1
|
Westerfield JM, Kozojedová P, Juli C, Metola A, von Heijne G. Cotranslational membrane insertion of the voltage-sensitive K + channel KvAP. Proc Natl Acad Sci U S A 2025; 122:e2412492122. [PMID: 40163725 PMCID: PMC12002286 DOI: 10.1073/pnas.2412492122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Voltage-sensor domains (VSDs), found in many voltage-sensitive ion channels and enzymes, are composed of four transmembrane helices (TMHs), including the atypical, highly positively charged S4 helix. VSDs are cotranslationally inserted into the membrane, raising the question of how the highly charged S4 helix is integrated into the lipid bilayer as it exits the ribosome. Here, we have used force profile analysis (FPA) to follow the cotranslational insertion of the six-TMH KvAP voltage-sensitive ion channel into the Escherichia coli inner membrane. We find that the insertion process proceeds through three semi-independent steps: i) insertion of the S1-S2 helix hairpin, ii) insertion of the S3-S5 helices, and iii) insertion of the Pore and S6 helices. Our analysis highlights the importance of the concerted insertion of helical hairpins, the dramatic influence of the positively charged residues in S4, and the unexpectedly strong forces and effects on downstream TMHs elicited by amphipathic and re-entrant helices.
Collapse
Affiliation(s)
- Justin M. Westerfield
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Petra Kozojedová
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Cara Juli
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Ane Metola
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
- Science for Life Laboratory, Stockholm University, SolnaSE-171 21, Sweden
| |
Collapse
|
2
|
Pardo-Avila F, Kudva R, Levitt M, von Heijne G. Single-residue effects on the behavior of a nascent polypeptide chain inside the ribosome exit tunnel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608737. [PMID: 39229094 PMCID: PMC11370347 DOI: 10.1101/2024.08.20.608737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nascent polypeptide chains (NCs) are extruded from the ribosome through an exit tunnel (ET) traversing the large ribosomal subunit. The ET's irregular and chemically complex wall allows for various NC-ET interactions. Translational arrest peptides (APs) bind in the ET to induce translational arrest, a property that can be exploited to study NC-ET interactions by Force Profile Analysis (FPA). We employed FPA and molecular dynamics (MD) simulations to investigate how individual residues placed in a glycine-serine repeat segment within an AP-stalled NC interact with the ET to exert a pulling force on the AP and release stalling. Our results indicate that large and hydrophobic residues generate a pulling force on the NC when placed ≳10 residues away from the peptidyl transfer center (PTC). Moreover, an asparagine placed 12 residues from the PTC makes a specific stabilizing interaction with the tip of ribosomal protein uL22 that reduces the pulling force on the NC, while a lysine or leucine residue in the same position increases the pulling force. Finally, the MD simulations suggest how the Mannheimia succiniproducens SecM AP interacts with the ET to promote translational stalling.
Collapse
Affiliation(s)
- Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Michael Levitt
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| |
Collapse
|
3
|
Gersteuer F, Morici M, Gabrielli S, Fujiwara K, Safdari HA, Paternoga H, Bock LV, Chiba S, Wilson DN. The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome. Nat Commun 2024; 15:2431. [PMID: 38503753 PMCID: PMC10951299 DOI: 10.1038/s41467-024-46762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
Collapse
Affiliation(s)
- Felix Gersteuer
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sara Gabrielli
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
4
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Modulating co-translational protein folding by rational design and ribosome engineering. Nat Commun 2022; 13:4243. [PMID: 35869078 PMCID: PMC9307626 DOI: 10.1038/s41467-022-31906-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing 19F/15N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome. The narrow exit tunnel of the ribosome is important for cotranslational protein folding. Here, authors show that their rationally designed and engineered exit tunnel protein loops modulate the free energy of nascent chain dynamics and folding.
Collapse
|
6
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
8
|
Nascent SecM chain interacts with outer ribosomal surface to stabilize translation arrest. Biochem J 2020; 477:557-566. [PMID: 31913464 PMCID: PMC6993859 DOI: 10.1042/bcj20190723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
SecM, a bacterial secretion monitor protein, posttranscriptionally regulates downstream gene expression via translation elongation arrest. SecM contains a characteristic amino acid sequence called the arrest sequence at its C-terminus, and this sequence acts within the ribosomal exit tunnel to stop translation. It has been widely assumed that the arrest sequence within the ribosome tunnel is sufficient for translation arrest. We have previously shown that the nascent SecM chain outside the ribosomal exit tunnel stabilizes translation arrest, but the molecular mechanism is unknown. In this study, we found that residues 57–98 of the nascent SecM chain are responsible for stabilizing translation arrest. We performed alanine/serine-scanning mutagenesis of residues 57–98 to identify D79, Y80, W81, H84, R87, I90, R91, and F95 as the key residues responsible for stabilization. The residues were predicted to be located on and near an α-helix-forming segment. A striking feature of the α-helix is the presence of an arginine patch, which interacts with the negatively charged ribosomal surface. A photocross-linking experiment showed that Y80 is adjacent to the ribosomal protein L23, which is located next to the ribosomal exit tunnel when translation is arrested. Thus, the folded nascent SecM chain that emerges from the ribosome exit tunnel interacts with the outer surface of the ribosome to stabilize translation arrest.
Collapse
|
9
|
Ito K, Mori H, Chiba S. Monitoring substrate enables real-time regulation of a protein localization pathway. FEMS Microbiol Lett 2019; 365:4983124. [PMID: 29790986 DOI: 10.1093/femsle/fny109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hiroyuki Mori
- Japan and Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
10
|
Halfon Y, Matzov D, Eyal Z, Bashan A, Zimmerman E, Kjeldgaard J, Ingmer H, Yonath A. Exit tunnel modulation as resistance mechanism of S. aureus erythromycin resistant mutant. Sci Rep 2019; 9:11460. [PMID: 31391518 PMCID: PMC6685948 DOI: 10.1038/s41598-019-48019-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.
Collapse
Affiliation(s)
- Yehuda Halfon
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Donna Matzov
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Zohar Eyal
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Anat Bashan
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Ella Zimmerman
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Jette Kjeldgaard
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800, Kgs, Lyngby, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Ada Yonath
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel.
| |
Collapse
|
11
|
Cherry JK, Woolhead CA. Hydrophobicity, rather than secondary structure, is essential for the SRP dependent targeting of GPR35 to the ER membrane. J Bioenerg Biomembr 2019; 51:137-150. [PMID: 30706279 PMCID: PMC6439181 DOI: 10.1007/s10863-019-9785-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/15/2019] [Indexed: 01/21/2023]
Abstract
The folding and targeting of hydrophobic transmembrane domains poses a major challenge to the cell. Several membrane proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. However, there is little information on one of the largest classes of eukaryotic membrane proteins; the G protein-coupled receptors (GPCRs). In this study we show that the signal anchor domain of GPR35 remains in an extended conformation whilst exiting the ribosome tunnel, the polypeptide chain then forms interactions with components of the SRP targeting pathway, and the Sec61 translocon, resulting in a compacted conformation prior to integration into the ER membrane. We conclude that transmembrane structure is most likely adopted after the domain leaves the ribosome tunnel and that the interaction of the signal anchor with SRP is dependent on the native levels of hydrophobicity within the first transmembrane domain. Therefore, we propose a mechanism by which the first transmembrane domains of multi-spanning membrane proteins adopt compacted structures following SRP targeting but before insertion into the ER membrane.
Collapse
Affiliation(s)
- Jon K Cherry
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- The Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Cheryl A Woolhead
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
12
|
Increased freedom of movement in the nascent chain results in dynamic changes in the structure of the SecM arrest motif. Biosci Rep 2019; 39:BSR20181246. [PMID: 30563926 PMCID: PMC6340945 DOI: 10.1042/bsr20181246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are responsible for the synthesis of all cellular proteins. Due to the diversity of sequence and properties, it was initially believed that translating nascent chains would travel unhindered through the ribosome exit tunnel, however a small but increasing number of proteins have been identified that interact with the exit tunnel to induce translational arrest, Escherichia coli (E. coli) secretion monitor (SecM) is one such stalling peptide. How and why these peptides interact with the exit tunnel is not fully understood, however key features required for stalling appear to be an essential peptide arrest motif at the C-terminus and compaction of the nascent chain within the exit tunnel upon stalling. Mutagenesis of the SecM arrest sequence has identified three conservative point mutations that can retain a degree of stalling in this highly conserved sequence. This level of stalling is further increased when coupled with mutation of a non-essential arrest motif residue P153A. Further analysis of these mutants by pegylation assays indicates that this increase in stalling activity during translation is due to the ability of the P153A mutation to reintroduce compaction of the nascent chain within the exit tunnel possibly due to the improved flexibility of the nascent chain provided by the removal of a restrictive proline residue. The data presented here suggest that arrest sequences may be more prevalent and less highly conserved than previously thought, and highlight the significance of the interactions between the nascent chain and the exit tunnel to affecting translation arrest.
Collapse
|
13
|
Kaiser CM, Liu K. Folding up and Moving on-Nascent Protein Folding on the Ribosome. J Mol Biol 2018; 430:4580-4591. [PMID: 29981746 PMCID: PMC6384192 DOI: 10.1016/j.jmb.2018.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
Abstract
All cellular proteins are synthesized by the ribosome, an intricate molecular machine that translates the information of protein coding genes into the amino acid alphabet. The linear polypeptides synthesized by the ribosome must generally fold into specific three-dimensional structures to become biologically active. Folding has long been recognized to begin before synthesis is complete. Recently, biochemical and biophysical studies have shed light onto how the ribosome shapes the folding pathways of nascent proteins. Here, we discuss recent progress that is beginning to define the role of the ribosome in the folding of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Christian M Kaiser
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kaixian Liu
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; CMDB Graduate Program, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Gonsberg A, Jung S, Ulbrich S, Origi A, Ziska A, Baier M, Koch HG, Zimmermann R, Winklhofer KF, Tatzelt J. The Sec61/SecY complex is inherently deficient in translocating intrinsically disordered proteins. J Biol Chem 2017; 292:21383-21396. [PMID: 29084847 DOI: 10.1074/jbc.m117.788067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
About one-quarter to nearly one-third of the proteins synthesized in the cytosol of eukaryotic cells are integrated into the plasma membrane or are secreted. Translocation of secretory proteins into the lumen of the endoplasmic reticulum or the periplasm of bacteria is mediated by a highly conserved heterotrimeric membrane protein complex denoted Sec61 in eukaryotes and SecYEG in bacteria. To evaluate a possible modulation of the translocation efficiency by secondary structures of the nascent peptide chain, we performed a comparative analysis in bacteria, yeast, and mammalian cells. Strikingly, neither the bacterial SecY nor the eukaryotic Sec61 translocon was able to efficiently transport proteins entirely composed of intrinsically disordered domains (IDDs) or β-strands. However, translocation could be restored by α-helical domains in a position- and organism-dependent manner. In bacteria, we found that the α-helical domains have to precede the IDD or β-strands, whereas in mammalian cells, C-terminally located α-helical domains are sufficient to promote translocation. Our study reveals an evolutionarily conserved deficiency of the Sec61/SecY complex to translocate IDDs and β-strands in the absence of α-helical domains. Moreover, our results may suggest that adaptive pathways co-evolved with the expansion of IDDs in the proteome of eukaryotic cells to increase the transport capacity of the Sec61 translocon.
Collapse
Affiliation(s)
- Anika Gonsberg
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| | - Sebastian Jung
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| | - Sarah Ulbrich
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| | - Andrea Origi
- the Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Anke Ziska
- the Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany, and
| | - Michael Baier
- the Research Group Proteinopathies/Neurodegenerative Diseases, Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, D-13353 Berlin, Germany
| | - Hans-Georg Koch
- the Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Richard Zimmermann
- the Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany, and
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Jörg Tatzelt
- From the Departments of Biochemistry of Neurodegenerative Diseases and
| |
Collapse
|
15
|
Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D, Krupkin M, Rozenberg H, Bashan A, Friedlander G, Kjeldgaard J, Ingmer H, Lindahl L, Zengel JM, Yonath A. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel. Structure 2017; 25:1233-1241.e3. [PMID: 28689968 DOI: 10.1016/j.str.2017.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 05/08/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the β hairpin of ribosomal protein uL22, which is rather distal to the erythromycin binding site, also generate resistance to the antibiotic. We have determined the crystal structure of the large ribosomal subunit from Deinococcus radiodurans with a three amino acid insertion within the β hairpin of uL22 that renders resistance to erythromycin. The structure reveals a shift of the β hairpin of the mutated uL22 toward the interior of the exit tunnel, triggering a cascade of structural alterations of rRNA nucleotides that propagate to the erythromycin binding pocket. Our findings support recent studies showing that the interactions between uL22 and specific sequences within nascent chains trigger conformational rearrangements in the exit tunnel.
Collapse
Affiliation(s)
- Itai Wekselman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ella Zimmerman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Davidovich
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew Belousoff
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilgi Friedlander
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jette Kjeldgaard
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Schlesinger O, Chemla Y, Heltberg M, Ozer E, Marshall R, Noireaux V, Jensen MH, Alfonta L. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids. ACS Synth Biol 2017; 6:1076-1085. [PMID: 28230975 DOI: 10.1021/acssynbio.7b00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.
Collapse
Affiliation(s)
- Orr Schlesinger
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Yonatan Chemla
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Mathias Heltberg
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Eden Ozer
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Ryan Marshall
- School
of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School
of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mogens Høgh Jensen
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Lital Alfonta
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
17
|
Tu L, Deutsch C. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1722-1732. [PMID: 28478285 DOI: 10.1016/j.jmb.2017.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 11/17/2022]
Abstract
Proteins begin to fold in the ribosome, and misfolding has pathological consequences. Among the earliest folding events in biogenesis is the formation of a helix, an elementary structure that is ubiquitously present and required for correct protein folding in all proteomes. The determinants underlying helix formation in the confined space of the ribosome exit tunnel are relatively unknown. We chose the second transmembrane segment, S2, of a voltage-gated potassium channel, Kv1.3, as a model to probe this issue. Since the N terminus of S2 is initially in an extended conformation in the folding vestibule of the ribosome yet ultimately emerges at the exit port as a helix, S2 is ideally suited for delineating sequential events and folding determinants of helix formation inside the ribosome. We show that S2's extended N terminus inside the tunnel is converted into a helix by a single, distant mutation in the nascent peptide. This transition depends on nascent peptide sequence at specific tunnel locations. Co-translational secondary folding of nascent chains inside the ribosome has profound physiological consequences that bear on correct membrane insertion, tertiary folding, oligomerization, and biochemical modification of the newborn protein during biogenesis.
Collapse
Affiliation(s)
- LiWei Tu
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA.
| |
Collapse
|
18
|
Auerbach-Nevo T, Baram D, Bashan A, Belousoff M, Breiner E, Davidovich C, Cimicata G, Eyal Z, Halfon Y, Krupkin M, Matzov D, Metz M, Rufayda M, Peretz M, Pick O, Pyetan E, Rozenberg H, Shalev-Benami M, Wekselman I, Zarivach R, Zimmerman E, Assis N, Bloch J, Israeli H, Kalaora R, Lim L, Sade-Falk O, Shapira T, Taha-Salaime L, Tang H, Yonath A. Ribosomal Antibiotics: Contemporary Challenges. Antibiotics (Basel) 2016; 5:antibiotics5030024. [PMID: 27367739 PMCID: PMC5039520 DOI: 10.3390/antibiotics5030024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022] Open
Abstract
Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.
Collapse
Affiliation(s)
- Tamar Auerbach-Nevo
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - David Baram
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Matthew Belousoff
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Elinor Breiner
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Chen Davidovich
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Giuseppe Cimicata
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Zohar Eyal
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Yehuda Halfon
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Miri Krupkin
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Markus Metz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Mruwat Rufayda
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moshe Peretz
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ophir Pick
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Erez Pyetan
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Itai Wekselman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Raz Zarivach
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ella Zimmerman
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Nofar Assis
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Joel Bloch
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hadar Israeli
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Rinat Kalaora
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Lisha Lim
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ofir Sade-Falk
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Tal Shapira
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Leena Taha-Salaime
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Hua Tang
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
19
|
A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding. Nat Struct Mol Biol 2016; 23:278-285. [PMID: 26926436 PMCID: PMC5405865 DOI: 10.1038/nsmb.3182] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
Although detailed pictures of ribosome structures are emerging, little is known about the structural and cotranslational folding properties of nascent polypeptide chains at the atomic level. Here we used solution-state NMR spectroscopy to define a structural ensemble of a ribosome-nascent chain complex (RNC) formed during protein biosynthesis in Escherichia coli, in which a pair of immunoglobulin-like domains adopts a folded N-terminal domain (FLN5) and a disordered but compact C-terminal domain (FLN6). To study how FLN5 acquires its native structure cotranslationally, we progressively shortened the RNC constructs. We found that the ribosome modulates the folding process, because the complete sequence of FLN5 emerged well beyond the tunnel before acquiring native structure, whereas FLN5 in isolation folded spontaneously, even when truncated. This finding suggests that regulating structure acquisition during biosynthesis can reduce the probability of misfolding, particularly of homologous domains.
Collapse
|
20
|
Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF. Mechanisms of ribosome stalling by SecM at multiple elongation steps. eLife 2015; 4. [PMID: 26670735 PMCID: PMC4737659 DOI: 10.7554/elife.09684] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022] Open
Abstract
Regulation of translating ribosomes is a major component of gene expression control network. In Escherichia coli, ribosome stalling by the C-terminal arrest sequence of SecM regulates the SecA-dependent secretion pathway. Previous studies reported many residues of SecM peptide and ribosome exit tunnel are critical for stalling. However, the underlying molecular mechanism is still not clear at the atomic level. Here, we present two cryo-EM structures of the SecM-stalled ribosomes at 3.3–3.7 Å resolution, which reveal two different stalling mechanisms at distinct elongation steps of the translation cycle: one is due to the inactivation of ribosomal peptidyl-transferase center which inhibits peptide bond formation with the incoming prolyl-tRNA; the other is the prolonged residence of the peptidyl-RNA at the hybrid A/P site which inhibits the full-scale tRNA translocation. These results demonstrate an elegant control of translation cycle by regulatory peptides through a continuous, dynamic reshaping of the functional center of the ribosome. DOI:http://dx.doi.org/10.7554/eLife.09684.001 Many genes code for proteins that carry out essential tasks. The instructions in a gene are first copied into a messenger RNA (mRNA), and a molecular machine known as a ribosome reads the copied instructions in groups of three letters at a time (called codons). The ribosome translates the order of the codons into a sequence of amino acids; each amino acid is carried into the ribosome by a transfer RNA (tRNA) molecule. As it translates, the ribosome joins each new amino acid to the one before it, like the links in a chain. Finally, the newly built protein chain passes through a tunnel to exit the ribosome. Ribosomes do not build all proteins at a constant rate; there are many examples of proteins that stall when they are in the ribosome exit tunnel. It is thought that this stalling is an important way for cells to control the expression of proteins. SecM is a bacterial protein that stalls while it is being made. Previous research has shown that a sequence of amino acids in SecM (called the arrest sequence) interacts with components of the ribosome tunnel. This interaction leads to stalling, and regulates the translation of another important bacterial protein (called SecA) that is encoded downstream on the same mRNA as SecM. If SecM-induced stalling takes place, the translation of SecA actually increases. Nevertheless, it remains poorly understood how SecM stalls in the ribosome. Zhang et al. have now solved the structures of SecM proteins stalled inside ribosomes using a method called cryo-electron microscopy. This approach identified two different states of SecM present in the ribosome, which corresponded to two different stalling mechanisms. The addition of an amino acid to a growing protein occurs in stages. First, the tRNA that carries the amino acid to the ribosome and bind to it in a region known as the A-site. After this, the tRNA moves to the P-site where the attached amino acid is incorporated into the elongating protein chain. Zhang et al. observed that the arrest sequence of SecM and the ribosome tunnel interact extensively. These interactions are strong and alter the configuration of both the A-site and P-site of the ribosome. This has two major consequences for translation. First, the tRNA cannot be stably accommodated in the A-site and secondly, its passage to the P-site is slowed down. Both these mechanisms contribute to stalling. This study provides a detailed analysis of how the ribosome can adjust to control translation. It also highlights that codon-specific control of translation constitutes an important component of how gene expression is regulated. DOI:http://dx.doi.org/10.7554/eLife.09684.002
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xijiang Pan
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kaige Yan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Probing the Translation Dynamics of Ribosomes Using Zero-Mode Waveguides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 139:1-43. [PMID: 26970189 DOI: 10.1016/bs.pmbts.2015.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven to be challenging for bulk methods. Conventional single-molecule fluorescence experiments on the other hand require low concentrations of fluorescent ligands to reduce background noise. The significantly reduced bimolecular association rates under those conditions limit the number of steps that can be observed within the time window available to a fluorophore. The advent of zero-mode waveguide (ZMW) technology has allowed the study of translation at near-physiological concentrations of labeled ligands, moving single-molecule fluorescence microscopy beyond focused model systems into studying the global dynamics of translation in realistic setups. This chapter reviews the recent works using the ZMW technology to dissect the mechanism of translation initiation and elongation in prokaryotes, including complex processes such as translational stalling and frameshifting. Given the success of the technology, similarly complex biological processes could be studied in near-physiological conditions with the controllability of conventional in vitro experiments.
Collapse
|
22
|
Abstract
BACKGROUND During protein synthesis, the nascent peptide chain emerges from the ribosome through the ribosomal exit tunnel. Biochemical interactions between the nascent peptide and the tunnel may stall the ribosome movement and thus affect the expression level of the protein being synthesized. Earlier studies focused on one model organism (S. cerevisiae), have suggested that certain amino acid sequences may be responsible for ribosome stalling; however, the stalling effect at the individual amino acid level across many organisms has not yet been quantified. RESULTS By analyzing multiple ribosome profiling datasets from different organisms (including prokaryotes and eukaryotes), we report for the first time the organism-specific amino acids that significantly lead to ribosome stalling. We show that the identity of the stalling amino acids vary across the tree of life. In agreement with previous studies, we observed a remarkable stalling signal of proline and arginine in S. cerevisiae. In addition, our analysis supports the conjecture that the stalling effect of positively charged amino acids is not universal and that in certain conditions, negative charge may also induce ribosome stalling. Finally, we show that the beginning part of the tunnel tends to undergo more interactions with the translated amino acids than other positions along the tunnel. CONCLUSIONS The reported results support the conjecture that the ribosomal exit tunnel interacts with various amino acids and that the nature of these interactions varies among different organisms. Our findings should contribute towards better understanding of transcript and proteomic evolution and translation elongation regulation.
Collapse
Affiliation(s)
- Renana Sabi
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University (TAU), Tel-Aviv, Israel
| |
Collapse
|
23
|
Yang Z, Iizuka R, Funatsu T. Nascent SecM chain outside the ribosome reinforces translation arrest. PLoS One 2015; 10:e0122017. [PMID: 25806953 PMCID: PMC4373844 DOI: 10.1371/journal.pone.0122017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/12/2015] [Indexed: 12/04/2022] Open
Abstract
SecM, a bacterial secretion monitor protein, contains a specific amino acid sequence at its C-terminus, called arrest sequence, which interacts with the ribosomal tunnel and arrests its own translation. The arrest sequence is sufficient and necessary for stable translation arrest. However, some previous studies have suggested that the nascent chain outside the ribosome affects the stability of translation arrest. To clarify this issue, we performed in vitro translation assays with HaloTag proteins fused to the C-terminal fragment of E. coli SecM containing the arrest sequence or the full-length SecM. We showed that the translation of HaloTag proteins, which are fused to the fragment, is not effectively arrested, whereas the translation of HaloTag protein fused to full-length SecM is arrested efficiently. In addition, we observed that the nascent SecM chain outside the ribosome markedly stabilizes the translation arrest. These results indicate that changes in the nascent polypeptide chain outside the ribosome can affect the stability of translation arrest; the nascent SecM chain outside the ribosome stabilizes the translation arrest.
Collapse
Affiliation(s)
- Zhuohao Yang
- Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Iizuka
- Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Funatsu
- Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Washington AZ, Benicewicz DB, Canzoneri JC, Fagan CE, Mwakwari SC, Maehigashi T, Dunham CM, Oyelere AK. Macrolide-peptide conjugates as probes of the path of travel of the nascent peptides through the ribosome. ACS Chem Biol 2014; 9:2621-31. [PMID: 25198768 PMCID: PMC4245169 DOI: 10.1021/cb5003224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Despite
decades of research on the bacterial ribosome, the ribosomal
exit tunnel is still poorly understood. Although it has been suggested
that the exit tunnel is simply a convenient route of egress for the
nascent chain, specific protein sequences serve to slow the rate of
translation, suggesting some degree of interaction between the nascent
peptide chain and the exit tunnel. To understand how the ribosome
interacts with nascent peptide sequences, we synthesized and characterized
a novel class of probe molecules. These peptide–macrolide (or
“peptolide”) conjugates were designed to present unique
peptide sequences to the exit tunnel. Biochemical and X-ray structural
analyses of the interactions between these probes and the ribosome
reveal interesting insights about the exit tunnel. Using translation
inhibition and RNA structure probing assays, we find the exit tunnel
has a relaxed preference for the directionality (N → C or C
→ N orientation) of the nascent peptides. Moreover, the X-ray
crystal structure of one peptolide derived from a positively charged,
reverse Nuclear Localization Sequence peptide, bound to the 70S bacterial
ribosome, reveals that the macrolide ring of the peptolide binds in
the same position as other macrolides. However, the peptide tail folds
over the macrolide ring, oriented toward the peptidyl transferase
center and interacting in a novel manner with 23S rRNA residue C2442
and His69 of ribosomal protein L4. These data suggest that these peptolides
are viable probes for interrogating nascent peptide–exit tunnel
interaction.
Collapse
Affiliation(s)
- Arren Z. Washington
- School
of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Derek B. Benicewicz
- School
of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Joshua C. Canzoneri
- School
of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Crystal E. Fagan
- Department
of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Sandra C. Mwakwari
- School
of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Tatsuya Maehigashi
- Department
of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Christine M. Dunham
- Department
of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Adegboyega K. Oyelere
- School
of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
25
|
Abstract
The prevailing "plug-in-the-bottle" model suggests that macrolide antibiotics inhibit translation by binding inside the ribosome tunnel and indiscriminately arresting the elongation of every nascent polypeptide after the synthesis of six to eight amino acids. To test this model, we performed a genome-wide analysis of translation in azithromycin-treated Staphylococcus aureus. In contrast to earlier predictions, we found that the macrolide does not preferentially induce ribosome stalling near the 5' end of mRNAs, but rather acts at specific stalling sites that are scattered throughout the entire coding region. These sites are highly enriched in prolines and charged residues and are strikingly similar to other ligand-independent ribosome stalling motifs. Interestingly, the addition of structurally related macrolides had dramatically different effects on stalling efficiency. Our data suggest that ribosome stalling can occur at a surprisingly large number of low-complexity motifs in a fashion that depends only on a few arrest-inducing residues and the presence of a small molecule inducer.
Collapse
|
26
|
Lu J, Deutsch C. Regional discrimination and propagation of local rearrangements along the ribosomal exit tunnel. J Mol Biol 2014; 426:4061-4073. [PMID: 25308341 DOI: 10.1016/j.jmb.2014.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022]
Abstract
All proteins, from bacteria to man, are made in the ribosome and are elongated, one residue at a time, at the peptidyl transferase center. This growing peptide chain wends its way through the ribosomal tunnel to the exit port, ~100Å from the peptidyl transferase center. We have identified locations in the tunnel that sense and respond to single side chains of the nascent peptide to induce local conformational changes. Moreover, side-chain sterics and rearrangements deep in the tunnel influence the disposition of residues 45Å away at the exit port and are consistent with side-chain-induced axial retraction of the peptide backbone. These coupled responses are neither haphazard nor uniform along the tunnel. Rather, they are confined to discriminating zones in the tunnel and are sequence specific. Such discerning communication may contribute to folding events and mechanisms governing sequence-specific signaling between different regions of the tunnel during translation.
Collapse
Affiliation(s)
- Jianli Lu
- Department of Physiology, University of Pennsylvania, PA 19104, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
27
|
Cymer F, von Heijne G, White SH. Mechanisms of integral membrane protein insertion and folding. J Mol Biol 2014; 427:999-1022. [PMID: 25277655 DOI: 10.1016/j.jmb.2014.09.014] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
The biogenesis, folding, and structure of α-helical membrane proteins (MPs) are important to understand because they underlie virtually all physiological processes in cells including key metabolic pathways, such as the respiratory chain and the photosystems, as well as the transport of solutes and signals across membranes. Nearly all MPs require translocons--often referred to as protein-conducting channels--for proper insertion into their target membrane. Remarkable progress toward understanding the structure and functioning of translocons has been made during the past decade. Here, we review and assess this progress critically. All available evidence indicates that MPs are equilibrium structures that achieve their final structural states by folding along thermodynamically controlled pathways. The main challenge for cells is the targeting and membrane insertion of highly hydrophobic amino acid sequences. Targeting and insertion are managed in cells principally by interactions between ribosomes and membrane-embedded translocons. Our review examines the biophysical and biological boundaries of MP insertion and the folding of polytopic MPs in vivo. A theme of the review is the under-appreciated role of basic thermodynamic principles in MP folding and assembly. Thermodynamics not only dictates the final folded structure but also is the driving force for the evolution of the ribosome-translocon system of assembly. We conclude the review with a perspective suggesting a new view of translocon-guided MP insertion.
Collapse
Affiliation(s)
- Florian Cymer
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm.,Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems University of California, Irvine Irvine, CA 92697
| |
Collapse
|
28
|
Bustamante CJ, Kaiser CM, Maillard RA, Goldman DH, Wilson CAM. Mechanisms of cellular proteostasis: insights from single-molecule approaches. Annu Rev Biophys 2014; 43:119-40. [PMID: 24895851 DOI: 10.1146/annurev-biophys-051013-022811] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins.
Collapse
|
29
|
The dynamics of SecM-induced translational stalling. Cell Rep 2014; 7:1521-1533. [PMID: 24836001 DOI: 10.1016/j.celrep.2014.04.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/27/2014] [Accepted: 04/17/2014] [Indexed: 02/01/2023] Open
Abstract
SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.
Collapse
|
30
|
Abstract
Each peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ≈ 40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC-exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | |
Collapse
|
31
|
Zhong J, Cui Y, Guo J, Chen Z, Yang L, He QY, Zhang G, Wang T. Resolving chromosome-centric human proteome with translating mRNA analysis: a strategic demonstration. J Proteome Res 2013; 13:50-9. [PMID: 24200226 DOI: 10.1021/pr4007409] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosome-centric human proteome project (C-HPP) aims at differentiating chromosome-based and tissue-specific protein compositions in terms of protein expression, quantification, and modification. We previously found that the analysis of translating mRNA (mRNA attached to ribosome-nascent chain complex, RNC-mRNA) can explain over 94% of mRNA-protein abundance. Therefore, we propose here to use full-length RNC-mRNA information to illustrate protein expression both qualitatively and quantitatively. We performed RNA-seq on RNC-mRNA (RNC-seq) and detected 12,758 and 14,113 translating genes in human normal bronchial epithelial (HBE) cells and human colorectal adenocarcinoma Caco-2 cells, respectively. We found that most of these genes were mapped with >80% of coding sequence coverage. In Caco-2 cells, we provided translating evidence on 4180 significant single-nucleotide variations. While using RNC-mRNA data as a standard for proteomic data integration, both translating and protein evidence of 7876 genes can be acquired from four interlaboratory data sets with different MS platforms. In addition, we detected 1397 noncoding mRNAs that were attached to ribosomes, suggesting a potential source of new protein explorations. By comparing the two cell lines, a total of 677 differentially translated genes were found to be nonevenly distributed across chromosomes. In addition, 2105 genes in Caco-2 and 750 genes in HBE cells are expressed in a cell-specific manner. These genes are significantly and specifically clustered on multiple chromosomes, such as chromosome 19. We conclude that HPP/C-HPP investigations can be considerably improved by integrating RNC-mRNA analysis with MS, bioinformatics, and antibody-based verifications.
Collapse
Affiliation(s)
- Jiayong Zhong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zimmerman E, Bashan A, Yonath A. Antibiotics at the Ribosomal Exit Tunnel-Selected Structural Aspects. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Mutations in the Escherichia coli ribosomal protein L22 selectively suppress the expression of a secreted bacterial virulence factor. J Bacteriol 2013; 195:2991-9. [PMID: 23625843 DOI: 10.1128/jb.00211-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in the ribosomal protein L22 that impair peptide-mediated translation arrest in Escherichia coli have been shown to reduce the expression of several genes, including secA, which encodes an ATPase that drives protein export via the Sec pathway. Here, we used a comparative proteomic approach to obtain insight into the global effects of the L22(Δ82-84) mutation on gene expression and protein synthesis. While the mutation did not affect or modestly affected the level of most soluble proteins, it dramatically reduced the level of antigen 43 (Ag43), a secreted virulence factor that promotes autoaggregation. The reduced protein concentration correlated with a sharp decrease in the abundance and stability of Ag43 mRNA. We found that the overexpression of secA or the inactivation of genes that encode presecretory and membrane proteins restored Ag43 production in the L22 mutant strain. Furthermore, impairment of the Sec pathway in a wild-type strain reduced Ag43 production but did not significantly affect the synthesis of other presecretory proteins. Taken together, these results indicate that Ag43 gene expression is exquisitely sensitive to the status of the Sec machinery and strongly suggest that the L22 mutation decreases the Ag43 concentration indirectly by reducing secA expression. Our results imply the existence of a novel regulatory mechanism in which the efficiency of protein export is coupled to gene expression and help to explain the modulation of SecA synthesis that has been observed in response to secretion stress.
Collapse
|
34
|
Dirndorfer D, Seidel RP, Nimrod G, Miesbauer M, Ben-Tal N, Engelhard M, Zimmermann R, Winklhofer KF, Tatzelt J. The α-helical structure of prodomains promotes translocation of intrinsically disordered neuropeptide hormones into the endoplasmic reticulum. J Biol Chem 2013; 288:13961-13973. [PMID: 23532840 DOI: 10.1074/jbc.m112.430264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation.
Collapse
Affiliation(s)
- Daniela Dirndorfer
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Ralf P Seidel
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Guy Nimrod
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Margit Miesbauer
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Nir Ben-Tal
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Martin Engelhard
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University Homburg, 66421 Homburg/Saar, Germany
| | - Konstanze F Winklhofer
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany.
| |
Collapse
|
35
|
Pfeiffer NV, Dirndorfer D, Lang S, Resenberger UK, Restelli LM, Hemion C, Miesbauer M, Frank S, Neutzner A, Zimmermann R, Winklhofer KF, Tatzelt J. Structural features within the nascent chain regulate alternative targeting of secretory proteins to mitochondria. EMBO J 2013; 32:1036-51. [PMID: 23481258 DOI: 10.1038/emboj.2013.46] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/01/2013] [Indexed: 01/23/2023] Open
Abstract
Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N-terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein-like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α-helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain.
Collapse
Affiliation(s)
- Natalie V Pfeiffer
- Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Compaction of a prokaryotic signal-anchor transmembrane domain begins within the ribosome tunnel and is stabilized by SRP during targeting. J Mol Biol 2012; 423:600-12. [PMID: 22867705 DOI: 10.1016/j.jmb.2012.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/20/2012] [Accepted: 07/27/2012] [Indexed: 11/23/2022]
Abstract
Cotranslational targeting of membrane proteins is mediated by the universally conserved signal recognition particle (SRP). In eukaryotes, SRP attenuates translation during targeting; however, in prokaryotes, a simplified SRP is believed to carry out targeting during continuing translation. Here, we show a detailed stepwise analysis of the targeting of subunit c of the F(0) component of the bacterial ATP synthase (F(0)c) to the inner membrane. We show that the first transmembrane (TM) signal-anchor domain of F(0)c forms a compacted structure within the distal portion of the ribosome tunnel. This structure is formed just prior to the interaction with SRP. In the absence of SRP this structure is lost as the TM domain exits the tunnel; however in the presence of SRP it is stabilized. Our results suggest differences in early protein folding of substrates for prokaryotic SRP-dependent membrane protein targeting pathways, from that of eukaryotic SRP targeting. These results imply that early TM domain recognition by targeting factors acts to ensure that the efficiency of membrane targeting is maintained.
Collapse
|
37
|
tRNA concentration fine tunes protein solubility. FEBS Lett 2012; 586:3336-40. [PMID: 22819830 DOI: 10.1016/j.febslet.2012.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/30/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022]
Abstract
Clusters of codons pairing to low-abundance tRNAs synchronize the translation with co-translational folding of single domains in multidomain proteins. Although proven with some examples, the impact of the ribosomal speed on the folding and solubility on a global, cell-wide level remains elusive. Here we show that upregulation of three low-abundance tRNAs in Escherichia coli increased the aggregation propensity of several cellular proteins as a result of an accelerated elongation rate. Intriguingly, alterations in the concentration of the natural tRNA pool compromised the solubility of various chaperones consequently rendering the solubility of some chaperone-dependent proteins.
Collapse
|
38
|
Gumbart J, Schreiner E, Wilson DN, Beckmann R, Schulten K. Mechanisms of SecM-mediated stalling in the ribosome. Biophys J 2012; 103:331-41. [PMID: 22853911 DOI: 10.1016/j.bpj.2012.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 02/05/2023] Open
Abstract
Nascent-peptide modulation of translation is a common regulatory mechanism of gene expression. In this mechanism, while the nascent peptide is still in the exit tunnel of the ribosome, it induces translational pausing, thereby controlling the expression of downstream genes. One example is SecM, which inhibits peptide-bond formation in the ribosome's peptidyl transferase center (PTC) during its own translation, upregulating the expression of the protein translocase SecA. Although biochemical experiments and cryo-electron microscopy data have led to the identification of some residues involved in SecM recognition, the full pathway of interacting residues that connect SecM to the PTC through the ribosome has not yet been conclusively established. Here, using the cryo-electron microscopy data, we derived the first (to our knowledge) atomic model of the SecM-stalled ribosome via molecular-dynamics flexible fitting, complete with P- and A-site tRNAs. Subsequently, we carried out simulations of native and mutated SecM-stalled ribosomes to investigate possible interaction pathways between a critical SecM residue, R163, and the PTC. In particular, the simulations reveal the role of SecM in altering the position of the tRNAs in the ribosome, and thus demonstrate how the presence of SecM in the exit tunnel induces stalling. Finally, steered molecular-dynamics simulations in which SecM was pulled toward the tunnel exit suggest how SecA interacting with SecM from outside the ribosome relieves stalling.
Collapse
Affiliation(s)
- James Gumbart
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA
| | | | | | | | | |
Collapse
|
39
|
Lin KF, Sun CS, Huang YC, Chan SI, Koubek J, Wu TH, Huang JJT. Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment. Biophys J 2012; 102:2818-27. [PMID: 22735532 DOI: 10.1016/j.bpj.2012.04.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022] Open
Abstract
In recent years, various folding zones within the ribosome tunnel have been identified and explored through x-ray, cryo-electron microscopy (cryo-EM), and molecular biology studies. Here, we generated ribosome-bound nascent polypeptide complexes (RNCs) with different polyalanine (poly-A) inserts or signal peptides from membrane/secretory proteins to explore the influence of nascent chain compaction in the Escherichia coli ribosome tunnel on chaperone recruitment. By employing time-resolved fluorescence resonance energy transfer and immunoblotting, we were able to show that the poly-A inserts embedded in the passage tunnel can form a compacted structure (presumably helix) and reduce the recruitment of Trigger Factor (TF) when the helical motif is located in the region near the tunnel exit. Similar experiments on nascent chains containing signal sequences that may form compacted structural motifs within the ribosome tunnel and lure the signal recognition particle (SRP) to the ribosome, provided additional evidence that short, compacted nascent chains interfere with TF binding. These findings shed light on the possible controlling mechanism of nascent chains within the tunnel that leads to chaperone recruitment, as well as the function of L23, the ribosomal protein that serves as docking sites for both TF and SRP, in cotranslational protein targeting.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
The arginine attenuator peptide interferes with the ribosome peptidyl transferase center. Mol Cell Biol 2012; 32:2396-406. [PMID: 22508989 DOI: 10.1128/mcb.00136-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal arginine attenuator peptide (AAP) is encoded by a regulatory upstream open reading frame (uORF). The AAP acts as a nascent peptide within the ribosome tunnel to stall translation in response to arginine (Arg). The effect of AAP and Arg on ribosome peptidyl transferase center (PTC) function was analyzed in Neurospora crassa and wheat germ translation extracts using the transfer of nascent AAP to puromycin as an assay. In the presence of a high concentration of Arg, the wild-type AAP inhibited PTC function, but a mutated AAP that lacked stalling activity did not. While AAP of wild-type length was most efficient at stalling ribosomes, based on primer extension inhibition (toeprint) assays and reporter synthesis assays, a window of inhibitory function spanning four residues was observed at the AAP's C terminus. The data indicate that inhibition of PTC function by the AAP in response to Arg is the basis for the AAP's function of stalling ribosomes at the uORF termination codon. Arg could interfere with PTC function by inhibiting peptidyltransferase activity and/or by restricting PTC A-site accessibility. The mode of PTC inhibition appears unusual because neither specific amino acids nor a specific nascent peptide chain length was required for AAP to inhibit PTC function.
Collapse
|
41
|
Wu C, Wei J, Lin PJ, Tu L, Deutsch C, Johnson AE, Sachs MS. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel. J Mol Biol 2012; 416:518-33. [PMID: 22244852 DOI: 10.1016/j.jmb.2011.12.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/13/2011] [Accepted: 12/30/2011] [Indexed: 11/26/2022]
Abstract
The fungal arginine attenuator peptide (AAP) is a regulatory peptide that controls ribosome function. As a nascent peptide within the ribosome exit tunnel, it acts to stall ribosomes in response to arginine (Arg). We used three approaches to probe the molecular basis for stalling. First, PEGylation assays revealed that the AAP did not undergo overall compaction in the tunnel in response to Arg. Second, site-specific photocross-linking showed that Arg altered the conformation of the wild-type AAP, but not of nonfunctional mutants, with respect to the tunnel. Third, using time-resolved spectral measurements with a fluorescent probe placed in the nascent AAP, we detected sequence-specific changes in the disposition of the AAP near the peptidyltransferase center in response to Arg. These data provide evidence that an Arg-induced change in AAP conformation and/or environment in the ribosome tunnel is important for stalling.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Luirink J, Yu Z, Wagner S, de Gier JW. Biogenesis of inner membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:965-76. [PMID: 22201544 DOI: 10.1016/j.bbabio.2011.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/05/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
Abstract
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Joen Luirink
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Identification of a hyperactive variant of the SecM motif involved in ribosomal arrest. Curr Microbiol 2011; 64:17-23. [PMID: 21971705 DOI: 10.1007/s00284-011-0027-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
Recent studies in several organisms have shown that certain nascent sticky peptides stall in the ribosome during their own translation. Amino acid sequences present at the C-terminal part of Escherichia coli SecM ((150)FSTPVWISQAQGIRAGP(166)) have a well-characterized role in ribosome stalling. To investigate the determinants of the SecM motif responsible for ribosome stalling, we performed a genetic screen for mutants with an altered SecM motif that resulted in altered ribosome stalling. To do this, we used a cat fusion construct containing the SecM motif and a myc-tag (cat'-'myc-secM). This construct expresses cat'-'myc-secM mRNA transcripts predominantly translated by a subset of ribosomes called specialized ribosomes that recognize an altered ribosome binding sequence in the mRNA. While all of the isolated mutants containing mutations at the functionally conserved amino acid residues at positions between 161 and 166 showed decreased ribosome stalling, one mutant sequence containing an amino acid substitution from serine to lysine at position 157 (S157K) showed enhanced ribosome stalling that consequently increased mRNA cleavage. Our results reveal that a functionally not conserved amino acid residue at position 157 of SecM can also affect ribosome stalling and provide additional insight into the molecular mechanisms underlying sticky-peptide-induced ribosome arrest.
Collapse
|
44
|
Lin PJ, Jongsma CG, Pool MR, Johnson AE. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. ACTA ACUST UNITED AC 2011; 195:55-70. [PMID: 21949410 PMCID: PMC3187706 DOI: 10.1083/jcb.201103118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multi-spanning membrane protein loops are directed alternately into the cytosol or ER lumen during cotranslational integration. Nascent chain exposure is switched after a newly synthesized transmembrane segment (TMS) enters the ribosomal tunnel. FRET measurements revealed that each TMS is initially extended, but folds into a compact conformation after moving 6-7 residues from the peptidyltransferase center, irrespective of loop size. The ribosome-induced folding of each TMS coincided with its photocrosslinking to ribosomal protein L17 and an inversion of compartmental exposure. This correlation indicates that successive TMSs fold and bind at a specific ribosomal tunnel site that includes L17, thereby triggering structural rearrangements of multiple components in and on both sides of the ER membrane, most likely via TMS-dependent L17 and/or rRNA conformational changes transmitted to the surface. Thus, cyclical changes at the membrane during integration are initiated by TMS folding, even though nascent chain conformation and location vary dynamically in the ribosome tunnel. Nascent chains therefore control their own trafficking.
Collapse
Affiliation(s)
- Pen-Jen Lin
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
45
|
Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 2011; 477:490-4. [PMID: 21900894 DOI: 10.1038/nature10393] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 07/27/2011] [Indexed: 11/08/2022]
Abstract
Polyamines are essential organic polycations with multiple cellular functions relevant for cell division, cancer and ageing. Regulation of polyamine synthesis is mainly achieved by controlling the activity of ornithine decarboxylase (ODC) through an unusual mechanism involving ODC antizyme, the binding of which disrupts homodimeric ODC and targets it for ubiquitin-independent degradation by the 26S proteasome. Whereas mammals express several antizyme genes, we have identified a single orthologue, termed OAZ1, in Saccharomyces cerevisiae. Similar to its mammalian counterparts, OAZ1 synthesis is induced with rising intracellular polyamine concentrations, which also inhibit ubiquitin-dependent degradation of the OAZ1 protein. Together, these mechanisms contribute to a homeostatic feedback regulation of polyamines. Antizyme synthesis involves a conserved +1 ribosomal frameshifting (RFS) event at an internal STOP codon during decoding of its messenger RNA. Here we used S. cerevisiae OAZ1 to dissect the enigmatic mechanism underlying polyamine regulation of RFS. In contrast with previous assumptions, we report here that the nascent antizyme polypeptide is the relevant polyamine sensor that operates in cis to negatively regulate upstream RFS on the polysomes, where its own mRNA is being translated. At low polyamine levels, the emerging antizyme polypeptide inhibits completion of its synthesis causing a ribosome pile-up on antizyme mRNA, whereas polyamine binding to nascent antizyme promotes completion of its synthesis. Thus, our study reveals a novel autoregulatory mechanism, in which binding of a small metabolite to a nascent sensor protein stimulates the latter's synthesis co-translationally.
Collapse
|
46
|
Yap MN, Bernstein HD. The translational regulatory function of SecM requires the precise timing of membrane targeting. Mol Microbiol 2011; 81:540-53. [PMID: 21635582 DOI: 10.1111/j.1365-2958.2011.07713.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, secA expression is regulated at the translational level by an upstream gene (secM) that encodes a presecretory protein. SecM contains a C-terminal sequence motif that induces a transient translation arrest. Inhibition of SecM membrane targeting prolongs the translation arrest and increases SecA synthesis by concomitantly altering the structure of the secM-secA mRNA. Here we show that the SecM signal peptide plays an essential role in this regulatory process by acting as a molecular timer that co-ordinates membrane targeting with the synthesis of the arrest motif. We found that signal peptide mutations that alter targeting kinetics and insertions or deletions that change the distance between the SecM signal peptide and the arrest motif perturb the balance between the onset and release of arrest that is required to regulate SecA synthesis. Furthermore, we found that the strength of the interaction between the ribosome and the SecM arrest motif is calibrated to ensure the release of arrest upon membrane targeting. Our results strongly suggest that several distinctive features of the SecM protein evolved as a consequence of constraints imposed by the ribosome and the Sec machinery.
Collapse
Affiliation(s)
- Mee-Ngan Yap
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
47
|
Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 2011; 473:239-42. [PMID: 21562565 PMCID: PMC3093665 DOI: 10.1038/nature10014] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/22/2011] [Indexed: 01/03/2023]
Abstract
Many proteins are translocated through the SecY channel in bacteria and archaea and through the related Sec61 channel in eukaryotes. The channel has an hourglass shape with a narrow constriction approximately halfway across the membrane, formed by a pore ring of amino acids. While the cytoplasmic cavity of the channel is empty, the extracellular cavity is filled with a short helix called the plug, which moves out of the way during protein translocation. The mechanism by which the channel transports large polypeptides and yet prevents the passage of small molecules, such as ions or metabolites, has been controversial. Here, we have addressed this issue in intact Escherichia coli cells by testing the permeation of small molecules through wild-type and mutant SecY channels, which are either in the resting state or contain a defined translocating polypeptide chain. We show that in the resting state, the channel is sealed by both the pore ring and the plug domain. During translocation, the pore ring forms a 'gasket-like' seal around the polypeptide chain, preventing the permeation of small molecules. The structural conservation of the channel in all organisms indicates that this may be a universal mechanism by which the membrane barrier is maintained during protein translocation.
Collapse
|
48
|
Jha S, Komar AA. Birth, life and death of nascent polypeptide chains. Biotechnol J 2011; 6:623-40. [PMID: 21538896 PMCID: PMC3130931 DOI: 10.1002/biot.201000327] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/26/2011] [Accepted: 03/15/2011] [Indexed: 01/16/2023]
Abstract
The journey of nascent polypeptides from synthesis at the peptidyl transferase center of the ribosome (“birth”) to full function (“maturity”) involves multiple interactions, constraints, modifications and folding events. Each step of this journey impacts the ultimate expression level and functional capacity of the translated protein. It has become clear that the kinetics of protein translation is predominantly modulated by synonymous codon usage along the mRNA, and that this provides an active mechanism for coordinating the synthesis, maturation and folding of nascent polypeptides. Multiple quality control systems ensure that proteins achieve their native, functional form. Unproductive co-translational folding intermediates that arise during protein synthesis may undergo enhanced interaction with components of these systems, such as chaperones, and/or be subjects of co-translational degradation (“death”). This review provides an overview of our current understanding of the complex co-translational events that accompany the synthesis, maturation, folding and degradation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Sujata Jha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | |
Collapse
|
49
|
Orchestrating ribosomal activity from inside: effects of the nascent chain on the peptidyltransferase centre. Biochem Soc Trans 2011; 38:1576-80. [PMID: 21118129 DOI: 10.1042/bst0381576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ribosomal progression through the open reading frames within mRNAs is frequently considered as uneventful when compared with the highly regulated initiation step. However, both RNA and nascent peptide can interact with the ribosome to influence how translation proceeds and can modify gene expression in several ways. 2A peptides are a class of sequences that, as nascent chains, pause ribosomes and drive a translation-termination reaction on a sense (proline) codon, followed by continued downstream translation. In the present paper, what is known about the 2A reaction is discussed, and 2A is compared with other sequences that, as nascent peptides, pause or stall translation.
Collapse
|
50
|
Nascent polypeptide sequences that influence ribosome function. Curr Opin Microbiol 2011; 14:160-6. [PMID: 21342782 DOI: 10.1016/j.mib.2011.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
Abstract
Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.
Collapse
|