|
The human papillomavirus 16 E2 protein is stabilised in S phase. Virology 2009; 394:194-9. [PMID: 19781729 DOI: 10.1016/j.virol.2009.08.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/17/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022]
Abstract
The human papillomavirus 16 E2 protein regulates transcription from, and replication of, the viral genome and is also required for segregation of the viral genome via interaction with mitotic bodies. To regulate DNA replication E2 interacts with sequences around the origin of replication and recruits the viral helicase E1 via a protein-protein interaction, which then initiates viral genome replication. The replication role of E2 must originally function in a host cell S phase. In this report, we demonstrate that E2 is stabilised in the S phase of the cell cycle and that this stabilisation is accompanied by an increase in phosphorylation of the protein. This increased phosphorylation and stability are likely required for optimum viral DNA replication and therefore identification of the enzymes involved in regulating these properties of E2 will provide targets for therapeutic intervention in the viral life cycle. Preliminary studies have identified E2 as a Cdk2 substrate demonstrating this enzyme as a candidate kinase for mediating the in vivo phosphorylation of HPV16 E2.
Collapse
|
48
|
Boer DR, Ruíz-Masó JA, López-Blanco JR, Blanco AG, Vives-Llàcer M, Chacón P, Usón I, Gomis-Rüth FX, Espinosa M, Llorca O, del Solar G, Coll M. Plasmid replication initiator RepB forms a hexamer reminiscent of ring helicases and has mobile nuclease domains. EMBO J 2009; 28:1666-78. [PMID: 19440202 DOI: 10.1038/emboj.2009.125] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/07/2009] [Indexed: 11/09/2022] Open
Abstract
RepB initiates plasmid rolling-circle replication by binding to a triple 11-bp direct repeat (bind locus) and cleaving the DNA at a specific distant site located in a hairpin loop within the nic locus of the origin. The structure of native full-length RepB reveals a hexameric ring molecule, where each protomer has two domains. The origin-binding and catalytic domains show a three-layer alpha-beta-alpha sandwich fold. The active site is positioned at one of the faces of the beta-sheet and coordinates a Mn2+ ion at short distance from the essential nucleophilic Y99. The oligomerization domains (ODs), each consisting of four alpha-helices, together define a compact ring with a central channel, a feature found in ring helicases. The toroidal arrangement of RepB suggests that, similar to ring helicases, it encircles one of the DNA strands during replication to confer processivity to the replisome complex. The catalytic domains appear to be highly mobile with respect to ODs. This mobility may account for the adaptation of the protein to two distinct DNA recognition sites.
Collapse
Affiliation(s)
- D Roeland Boer
- Institute for Research in Biomedicine, Barcelona Science Park, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Papillomavirus DNA replication — From initiation to genomic instability. Virology 2009; 384:360-8. [DOI: 10.1016/j.virol.2008.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 12/25/2022]
|
50
|
Abstract
Papillomaviruses establish persistent infection in the dividing, basal epithelial cells of the host. The viral genome is maintained as a circular, double-stranded DNA, extrachromosomal element within these cells. Viral genome amplification occurs only when the epithelial cells differentiate and viral particles are shed in squames that are sloughed from the surface of the epithelium. There are three modes of replication in the papillomavirus life cycle. Upon entry, in the establishment phase, the viral genome is amplified to a low copy number. In the second maintenance phase, the genome replicates in dividing cells at a constant copy number, in synchrony with the cellular DNA. And finally, in the vegetative or productive phase, the viral DNA is amplified to a high copy number in differentiated cells and is destined to be packaged in viral capsids. This review discusses the cis elements and protein factors required for each stage of papillomavirus replication.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|