1
|
Stubbe FX, Ponsard P, Steiner FA, Hermand D. SSUP-72/PINN-1 coordinates RNA-polymerase II 3' pausing and developmental gene expression in C. elegans. Nat Commun 2025; 16:2624. [PMID: 40097442 PMCID: PMC11914089 DOI: 10.1038/s41467-025-57847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
During exit from Caenorhabditis elegans (C. elegans) L1 developmental arrest, a network of growth- and developmental genes is activated, many of which are organized into operons where transcriptional termination is uncoupled from mRNA 3'-end processing. CDK-12-mediated Pol II CTD S2 phosphorylation enhances SL2 trans-splicing at downstream operonic genes, preventing premature termination and ensuring proper gene expression for developmental progression. Using a genetic screen, we identified the SSUP-72/PINN-1 module as a suppressor of defects induced by CDK-12 inhibition. Loss of SSUP-72/PINN-1 bypasses the requirement for CDK-12 in post-embryonic development. Genome-wide analyses reveal that SSUP-72, a CTD S5P phosphatase, affects Pol II 3' pausing and regulates intra-operon termination. Our findings establish SSUP-72/PINN-1 as a key regulator of Pol II dynamics, coordinating operonic gene expression and growth during C. elegans post-embryonic development.
Collapse
Affiliation(s)
| | | | - Florian A Steiner
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Damien Hermand
- URPHYM-GEMO, The University of Namur, Namur, Belgium.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Liu W, Deng L, Wang M, Liu X, Ouyang X, Wang Y, Miao N, Luo X, Wu X, Lu X, Xv X, Zhang T, Li Y, Ji J, Qiao Z, Wang S, Guan L, Li D, Dang Y, Liu C, Li W, Zhang Y, Wang Z, Chen FX, Chen C, Lin C, Goh WSS, Zhou W, Luo Z, Gao P, Li P, Yu Y. Pcf11/Spt5 condensates stall RNA polymerase II to facilitate termination and piRNA-guided heterochromatin formation. Mol Cell 2025; 85:929-947.e10. [PMID: 40015272 DOI: 10.1016/j.molcel.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
The PIWI-interacting RNA (piRNA) pathway plays a crucial role in protecting animal germ cells by repressing transposons. However, the mechanism of piRNA-guided heterochromatin formation and its relationship to transcriptional termination remains elusive. Through RNA interference screening, we discovered Pcf11 and PNUTS as essential for piRNA-guided silencing in Drosophila germ line. Enforced tethering of Pcf11 leads to co-transcriptional repression and RNA polymerase II (RNA Pol II) stalling, and both are dependent on an α-helical region of Pcf11 capable of forming condensates. An intrinsically disordered region can substitute for the α-helical region of Pcf11 in its silencing capacity and support animal development, arguing for a causal relationship between phase separation and Pcf11's function. Pcf11 stalls RNA Pol II by preferentially forming condensates with the unphosphorylated Spt5, promoted by the PP1/PNUTS phosphatase during termination. We propose that Pcf11/Spt5 condensates control termination by decelerating polymerase elongation, a property exploited by piRNAs to silence transposons and initiate RNA-mediated heterochromatin formation.
Collapse
Affiliation(s)
- Weiwei Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Lijun Deng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaojun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Ouyang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Na Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjin Xv
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Tianyu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyao Ji
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Sheng Wang
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health, Eye Hospital, Wenzhou Medical University, Zhejiang 325035, Wenzhou, China
| | - Li Guan
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Dong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Yadi Zhang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhenning Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengqi Lin
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | | | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhuojuan Luo
- School of Life Science and Technology, Southeast University, Nanjing 210096, China.
| | - Pu Gao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Bejjani F, Ségéral E, Mosca K, Lecourieux A, Bakail M, Hamoudi M, Emiliani S. Overlapping and distinct functions of SPT6, PNUTS, and PCF11 in regulating transcription termination. Nucleic Acids Res 2025; 53:gkaf179. [PMID: 40103229 PMCID: PMC11915507 DOI: 10.1093/nar/gkaf179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
The histone chaperone and transcription elongation factor SPT6 is integral to RNA polymerase II (RNAPII) activity. SPT6 also plays a crucial role in regulating transcription termination, although the mechanisms involved are largely unknown. In an attempt to identify the pathways employed by SPT6 in this regulation, we found that, while SPT6 and its partner IWS1 interact and co-localize with RNAPII, their functions diverge significantly at gene termination sites. Depletion of SPT6, but not of IWS1, results in extensive readthrough transcription, indicating that SPT6 independently regulates transcription termination. Further analysis identified that the cleavage and polyadenylation factor PCF11 and the phosphatase regulatory protein PNUTS collaborate with SPT6 in this process. These findings suggest that SPT6 may facilitate transcription termination by recruiting PNUTS and PCF11 to RNAPII. Additionally, SPT6 and PNUTS jointly restrict promoter upstream transcripts (PROMPTs), whereas PCF11 presence is essential for their accumulation in the absence of SPT6 at hundreds of genes. Thus, SPT6, PCF11, and PNUTS have both distinct and overlapping functions in transcription termination. Our data highlight the pivotal role of SPT6 in ensuring proper transcription termination at the 5' and 3'-ends of genes.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Emmanuel Ségéral
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Kevin Mosca
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Adriana Lecourieux
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - May Bakail
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Meriem Hamoudi
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Stéphane Emiliani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| |
Collapse
|
4
|
Bentley DL. Multiple Forms and Functions of Premature Termination by RNA Polymerase II. J Mol Biol 2025; 437:168743. [PMID: 39127140 PMCID: PMC11649484 DOI: 10.1016/j.jmb.2024.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
Collapse
Affiliation(s)
- David L Bentley
- Dept. Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
6
|
Vilstrup AP, Gupta A, Rasmussen AJ, Ebert A, Riedelbauch S, Lukassen MV, Hayashi R, Andersen P. A germline PAF1 paralog complex ensures cell type-specific gene expression. Genes Dev 2024; 38:866-886. [PMID: 39332828 PMCID: PMC11535153 DOI: 10.1101/gad.351930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
Animal germline development and fertility rely on paralogs of general transcription factors that recruit RNA polymerase II to ensure cell type-specific gene expression. It remains unclear whether gene expression processes downstream from such paralog-based transcription is distinct from that of canonical RNA polymerase II genes. In Drosophila, the testis-specific TBP-associated factors (tTAFs) activate over a thousand spermatocyte-specific gene promoters to enable meiosis and germ cell differentiation. Here, we show that efficient termination of tTAF-activated transcription relies on testis-specific paralogs of canonical polymerase-associated factor 1 complex (PAF1C) proteins, which form a testis-specific PAF1C (tPAF). Consequently, tPAF mutants show aberrant expression of hundreds of downstream genes due to read-in transcription. Furthermore, tPAF facilitates expression of Y-linked male fertility factor genes and thus serves to maintain spermatocyte-specific gene expression. Consistently, tPAF is required for the segregation of meiotic chromosomes and male fertility. Supported by comparative in vivo protein interaction assays, we provide a mechanistic model for the functional divergence of tPAF and the PAF1C and identify transcription termination as a developmentally regulated process required for germline-specific gene expression.
Collapse
Affiliation(s)
- Astrid Pold Vilstrup
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Archica Gupta
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Anna Jon Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Anja Ebert
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Sebastian Riedelbauch
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Rippei Hayashi
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory 2601, Australia;
| | - Peter Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| |
Collapse
|
7
|
Gallicchio L, Matias NR, Morales-Polanco F, Nava I, Stern S, Zeng Y, Fuller MT. A Developmental Mechanism to Regulate Alternative Polyadenylation in an Adult Stem Cell Lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585561. [PMID: 38562704 PMCID: PMC10983978 DOI: 10.1101/2024.03.18.585561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alternative Cleavage and Polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3'UTRs from the same genetic locus, potentially impacting mRNA translation, localization and stability. Developmentally regulated APA can thus make major contributions to cell-type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, approximately 500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of Cleavage Factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knock down of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell-type-specific APA at selected genes.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Neuza R. Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Fabian Morales-Polanco
- Department of Biology, Stanford University School of Humanities and Sciences, Stanford USA
- Department of Genetics, Stanford University School of Medicine, USA
| | - Iliana Nava
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Sarah Stern
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
- Department of Genetics, Stanford University School of Medicine, USA
| |
Collapse
|
8
|
Ait Said M, Bejjani F, Abdouni A, Ségéral E, Emiliani S. Premature transcription termination complex proteins PCF11 and WDR82 silence HIV-1 expression in latently infected cells. Proc Natl Acad Sci U S A 2023; 120:e2313356120. [PMID: 38015843 PMCID: PMC10710072 DOI: 10.1073/pnas.2313356120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Postintegration transcriptional silencing of HIV-1 leads to the establishment of a pool of latently infected cells. In these cells, mechanisms controlling RNA Polymerase II (RNAPII) pausing and premature transcription termination (PTT) remain to be explored. Here, we found that the cleavage and polyadenylation (CPA) factor PCF11 represses HIV-1 expression independently of the other subunits of the CPA complex or the polyadenylation signal located at the 5' LTR. We show that PCF11 interacts with the RNAPII-binding protein WDR82. Knock-down of PCF11 or WDR82 reactivated HIV-1 expression in latently infected cells. To silence HIV-1 transcription, PCF11 and WDR82 are specifically recruited at the promoter-proximal region of the provirus in an interdependent manner. Codepletion of PCF11 and WDR82 indicated that they act on the same pathway to repress HIV expression. These findings reveal PCF11/WDR82 as a PTT complex silencing HIV-1 expression in latently infected cells.
Collapse
Affiliation(s)
- Melissa Ait Said
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Fabienne Bejjani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Ahmed Abdouni
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Emmanuel Ségéral
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Stéphane Emiliani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| |
Collapse
|
9
|
Estell C, Davidson L, Eaton JD, Kimura H, Gold VAM, West S. A restrictor complex of ZC3H4, WDR82, and ARS2 integrates with PNUTS to control unproductive transcription. Mol Cell 2023:S1097-2765(23)00385-4. [PMID: 37329883 DOI: 10.1016/j.molcel.2023.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex. The domains of ZC3H4 that contact ARS2 and WDR82 are required for ncRNA restriction, suggesting their presence in a functional complex. Consistently, ZC3H4, WDR82, and ARS2 co-transcriptionally control an overlapping population of ncRNAs. ZC3H4 is proximal to the negative elongation factor, PNUTS, which we show enables restrictor function and is required to terminate the transcription of all major RNA polymerase II transcript classes. In contrast to short ncRNAs, longer protein-coding transcription is supported by U1 snRNA, which shields transcripts from restrictor and PNUTS at hundreds of genes. These data provide important insights into the mechanism and control of transcription by restrictor and PNUTS.
Collapse
Affiliation(s)
- Chris Estell
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Lee Davidson
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Joshua D Eaton
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Hiroshi Kimura
- Cell Biology Centre, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Steven West
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| |
Collapse
|
10
|
Rodríguez-Molina JB, West S, Passmore LA. Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell 2023; 83:404-415. [PMID: 36634677 PMCID: PMC7614299 DOI: 10.1016/j.molcel.2022.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Gene expression is controlled in a dynamic and regulated manner to allow for the consistent and steady expression of some proteins as well as the rapidly changing production of other proteins. Transcription initiation has been a major focus of study because it is highly regulated. However, termination of transcription also plays an important role in controlling gene expression. Transcription termination on protein-coding genes is intimately linked with 3' end cleavage and polyadenylation of transcripts, and it generally results in the production of a mature mRNA that is exported from the nucleus. Termination on many non-coding genes can also result in the production of a mature transcript. Termination is dynamically regulated-premature termination and transcription readthrough occur in response to a number of cellular signals, and these can have varied consequences on gene expression. Here, we review eukaryotic transcription termination by RNA polymerase II (RNAPII), focusing on protein-coding genes.
Collapse
Affiliation(s)
| | - Steven West
- The Living Systems Institute, University of Exeter, Exeter, UK.
| | | |
Collapse
|
11
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
12
|
Slight Variations in the Sequence Downstream of the Polyadenylation Signal Significantly Increase Transgene Expression in HEK293T and CHO Cells. Int J Mol Sci 2022; 23:ijms232415485. [PMID: 36555130 PMCID: PMC9779314 DOI: 10.3390/ijms232415485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Compared to transcription initiation, much less is known about transcription termination. In particular, large-scale mutagenesis studies have, so far, primarily concentrated on promoter and enhancer, but not terminator sequences. Here, we used a massively parallel reporter assay (MPRA) to systematically analyze the influence of short (8 bp) sequence variants (mutations) located downstream of the polyadenylation signal (PAS) on the steady-state mRNA level of the upstream gene, employing an eGFP reporter and human HEK293T cells as a model system. In total, we evaluated 227,755 mutations located at different overlapping positions within +17..+56 bp downstream of the PAS for their ability to regulate the reporter gene expression. We found that the positions +17..+44 bp downstream of the PAS are more essential for gene upregulation than those located more distal to the PAS, and that the mutation sequences ensuring high levels of eGFP mRNA expression are extremely T-rich. Next, we validated the positive effect of a couple of mutations identified in the MPRA screening on the eGFP and luciferase protein expression. The most promising mutation increased the expression of the reporter proteins 13-fold and sevenfold on average in HEK293T and CHO cells, respectively. Overall, these findings might be useful for further improving the efficiency of production of therapeutic products, e.g., recombinant antibodies.
Collapse
|
13
|
Zhou M, Ehsan F, Gan L, Dong A, Li Y, Liu K, Min J. Structural basis for the recognition of the S2, S5-phosphorylated RNA polymerase II CTD by the mRNA anti-terminator protein hSCAF4. FEBS Lett 2022; 596:249-259. [PMID: 34897689 DOI: 10.1002/1873-3468.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/05/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II serves as a binding platform for numerous enzymes and transcription factors involved in nascent RNA processing and the transcription cycle. The S2, S5-phosphorylated CTD is recognized by the transcription factor SCAF4, which functions as a transcription anti-terminator by preventing early mRNA transcript cleavage and polyadenylation. Here, we measured the binding affinities of differently modified CTD peptides by hSCAF4 and solved the complex structure of the hSCAF4-CTD-interaction domain (CID) bound to a S2, S5-quadra-phosphorylated CTD peptide. Our results revealed that the S2, S5-quadra-phosphorylated CTD peptide adopts a trans conformation and is located in a positively charged binding groove of hSCAF4-CID. Although hSCAF4-CID has almost the same binding pattern to the CTD as other CID-containing proteins, it preferentially binds to the S2, S5-phosphorylated CTD. Our findings provide insight into the regulatory mechanism of hSCAF4 in transcription termination.
Collapse
Affiliation(s)
- Mengqi Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Structural Genomics Consortium, University of Toronto, Canada
| | - Fahad Ehsan
- Structural Genomics Consortium, University of Toronto, Canada
- Department of Physiology, University of Toronto, Canada
| | - Linyao Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Structural Genomics Consortium, University of Toronto, Canada
- Department of Physiology, University of Toronto, Canada
| |
Collapse
|
14
|
Architectural and functional details of CF IA proteins involved in yeast 3'-end pre-mRNA processing and its significance for eukaryotes: A concise review. Int J Biol Macromol 2021; 193:387-400. [PMID: 34699898 DOI: 10.1016/j.ijbiomac.2021.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.
Collapse
|
15
|
Abstract
U1 snRNP is one of the most abundant ribonucleoprotein (RNP) complexes in eukaryotic cells and is estimated to be approximately 1 million copies per cell. Apart from its canonical role in mRNA splicing, this complex has emerged as a key regulator of eukaryotic mRNA length via inhibition of mRNA 3'-end processing at numerous intronic polyadenylation sites, in a process that is also termed 'U1 snRNP telescripting'. Several reviews have extensively described the concept of U1 telescripting and subsequently highlighted its potential impacts in mRNA metabolism. Here, we review what is currently known regarding the underlying mechanisms of this important phenomenon and discuss open questions and future challenges.
Collapse
Affiliation(s)
- Yi Ran
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yanhui Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Liu C, Zhang W, Xing W. Diverse and conserved roles of the protein Ssu72 in eukaryotes: from yeast to higher organisms. Curr Genet 2020; 67:195-206. [PMID: 33244642 DOI: 10.1007/s00294-020-01132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
Gene transcription is a complex biological process that involves a set of factors, enzymes and nucleotides. Ssu72 plays a crucial role in every step of gene transcription. RNA polymerase II (RNAPII) occupies an important position in the synthesis of mRNAs. The largest subunit of RNAPII, Rpb1, harbors its C-terminal domain (CTD), which participates in the initiation, elongation and termination of transcription. The CTD consists of heptad repeats of the consensus motif Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 and is highly conserved among different species. The CTD is flexible in structure and undergoes conformational changes in response to serine phosphorylation and proline isomerization, which are regulated by specific kinases/phosphatases and isomerases, respectively. Ssu72 is a CTD phosphatase with catalytic activity against phosphorylated Ser5 and Ser7. The isomerization of Pro6 affects the binding of Ssu72 to its substrate. Ssu72 can also indirectly change the phosphorylation status of Ser2. In addition, Ssu72 is a member of the 3'-end cleavage and polyadenylation factor (CPF) complex. Together with other CPF components, Ssu72 regulates the 3'-end processing of premature mRNA. Recent studies have revealed other roles of Ssu72, including its roles in balancing phosphate homeostasis and controlling chromosome behaviors, which should be further explored. In conclusion, the protein Ssu72 is an enzyme worthy of attention, not confined to its role in gene transcription.
Collapse
Affiliation(s)
- Changfu Liu
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weihao Zhang
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wenge Xing
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
17
|
Eaton JD, West S. Termination of Transcription by RNA Polymerase II: BOOM! Trends Genet 2020; 36:664-675. [DOI: 10.1016/j.tig.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
|
18
|
Turner RE, Henneken LM, Liem-Weits M, Harrison PF, Swaminathan A, Vary R, Nikolic I, Simpson KJ, Powell DR, Beilharz TH, Dichtl B. Requirement for cleavage factor II m in the control of alternative polyadenylation in breast cancer cells. RNA (NEW YORK, N.Y.) 2020; 26:969-981. [PMID: 32295865 PMCID: PMC7373993 DOI: 10.1261/rna.075226.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Alternative polyadenylation (APA) determines stability, localization and translation potential of the majority of mRNA in eukaryotic cells. The heterodimeric mammalian cleavage factor II (CF IIm) is required for pre-mRNA 3' end cleavage and is composed of the RNA kinase hClp1 and the termination factor hPcf11; the latter protein binds to RNA and the RNA polymerase II carboxy-terminal domain. Here, we used siRNA mediated knockdown and poly(A) targeted RNA sequencing to analyze the role of CF IIm in gene expression and APA in estrogen receptor positive MCF7 breast cancer cells. Identified gene ontology terms link CF IIm function to regulation of growth factor activity, protein heterodimerization and the cell cycle. An overlapping requirement for hClp1 and hPcf11 suggested that CF IIm protein complex was involved in the selection of proximal poly(A) sites. In addition to APA shifts within 3' untranslated regions (3'-UTRs), we observed shifts from promoter proximal regions to the 3'-UTR facilitating synthesis of full-length mRNAs. Moreover, we show that several truncated mRNAs that resulted from APA within introns in MCF7 cells cosedimented with ribosomal components in an EDTA sensitive manner suggesting that those are translated into protein. We propose that CF IIm contributes to the regulation of mRNA function in breast cancer.
Collapse
Affiliation(s)
- Rachael E Turner
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Lee M Henneken
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Marije Liem-Weits
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul F Harrison
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Bioinformatics Platform, Monash University, Melbourne, Victoria 3800, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Robert Vary
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, Victoria 3800, Australia
| | - Traude H Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
19
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination. Mol Cell 2020; 77:1032-1043.e4. [PMID: 31924447 DOI: 10.1016/j.molcel.2019.12.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
An attractive approach to reduce gene expression is via the use of antisense oligonucleotides (ASOs) that harness the RNase H1 mechanism. Here we show that RNase H ASOs targeted to introns or exons robustly reduce the level of spliced RNA associated with chromatin. Surprisingly, intron-targeted ASOs reduce the level of pre-mRNA associated with chromatin to a greater extent than exon-targeted ASOs. This indicates that exon-targeted ASOs achieve full activity after the pre-mRNA has undergone splicing, but before the mRNA is released from chromatin. Even though RNase H ASOs can reduce the level of RNA associated with chromatin, the effect of ASO-directed RNA degradation on transcription has never been documented. Here we show that intron-targeted ASOs and, to a lesser extent, exon-targeted ASOs cause RNA polymerase II (Pol II) transcription termination in cultured cells and mice. Furthermore, ASO-directed transcription termination is mediated by the nuclear exonuclease XRN2.
Collapse
|
21
|
Eaton JD, Francis L, Davidson L, West S. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes. Genes Dev 2019; 34:132-145. [PMID: 31805520 PMCID: PMC6938672 DOI: 10.1101/gad.332833.119] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
In this study, Eaton et al. examine the validity of the allosteric and torpedo models of transcription termination on protein-coding genes. Using several genomic and molecular assays, the authors propose a model that combines both allosteric/torpedo mechanisms, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following poly(A) signal processing. The allosteric and torpedo models have been used for 30 yr to explain how transcription terminates on protein-coding genes. The former invokes termination via conformational changes in the transcription complex and the latter proposes that degradation of the downstream product of poly(A) signal (PAS) processing is important. Here, we describe a single mechanism incorporating features of both models. We show that termination is completely abolished by rapid elimination of CPSF73, which causes very extensive transcriptional readthrough genome-wide. This is because CPSF73 functions upstream of modifications to the elongation complex and provides an entry site for the XRN2 torpedo. Rapid depletion of XRN2 enriches these events that we show are underpinned by protein phosphatase 1 (PP1) activity, the inhibition of which extends readthrough in the absence of XRN2. Our results suggest a combined allosteric/torpedo mechanism, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following PAS processing.
Collapse
Affiliation(s)
- Joshua D Eaton
- The Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Laura Francis
- The Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Lee Davidson
- The Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Steven West
- The Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
22
|
Wang R, Zheng D, Wei L, Ding Q, Tian B. Regulation of Intronic Polyadenylation by PCF11 Impacts mRNA Expression of Long Genes. Cell Rep 2019; 26:2766-2778.e6. [PMID: 30840896 PMCID: PMC6428223 DOI: 10.1016/j.celrep.2019.02.049] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of cleavage and polyadenylation (CPA) affects gene expression and polyadenylation site (PAS) choice. Here, we report that the CPA and termination factor PCF11 modulates gene expression on the basis of gene size. Although downregulation of PCF11 leads to inhibition of short gene expression, long genes are upregulated because of suppressed intronic polyadenylation (IPA) enriched in large introns. We show that this regulatory scheme, named PCF11-mediated expression regulation through IPA (PEIPA), takes place in cell differentiation, during which downregulation of PCF11 is coupled with upregulation of long genes with functions in cell morphology, adhesion, and migration. PEIPA targets distinct gene sets in different cell contexts with similar rules. Furthermore, PCF11 is autoregulated through a conserved IPA site, the removal of which leads to global activation of PASs close to gene promotors. Therefore, PCF11 uses distinct mechanisms to regulate genes of different sizes, and its autoregulation maintains homeostasis of PAS usage in the cell.
Collapse
Affiliation(s)
- Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Lu Wei
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Qingbao Ding
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
23
|
Kamieniarz-Gdula K, Gdula MR, Panser K, Nojima T, Monks J, Wiśniewski JR, Riepsaame J, Brockdorff N, Pauli A, Proudfoot NJ. Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination. Mol Cell 2019; 74:158-172.e9. [PMID: 30819644 PMCID: PMC6458999 DOI: 10.1016/j.molcel.2019.01.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 12/02/2022]
Abstract
The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including mNET-seq, 3′ mRNA-seq, chromatin RNA-seq, and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and consequent gene downregulation. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Human PCF11 enhances transcription termination and 3′ end processing, genome-wide PCF11 is substoichiometric to CPA complex due to autoregulation of its transcription PCF11 stimulates expression of closely spaced genes but attenuates other genes PCF11-mediated functions are conserved in vertebrates and essential in development
Collapse
Affiliation(s)
- Kinga Kamieniarz-Gdula
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Michal R Gdula
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Joan Monks
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joey Riepsaame
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
24
|
Schäfer P, Tüting C, Schönemann L, Kühn U, Treiber T, Treiber N, Ihling C, Graber A, Keller W, Meister G, Sinz A, Wahle E. Reconstitution of mammalian cleavage factor II involved in 3' processing of mRNA precursors. RNA (NEW YORK, N.Y.) 2018; 24:1721-1737. [PMID: 30139799 PMCID: PMC6239180 DOI: 10.1261/rna.068056.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
Cleavage factor II (CF II) is a poorly characterized component of the multiprotein complex catalyzing 3' cleavage and polyadenylation of mammalian mRNA precursors. We have reconstituted CF II as a heterodimer of hPcf11 and hClp1. The heterodimer is active in partially reconstituted cleavage reactions, whereas hClp1 by itself is not. Pcf11 moderately stimulates the RNA 5' kinase activity of hClp1; the kinase activity is dispensable for RNA cleavage. CF II binds RNA with nanomolar affinity. Binding is mediated mostly by the two zinc fingers in the C-terminal region of hPcf11. RNA is bound without pronounced sequence-specificity, but extended G-rich sequences appear to be preferred. We discuss the possibility that CF II contributes to the recognition of cleavage/polyadenylation substrates through interaction with G-rich far-downstream sequence elements.
Collapse
Affiliation(s)
- Peter Schäfer
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christian Tüting
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Lars Schönemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Thomas Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Anne Graber
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Walter Keller
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
25
|
Kecman T, Kuś K, Heo DH, Duckett K, Birot A, Liberatori S, Mohammed S, Geis-Asteggiante L, Robinson CV, Vasiljeva L. Elongation/Termination Factor Exchange Mediated by PP1 Phosphatase Orchestrates Transcription Termination. Cell Rep 2018; 25:259-269.e5. [PMID: 30282034 PMCID: PMC6180485 DOI: 10.1016/j.celrep.2018.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/27/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Termination of RNA polymerase II (Pol II) transcription is a key step that is important for 3' end formation of functional mRNA, mRNA release, and Pol II recycling. Even so, the underlying termination mechanism is not yet understood. Here, we demonstrate that the conserved and essential termination factor Seb1 is found on Pol II near the end of the RNA exit channel and the Rpb4/7 stalk. Furthermore, the Seb1 interaction surface with Pol II largely overlaps with that of the elongation factor Spt5. Notably, Seb1 co-transcriptional recruitment is dependent on Spt5 dephosphorylation by the conserved PP1 phosphatase Dis2, which also dephosphorylates threonine 4 within the Pol II heptad repeated C-terminal domain. We propose that Dis2 orchestrates the transition from elongation to termination phase during the transcription cycle by mediating elongation to termination factor exchange and dephosphorylation of Pol II C-terminal domain.
Collapse
Affiliation(s)
- Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Krzysztof Kuś
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Katie Duckett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Adrien Birot
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
26
|
Abstract
Every transcription cycle ends in termination when RNA polymerase dissociates from the DNA. Although conceptually simple, the mechanism has proven somewhat elusive in eukaryotic systems. Gene-editing and high resolution polymerase mapping now offer clarification of important steps preceding transcriptional termination by RNA polymerase II in human cells.
Collapse
Affiliation(s)
- Joshua D Eaton
- a The Living Systems Institute , University of Exeter , Exeter , UK
| | - Steven West
- a The Living Systems Institute , University of Exeter , Exeter , UK
| |
Collapse
|
27
|
Liu X, Hoque M, Larochelle M, Lemay JF, Yurko N, Manley JL, Bachand F, Tian B. Comparative analysis of alternative polyadenylation in S. cerevisiae and S. pombe. Genome Res 2017; 27:1685-1695. [PMID: 28916539 PMCID: PMC5630032 DOI: 10.1101/gr.222331.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
Abstract
Alternative polyadenylation (APA) is a widespread mechanism that generates mRNA isoforms with distinct properties. Here we have systematically mapped and compared cleavage and polyadenylation sites (PASs) in two yeast species, S. cerevisiae and S. pombe. Although >80% of the mRNA genes in each species were found to display APA, S. pombe showed greater 3′ UTR size differences among APA isoforms than did S. cerevisiae. PASs in different locations of gene are surrounded with distinct sequences in both species and are often associated with motifs involved in the Nrd1-Nab3-Sen1 termination pathway. In S. pombe, strong motifs surrounding distal PASs lead to higher abundances of long 3′ UTR isoforms than short ones, a feature that is opposite in S. cerevisiae. Differences in PAS placement between convergent genes lead to starkly different antisense transcript landscapes between budding and fission yeasts. In both species, short 3′ UTR isoforms are more likely to be expressed when cells are growing in nutrient-rich media, although different gene groups are affected in each species. Significantly, 3′ UTR shortening in S. pombe coordinates with up-regulation of expression for genes involved in translation during cell proliferation. Using S. pombe strains deficient for Pcf11 or Pab2, we show that reduced expression of 3′-end processing factors lengthens 3′ UTR, with Pcf11 having a more potent effect than Pab2. Taken together, our data indicate that APA mechanisms in S. pombe and S. cerevisiae are largely different: S. pombe has many of the APA features of higher species, and Pab2 in S. pombe has a different role in APA regulation than its mammalian homolog, PABPN1.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Marc Larochelle
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jean-François Lemay
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Nathan Yurko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| |
Collapse
|
28
|
Ustyantsev IG, Golubchikova JS, Borodulina OR, Kramerov DA. Canonical and noncanonical RNA polyadenylation. Mol Biol 2017. [DOI: 10.1134/s0026893317010186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Baejen C, Andreani J, Torkler P, Battaglia S, Schwalb B, Lidschreiber M, Maier KC, Boltendahl A, Rus P, Esslinger S, Söding J, Cramer P. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes. Mol Cell 2017; 66:38-49.e6. [PMID: 28318822 DOI: 10.1016/j.molcel.2017.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/06/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023]
Abstract
At the end of protein-coding genes, RNA polymerase (Pol) II undergoes a concerted transition that involves 3'-processing of the pre-mRNA and transcription termination. Here, we present a genome-wide analysis of the 3'-transition in budding yeast. We find that the 3'-transition globally requires the Pol II elongation factor Spt5 and factors involved in the recognition of the polyadenylation (pA) site and in endonucleolytic RNA cleavage. Pol II release from DNA occurs in a narrow termination window downstream of the pA site and requires the "torpedo" exonuclease Rat1 (XRN2 in human). The Rat1-interacting factor Rai1 contributes to RNA degradation downstream of the pA site. Defects in the 3'-transition can result in increased transcription at downstream genes.
Collapse
Affiliation(s)
- Carlo Baejen
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jessica Andreani
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Phillipp Torkler
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sofia Battaglia
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bjoern Schwalb
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Hälsovägen 7, 141 83 Huddinge, Sweden
| | - Kerstin C Maier
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrea Boltendahl
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stephanie Esslinger
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Johannes Söding
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
30
|
Mayfield JE, Robinson MR, Cotham VC, Irani S, Matthews WL, Ram A, Gilmour DS, Cannon JR, Zhang YJ, Brodbelt JS. Mapping the Phosphorylation Pattern of Drosophila melanogaster RNA Polymerase II Carboxyl-Terminal Domain Using Ultraviolet Photodissociation Mass Spectrometry. ACS Chem Biol 2017; 12:153-162. [PMID: 28103682 DOI: 10.1021/acschembio.6b00729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphorylation of the C-terminal domain of RNA polymerase II (CTD) plays an essential role in eukaryotic transcription by recruiting transcriptional regulatory factors to the active polymerase. However, the scarcity of basic residues and repetitive nature of the CTD sequence impose a huge challenge for site-specific characterization of phosphorylation, hindering our understanding of this crucial biological process. Herein, we apply LC-UVPD-MS methods to analyze post-translational modification along native sequence CTDs. Application of our method to the Drosophila melanogaster CTD reveals the phosphorylation pattern of this model organism for the first time. The divergent nature of fly CTD allows us to derive rules defining how flanking residues affect phosphorylation choice by CTD kinases. Our data support the use of LC-UVPD-MS to decipher the CTD code and determine rules that program its function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David S. Gilmour
- Department
of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | | | | | | |
Collapse
|
31
|
Fong N, Brannan K, Erickson B, Kim H, Cortazar MA, Sheridan RM, Nguyen T, Karp S, Bentley DL. Effects of Transcription Elongation Rate and Xrn2 Exonuclease Activity on RNA Polymerase II Termination Suggest Widespread Kinetic Competition. Mol Cell 2016; 60:256-67. [PMID: 26474067 DOI: 10.1016/j.molcel.2015.09.026] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023]
Abstract
The torpedo model of transcription termination asserts that the exonuclease Xrn2 attacks the 5'PO4-end exposed by nascent RNA cleavage and chases down the RNA polymerase. We tested this mechanism using a dominant-negative human Xrn2 mutant and found that it delayed termination genome-wide. Xrn2 nuclease inactivation caused strong termination defects downstream of most poly(A) sites and modest delays at some histone and U snRNA genes, suggesting that the torpedo mechanism is not limited to poly(A) site-dependent termination. A central untested feature of the torpedo model is that there is kinetic competition between the exonuclease and the pol II elongation complex. Using pol II rate mutants, we found that slow transcription robustly shifts termination upstream, and fast elongation extends the zone of termination further downstream. These results suggest that kinetic competition between elongating pol II and the Xrn2 exonuclease is integral to termination of transcription on most human genes.
Collapse
Affiliation(s)
- Nova Fong
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Kristopher Brannan
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Benjamin Erickson
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Tram Nguyen
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Shai Karp
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
32
|
Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:276049. [PMID: 26421281 PMCID: PMC4569756 DOI: 10.1155/2015/276049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/31/2014] [Indexed: 12/31/2022]
Abstract
Purpose. Adolescent idiopathic scoliosis (AIS), the most common pediatric spinal deformity, is considered a complex genetic disease. Causing genes and pathogenesis of AIS are still unclear. This study was designed to identify differentially expressed long noncoding RNAs (lncRNAs) involving the pathogenesis of AIS. Methods. We first performed comprehensive screening of lncRNA and mRNA in AIS patients and healthy children using Agilent human lncRNA + mRNA Array V3.0 microarray. LncRNAs expression in different AIS patients was further evaluated using quantitative PCR. Results. A total of 139 lncRNAs and 546 mRNAs were differentially expressed between AIS patients and healthy control. GO and Pathway analysis showed that these mRNAs might be involved in bone mineralization, neuromuscular junction, skeletal system morphogenesis, nucleotide and nucleic acid metabolism, and regulation of signal pathway. Four lncRNAs (ENST00000440778.1, ENST00000602322.1, ENST00000414894.1, and TCONS_00028768) were differentially expressed between different patients when grouped according to age, height, classification, severity of scoliosis, and Risser grade. Conclusions. This study demonstrates the abnormal expression of lncRNAs and mRNAs in AIS, and the expression of some lncRNAs was related to clinical features. This study is helpful for further understanding of lncRNAs in pathogenesis, treatment, and prognosis of AIS.
Collapse
|
33
|
Laitem C, Zaborowska J, Isa NF, Kufs J, Dienstbier M, Murphy S. CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes. Nat Struct Mol Biol 2015; 22:396-403. [PMID: 25849141 PMCID: PMC4424039 DOI: 10.1038/nsmb.3000] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
Abstract
Transcription through early-elongation checkpoints requires phosphorylation of negative transcription elongation factors (NTEFs) by the cyclin-dependent kinase (CDK) 9. Using CDK9 inhibitors and global run-on sequencing (GRO-seq), we have mapped CDK9 inhibitor-sensitive checkpoints genome wide in human cells. Our data indicate that early-elongation checkpoints are a general feature of RNA polymerase (pol) II-transcribed human genes and occur independently of polymerase stalling. Pol II that has negotiated the early-elongation checkpoint can elongate in the presence of inhibitors but, remarkably, terminates transcription prematurely close to the terminal polyadenylation (poly(A)) site. Our analysis has revealed an unexpected poly(A)-associated elongation checkpoint, which has major implications for the regulation of gene expression. Interestingly, the pattern of modification of the C-terminal domain of pol II terminated at this new checkpoint largely mirrors the pattern normally found downstream of the poly(A) site, thus suggesting common mechanisms of termination.
Collapse
Affiliation(s)
- Clélia Laitem
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Nur F Isa
- 1] Sir William Dunn School of Pathology, University of Oxford, Oxford, UK. [2] Department of Biotechnology, International Islamic University Malaysia, Pahang, Malaysia
| | - Johann Kufs
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Martin Dienstbier
- Computational Genomics Analysis and Training Programme, Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Dhir A, Dhir S, Proudfoot NJ, Jopling CL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 2015; 22:319-27. [PMID: 25730776 PMCID: PMC4492989 DOI: 10.1038/nsmb.2982] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.
Collapse
Affiliation(s)
- Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
35
|
Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 2015; 16:190-202. [DOI: 10.1038/nrm3943] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Schaughency P, Merran J, Corden JL. Genome-wide mapping of yeast RNA polymerase II termination. PLoS Genet 2014; 10:e1004632. [PMID: 25299594 PMCID: PMC4191890 DOI: 10.1371/journal.pgen.1004632] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
Yeast RNA polymerase II (Pol II) terminates transcription of coding transcripts through the polyadenylation (pA) pathway and non-coding transcripts through the non-polyadenylation (non-pA) pathway. We have used PAR-CLIP to map the position of Pol II genome-wide in living yeast cells after depletion of components of either the pA or non-pA termination complexes. We show here that Ysh1, responsible for cleavage at the pA site, is required for efficient removal of Pol II from the template. Depletion of Ysh1 from the nucleus does not, however, lead to readthrough transcription. In contrast, depletion of the termination factor Nrd1 leads to widespread runaway elongation of non-pA transcripts. Depletion of Sen1 also leads to readthrough at non-pA terminators, but in contrast to Nrd1, this readthrough is less processive, or more susceptible to pausing. The data presented here provide delineation of in vivo Pol II termination regions and highlight differences in the sequences that signal termination of different classes of non-pA transcripts. Transcription termination is an important regulatory event for both non-coding and coding transcripts. Using high-throughput sequencing, we have mapped RNA Polymerase II's position in the genome after depletion of termination factors from the nucleus. We found that depletion of Ysh1 and Sen1 cause build up of polymerase directly downstream of coding and non-coding genes, respectively. Depletion of Nrd1 causes an increase in polymerase that is distributed up to 1,000 bases downstream of non-coding genes. The depletion of Nrd1 helped us to identify more than 250 unique termination regions for non-coding RNAs. Within this set of newly identified non-coding termination regions, we are further able to classify them based on sequence motif similarities, suggesting a functional role for different terminator motifs. The role of these factors in transcriptional termination of coding and/or non-coding transcripts can be inferred from the effect of polymerase's position downstream of given termination sites. This method of depletion and sequencing can be used to further elucidate other factors whose importance to transcription has yet to be determined.
Collapse
Affiliation(s)
- Paul Schaughency
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jonathan Merran
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
38
|
O'Reilly D, Kuznetsova OV, Laitem C, Zaborowska J, Dienstbier M, Murphy S. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res 2013; 42:264-75. [PMID: 24097444 PMCID: PMC3874203 DOI: 10.1093/nar/gkt892] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3′-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3′-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK and CGAT, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
39
|
Xing D, Wang Y, Xu R, Ye X, Yang D, Li QQ. The regulatory role of Pcf11-similar-4 (PCFS4) in Arabidopsis development by genome-wide physical interactions with target loci. BMC Genomics 2013; 14:598. [PMID: 24004414 PMCID: PMC3844406 DOI: 10.1186/1471-2164-14-598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background The yeast and human Pcf11 functions in both constitutive and regulated transcription and pre-mRNA processing. The constitutive roles of PCF11 are largely mediated by its direct interaction with RNA Polymerase II C-terminal domain and a polyadenylation factor, Clp1. However, little is known about the mechanism of the regulatory roles of Pcf11. Though similar to Pcf11 in multiple aspects, Arabidopsis Pcf11-similar-4 protein (PCFS4) plays only a regulatory role in Arabidopsis gene expression. Towards understanding how PCFS4 regulates the expression of its direct target genes in a genome level, ChIP-Seq approach was employed in this study to identify PCFS4 enrichment sites (ES) and the ES-linked genes within the Arabidopsis genome. Results A total of 892 PCFS4 ES sites linked to 839 genes were identified. Distribution analysis of the ES sites along the gene bodies suggested that PCFS4 is preferentially located on the coding sequences of the genes, consistent with its regulatory role in transcription and pre-mRNA processing. Gene ontology (GO) analysis revealed that the ES-linked genes were specifically enriched in a few GO terms, including those categories of known PCFS4 functions in Arabidopsis development. More interestingly, GO analysis suggested novel roles of PCFS4. An example is its role in circadian rhythm, which was experimentally verified herein. ES site sequences analysis identified some over-represented sequence motifs shared by subsets of ES sites. The motifs may explain the specificity of PCFS4 on its target genes and the PCFS4's functions in multiple aspects of Arabidopsis development and behavior. Conclusions Arabidopsis PCFS4 has been shown to specifically target on, and physically interact with, the subsets of genes. Its targeting specificity is likely mediated by cis-elements shared by the genes of each subset. The potential regulation on both transcription and mRNA processing levels of each subset of the genes may explain the functions of PCFS4 in multiple aspects of Arabidopsis development and behavior.
Collapse
Affiliation(s)
- Denghui Xing
- Department of Botany, Miami University, Oxford, OH 45056, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Natarajan M, Schiralli Lester GM, Lee C, Missra A, Wasserman GA, Steffen M, Gilmour DS, Henderson AJ. Negative elongation factor (NELF) coordinates RNA polymerase II pausing, premature termination, and chromatin remodeling to regulate HIV transcription. J Biol Chem 2013; 288:25995-26003. [PMID: 23884411 DOI: 10.1074/jbc.m113.496489] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A barrier to eradicating HIV infection is targeting and eliminating latently infected cells. Events that contribute to HIV transcriptional latency include repressive chromatin structure, transcriptional interference, the inability of Tat to recruit positive transcription factor b, and poor processivity of RNA polymerase II (RNAP II). In this study, we investigated mechanisms by which negative elongation factor (NELF) establishes and maintains HIV latency. Negative elongation factor (NELF) induces RNAP II promoter proximal pausing and limits provirus expression in HIV-infected primary CD4(+) T cells. Decreasing NELF expression overcomes RNAP II pausing to enhance HIV transcription elongation in infected primary T cells, demonstrating the importance of pausing in repressing HIV transcription. We also show that RNAP II pausing is coupled to premature transcription termination and chromatin remodeling. NELF interacts with Pcf11, a transcription termination factor, and diminishing Pcf11 in primary CD4(+) T cells induces HIV transcription elongation. In addition, we identify NCoR1-GPS2-HDAC3 as a NELF-interacting corepressor complex that is associated with repressed HIV long terminal repeats. We propose a model in which NELF recruits Pcf11 and NCoR1-GPS2-HDAC3 to paused RNAP II, reinforcing repression of HIV transcription and establishing a critical checkpoint for HIV transcription and latency.
Collapse
Affiliation(s)
- Malini Natarajan
- From the Immunology and Infectious Diseases, Integrated Biosciences Graduate Program, Penn State University, University Park, Pennsylvania 16802,; the Departments of Medicine and Infectious Diseases
| | | | - Chanhyo Lee
- the Departments of Medicine and Infectious Diseases
| | - Anamika Missra
- the Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802
| | | | - Martin Steffen
- Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - David S Gilmour
- the Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802
| | - Andrew J Henderson
- the Departments of Medicine and Infectious Diseases,; Microbiology, and.
| |
Collapse
|
41
|
Andersen PK, Jensen TH, Lykke-Andersen S. Making ends meet: coordination between RNA 3'-end processing and transcription initiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:233-46. [PMID: 23450686 DOI: 10.1002/wrna.1156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event. Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter, which supposedly increases the efficiency of the transcription process under conditions where RNAPII levels are rate limiting. Here, we review differences and commonalities between initiation and 3'-end processing/termination processes on various types of RNAPII transcribed genes. In doing so, we discuss the requirements for efficient 3'-end processing/termination and how these may relate to proper recycling of RNAPII.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
42
|
Henriques T, Ji Z, Tan-Wong SM, Carmo AM, Tian B, Proudfoot NJ, Moreira A. Transcription termination between polo and snap, two closely spaced tandem genes of D. melanogaster. Transcription 2013; 3:198-212. [PMID: 22992452 PMCID: PMC3654770 DOI: 10.4161/trns.21967] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Transcription termination of RNA polymerase II between closely spaced genes is an important, though poorly understood, mechanism. This is true, in particular, in the Drosophila genome, where approximately 52% of tandem genes are separated by less than 1 kb. We show that a set of Drosophila tandem genes has a negative correlation of gene expression and display several molecular marks indicative of promoter pausing. We find that an intergenic spacing of 168 bp is sufficient for efficient transcription termination between the polo-snap tandem gene pair, by a mechanism that is independent of Pcf11 and Xrn2. In contrast, analysis of a tandem gene pair containing a longer intergenic region reveals that termination occurs farther downstream of the poly(A) signal and is, in this case, dependent on Pcf11 and Xrn2. For polo-snap, displacement of poised polymerase from the snap promoter by depletion of the initiation factor TFIIB results in an increase of polo transcriptional read-through. This suggests that poised polymerase is necessary for transcription termination. Interestingly, we observe that polo forms a TFIIB dependent gene loop between its promoter and terminator regions. Furthermore, in a plasmid containing the polo-snap locus, deletion of the polo promoter causes an increase in snap expression, as does deletion of polo poly(A) signals. Taken together, our results indicate that polo forms a gene loop and polo transcription termination occurs by an Xrn2 and Pcf11 independent mechanism that requires TFIIB.
Collapse
Affiliation(s)
- Telmo Henriques
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
44
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
45
|
Mechanisms of HIV Transcriptional Regulation and Their Contribution to Latency. Mol Biol Int 2012; 2012:614120. [PMID: 22701796 PMCID: PMC3371693 DOI: 10.1155/2012/614120] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/09/2012] [Indexed: 12/26/2022] Open
Abstract
Long-lived latent HIV-infected cells lead to the rebound of virus replication following antiretroviral treatment interruption and present a major barrier to eliminating HIV infection. These latent reservoirs, which include quiescent memory T cells and tissue-resident macrophages, represent a subset of cells with decreased or inactive proviral transcription. HIV proviral transcription is regulated at multiple levels including transcription initiation, polymerase recruitment, transcription elongation, and chromatin organization. How these biochemical processes are coordinated and their potential role in repressing HIV transcription along with establishing and maintaining latency are reviewed.
Collapse
|
46
|
Identification of Inverse Regulator-a (Inr-a) as Synonymous with Pre-mRNA Cleavage Complex II Protein (Pcf11) in Drosophila. G3-GENES GENOMES GENETICS 2012; 2:701-6. [PMID: 22690379 PMCID: PMC3362299 DOI: 10.1534/g3.112.002071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/11/2012] [Indexed: 11/18/2022]
Abstract
A common modulation of gene expression in aneuploids is an inverse correlation of the monitored gene with the dosage of another segment of the genome. Such effects can be reduced to the action of single genes. One gene previously found to modulate leaky alleles of the white eye color gene in Drosophila is Inverse regulator-a (Inr-a). Heterozygotes of mutations increase the expression of white about 2-fold, and trisomic regions surrounding the gene reduce the expression to about two-thirds of the normal diploid level. Further cytological definition of the location of this gene on the second chromosome led to a candidate pre-mRNA cleavege complex II protein (Pcf11) as the only gene in the remaining region whose mutations exhibit recessive lethality as do alleles of Inr-a. The product of Pcf11 has been implicated in transcriptional initiation, elongation, and termination reactions. Four mutant alleles showed molecular lesions predicted to lead to nonfunctional products of Pcf11. The identification of the molecular lesion of Inr-a provides insight into the basis of this common aneuploidy effect.
Collapse
|
47
|
Tate J, Gollnick P. Role of forward translocation in nucleoside triphosphate phosphohydrolase I (NPH I)-mediated transcription termination of vaccinia virus early genes. J Biol Chem 2011; 286:44764-75. [PMID: 22069335 PMCID: PMC3247973 DOI: 10.1074/jbc.m111.263822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/28/2011] [Indexed: 01/04/2023] Open
Abstract
Termination of transcription of vaccinia virus early genes requires the virion form of the viral RNA polymerase (RNAP), a termination signal (UUUUUNU) in the nascent RNA, vaccinia termination factor, nucleoside triphosphate phosphohydrolase I (NPH I), and ATP. NPH I uses ATP hydrolysis to mediate transcript release, and in vitro, ATPase activity requires single-stranded DNA. NPH I shows sequence similarity with the DEXH-box family of proteins, which includes an Escherichia coli ATP-dependent motor protein, Mfd. Mfd releases transcripts and rescues arrested transcription complexes by moving the transcription elongation complex downstream on the DNA template in the absence of transcription elongation. This mechanism is known as forward translocation. In this study, we demonstrate that NPH I also uses forward translocation to catalyze transcript release from viral RNAP. Moreover, we show that NPH I-mediated release can occur at a stalled RNAP in the absence of vaccinia termination factor and U(5)NU when transcription elongation is prevented.
Collapse
Affiliation(s)
- Jessica Tate
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14226
| | - Paul Gollnick
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14226
| |
Collapse
|
48
|
Nagaike T, Manley JL. Transcriptional activators enhance polyadenylation of mRNA precursors. RNA Biol 2011; 8:964-7. [PMID: 21941122 DOI: 10.4161/rna.8.6.17210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
3' processing of mRNA precursors is frequently coupled to transcription by RNA polymerase II (RNAP II). This coupling is well known to involve the C-terminal domain of the RNAP II largest subunit, but a variety of other transcription-associated factors have also been suggested to mediate coupling. Our recent studies have provided direct evidence that transcriptional activators can enhance the efficiency of transcription-coupled 3' processing. In this point-of-view, we discuss the mechanisms that underlie coupling, and their implications for control of alternative polyadenylation, which is emerging as a significant regulator of cell growth control.
Collapse
Affiliation(s)
- Takashi Nagaike
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | | |
Collapse
|
49
|
Haddad R, Maurice F, Viphakone N, Voisinet-Hakil F, Fribourg S, Minvielle-Sébastia L. An essential role for Clp1 in assembly of polyadenylation complex CF IA and Pol II transcription termination. Nucleic Acids Res 2011; 40:1226-39. [PMID: 21993300 PMCID: PMC3273802 DOI: 10.1093/nar/gkr800] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polyadenylation is a co-transcriptional process that modifies mRNA 3′-ends in eukaryotes. In yeast, CF IA and CPF constitute the core 3′-end maturation complex. CF IA comprises Rna14p, Rna15p, Pcf11p and Clp1p. CF IA interacts with the C-terminal domain of RNA Pol II largest subunit via Pcf11p which links pre-mRNA 3′-end processing to transcription termination. Here, we analysed the role of Clp1p in 3′ processing. Clp1p binds ATP and interacts in CF IA with Pcf11p only. Depletion of Clp1p abolishes transcription termination. Moreover, we found that association of mutations in the ATP-binding domain and in the distant Pcf11p-binding region impair 3′-end processing. Strikingly, these mutations prevent not only Clp1p-Pcf11p interaction but also association of Pcf11p with Rna14p-Rna15p. ChIP experiments showed that Rna15p cross-linking to the 3′-end of a protein-coding gene is perturbed by these mutations whereas Pcf11p is only partially affected. Our study reveals an essential role of Clp1p in CF IA organization. We postulate that Clp1p transmits conformational changes to RNA Pol II through Pcf11p to couple transcription termination and 3′-end processing. These rearrangements likely rely on the correct orientation of ATP within Clp1p.
Collapse
|
50
|
Ji Z, Luo W, Li W, Hoque M, Pan Z, Zhao Y, Tian B. Transcriptional activity regulates alternative cleavage and polyadenylation. Mol Syst Biol 2011; 7:534. [PMID: 21952137 PMCID: PMC3202805 DOI: 10.1038/msb.2011.69] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/08/2011] [Indexed: 12/24/2022] Open
Abstract
Transcriptomic and epigenomic data, as well as reporter and nuclear run-on assays collectively show that transcriptional activity regulates the relative abundance of alternative polyadenylation isoforms, indicating general coupling of 3′ end processing to transcription. Using RNA-seq and exon array data for a large number of human and mouse tissues and cells, we identified a general correlation between relative expression of alternative polyadenylation (APA) isoforms and gene expression level: short 3′UTR isoforms are relatively more abundant when genes are highly expressed whereas long 3′UTR isoforms are relatively more abundant when genes are lowly expressed. Using reporter assays with different promoters, we found that induction of transcription leads to more usage of promoter-proximal polyA sites, suggesting modulation of 3′ end processing efficiency by transcriptional activity. Global analysis and reporter-based assays further revealed that regulation of polyA site choice by transcription takes place when genes are regulated under different cell conditions. Using global and reporter-based nuclear run-on assays, we found that highly expressed genes tend to have more RNA polymerase II pausing at promoter-proximal polyA sites, as compared with lowly expressed genes, supporting the notion that the efficiency of 3′ end processing is coupled to transcriptional activity. Highly expressed genes have a lower nucleosome level but higher H3K4me3 and H3K36me3 levels at promoter-proximal polyA sites relative to distal ones, as compared with lowly expressed genes, indicating that transcriptional activity impacts 3′ end processing and regulation of APA leaves epigenetic signatures.
Genes containing multiple pre-mRNA cleavage and polyadenylation sites, or polyA sites, express mRNA isoforms with variable 3′ untranslated regions (UTRs). By systematic analysis of human and mouse transcriptomes, we found that short 3′UTR isoforms are relatively more abundant when genes are highly expressed whereas long 3′UTR isoforms are relatively more abundant when genes are lowly expressed. Reporter assays indicated that polyA site choice can be modulated by transcriptional activity through the gene promoter. Using global and reporter-based nuclear run-on assays, we found that RNA polymerase II is more likely to pause at the polyA site of highly expressed genes than that of lowly expressed ones. Moreover, highly expressed genes tend to have a lower level of nucleosome but higher H3K4me3 and H3K36me3 levels at promoter-proximal polyA sites relative to distal ones. Taken together, our results indicate that polyA site usage is generally coupled to transcriptional activity, leading to regulation of alternative polyadenylation by transcription.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|