1
|
Hancock LP, Palmer JS, Allwood EG, Smaczynska-de Rooij II, Hodder AJ, Rowe ML, Williamson MP, Ayscough KR. Competitive binding of actin and SH3 domains at proline-rich regions of Las17/WASP regulates actin polymerisation. Commun Biol 2025; 8:759. [PMID: 40374776 DOI: 10.1038/s42003-025-08188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Eukaryotic actin filaments bind factors that regulate their assembly and disassembly creating a self-organising system, the actin cytoskeleton. Despite extensive knowledge of signals that modulate actin organisation, significant gaps remain in our understanding of spatiotemporal regulation of de novo filament initiation. Yeast Las17/WASP is essential for actin polymerisation initiation supporting membrane invagination in Saccharomyces cerevisiae endocytosis and therefore its tight regulation is critical. The adaptor protein Sla1 inhibits Las17 but mechanisms underpinning Las17 activation remain elusive. Here we show that Las17 binding of tandem Sla1 SH3 domains is >100-fold stronger than single domains. Furthermore, SH3 domains directly compete with G-actin for binding in the Las17 polyproline region, thus rationalising how SH3 interactions can affect actin polymerisation despite their distance from C-terminal actin-binding and Arp2/3-interacting VCA domains. Our data and proposed model also highlight the likely importance of multiple weak interactions that together ensure spatial and temporal regulation of endocytosis.
Collapse
Affiliation(s)
- Lewis P Hancock
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - John S Palmer
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ellen G Allwood
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Michelle L Rowe
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
2
|
Rohden DI, Toscano G, Schanda P, Lichtenecker RJ. Synthesis of Selectively 13C/ 2H/ 15N- Labeled Arginine to Probe Protein Conformation and Interaction by NMR Spectroscopy. Chemistry 2025; 31:e202500408. [PMID: 40080421 PMCID: PMC12043044 DOI: 10.1002/chem.202500408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
The charged arginine side chain is unique in determining many innate properties of proteins, contributing to stability and interaction surfaces, and directing allosteric regulation and enzymatic catalysis. NMR experiments can be used to reveal these processes at the molecular level, but it often requires selective insertion of carbon-13, nitrogen-15, and deuterium at defined atomic positions. We introduce a method to endow arginine residues with defined isotope patterns, combining synthetic organic chemistry and cell-based protein overexpression. The resulting proteins feature NMR active spin systems with optimized relaxation pathways leading to simplified NMR spectra with a sensitive response to changes in the chemical environment of the nuclei observed.
Collapse
Affiliation(s)
- Darja I. Rohden
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Giorgia Toscano
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Paul Schanda
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Roman J. Lichtenecker
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- MAG‐LABKarl‐Farkas Gasse 22Vienna1030Austria
| |
Collapse
|
3
|
Kraus M, Pleskot R, Van Damme D. Structural and Evolutionary Aspects of Plant Endocytosis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:521-550. [PMID: 38237062 DOI: 10.1146/annurev-arplant-070122-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Endocytosis is an essential eukaryotic process that maintains the homeostasis of the plasma membrane proteome by vesicle-mediated internalization. Its predominant mode of operation utilizes the polymerization of the scaffold protein clathrin forming a coat around the vesicle; therefore, it is termed clathrin-mediated endocytosis (CME). Throughout evolution, the machinery that mediates CME is marked by losses, multiplications, and innovations. CME employs a limited number of conserved structural domains and folds, whose assembly and connections are species dependent. In plants, many of the domains are grouped into an ancient multimeric complex, the TPLATE complex, which occupies a central position as an interaction hub for the endocytic machinery. In this review, we provide an overview of the current knowledge regarding the structural aspects of plant CME, and we draw comparisons to other model systems. To do so, we have taken advantage of recent developments with respect to artificial intelligence-based protein structure prediction.
Collapse
Affiliation(s)
- Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic;
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
4
|
Vukojević K, Šoljić V, Martinović V, Raguž F, Filipović N. The Ubiquitin-Associated and SH3 Domain-Containing Proteins (UBASH3) Family in Mammalian Development and Immune Response. Int J Mol Sci 2024; 25:1932. [PMID: 38339213 PMCID: PMC10855836 DOI: 10.3390/ijms25031932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
UBASH3A and UBASH3B are protein families of atypical protein tyrosine phosphatases that function as regulators of various cellular processes during mammalian development. As UBASH3A has only mild phosphatase activity, its regulatory effects are based on the phosphatase-independent mechanisms. On the contrary, UBASH3B has strong phosphatase activity, and the suppression of its receptor signalling is mediated by Syk and Zap-70 kinases. The regulatory functions of UBASH3A and UBASH3B are particularly evident in the lymphoid tissues and kidney development. These tyrosine phosphatases are also known to play key roles in autoimmunity and neoplasms. However, their involvement in mammalian development and its regulatory functions are largely unknown and are discussed in this review.
Collapse
Affiliation(s)
- Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia;
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Violeta Šoljić
- Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vlatka Martinović
- Department of Surgery, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Fila Raguž
- Department of Internal Medicine, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia;
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
5
|
Grones P, De Meyer A, Pleskot R, Mylle E, Kraus M, Vandorpe M, Yperman K, Eeckhout D, Dragwidge JM, Jiang Q, Nolf J, Pavie B, De Jaeger G, De Rybel B, Van Damme D. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. NATURE PLANTS 2022; 8:1467-1483. [PMID: 36456802 PMCID: PMC7613989 DOI: 10.1038/s41477-022-01280-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
Endocytosis controls the perception of stimuli by modulating protein abundance at the plasma membrane. In plants, clathrin-mediated endocytosis is the most prominent internalization pathway and relies on two multimeric adaptor complexes, the AP-2 and the TPLATE complex (TPC). Ubiquitination is a well-established modification triggering endocytosis of cargo proteins, but how this modification is recognized to initiate the endocytic event remains elusive. Here we show that TASH3, one of the large subunits of TPC, recognizes ubiquitinated cargo at the plasma membrane via its SH3 domain-containing appendage. TASH3 lacking this evolutionary specific appendage modification allows TPC formation but the plants show severely reduced endocytic densities, which correlates with reduced endocytic flux. Moreover, comparative plasma membrane proteomics identified differential accumulation of multiple ubiquitinated cargo proteins for which we confirm altered trafficking. Our findings position TPC as a key player for ubiquitinated cargo internalization, allowing future identification of target proteins under specific stress conditions.
Collapse
Affiliation(s)
- Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonathan Michael Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Benjamin Pavie
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
6
|
Chau JE, Vish KJ, Boggon TJ, Stiegler AL. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat Commun 2022; 13:4788. [PMID: 35970859 PMCID: PMC9378701 DOI: 10.1038/s41467-022-32541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
RhoGAP proteins are key regulators of Rho family GTPases and influence a variety of cellular processes, including cell migration, adhesion, and cytokinesis. These GTPase activating proteins (GAPs) downregulate Rho signaling by binding and enhancing the intrinsic GTPase activity of Rho proteins. Deleted in liver cancer 1 (DLC1) is a tumor suppressor and ubiquitously expressed RhoGAP protein; its activity is regulated in part by binding p120RasGAP, a GAP protein for the Ras GTPases. In this study, we report the co-crystal structure of the p120RasGAP SH3 domain bound directly to DLC1 RhoGAP, at a site partially overlapping the RhoA binding site and impinging on the catalytic arginine finger. We demonstrate biochemically that mutation of this interface relieves inhibition of RhoGAP activity by the SH3 domain. These results reveal the mechanism for inhibition of DLC1 RhoGAP activity by p120RasGAP and demonstrate the molecular basis for direct SH3 domain modulation of GAP activity.
Collapse
Affiliation(s)
- Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Yip MC, Sedor SF, Shao S. Mechanism of client selection by the protein quality-control factor UBE2O. Nat Struct Mol Biol 2022; 29:774-780. [PMID: 35915257 PMCID: PMC9526450 DOI: 10.1038/s41594-022-00807-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
The E2/E3 enzyme UBE2O ubiquitylates diverse clients to mediate important processes, including targeting unassembled 'orphan' proteins for quality control and clearing ribosomes during erythropoiesis. How quality-control factors, such as UBE2O, select clients on the basis of heterogeneous features is largely unknown. Here, we show that UBE2O client selection is regulated by ubiquitin binding and a cofactor, NAP1L1. Attaching a single ubiquitin onto a client enhances UBE2O binding and multi-mono-ubiquitylation. UBE2O also repurposes the histone chaperone NAP1L1 as an adapter to recruit a subset of clients. Cryo-EM structures of human UBE2O in complex with NAP1L1 reveal a malleable client recruitment interface that is autoinhibited by the intrinsically reactive UBC domain. Adding a ubiquitylated client identifies a distinct ubiquitin-binding SH3-like domain required for client selection. Our findings reveal how multivalency and a feed-forward mechanism drive the selection of protein quality-control clients.
Collapse
Affiliation(s)
- Matthew C.J. Yip
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115
| | - Samantha F. Sedor
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115,Correspondence:
| |
Collapse
|
8
|
Pashkova N, Gakhar L, Yu L, Schnicker NJ, Minard AY, Winistorfer S, Johnson IE, Piper RC. ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals. eLife 2021; 10:72583. [PMID: 34821552 PMCID: PMC8648300 DOI: 10.7554/elife.72583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here, we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States.,Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States.,Carver College of Medicine NMR Core, University of Iowa, Iowa City, United States
| | - Nicholas J Schnicker
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Stanley Winistorfer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ivan E Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
9
|
Kong L, Feng B, Yan Y, Zhang C, Kim JH, Xu L, Rack JGM, Wang Y, Jang JC, Ahel I, Shan L, He P. Noncanonical mono(ADP-ribosyl)ation of zinc finger SZF proteins counteracts ubiquitination for protein homeostasis in plant immunity. Mol Cell 2021; 81:4591-4604.e8. [PMID: 34592134 PMCID: PMC8684601 DOI: 10.1016/j.molcel.2021.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.
Collapse
Affiliation(s)
- Liang Kong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Baomin Feng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chao Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jun Hyeok Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Lahong Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Department of Molecular Genetics, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Elliott PR, Leske D, Wagstaff J, Schlicher L, Berridge G, Maslen S, Timmermann F, Ma B, Fischer R, Freund SMV, Komander D, Gyrd-Hansen M. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Cell Rep 2021; 37:109777. [PMID: 34610306 PMCID: PMC8511506 DOI: 10.1016/j.celrep.2021.109777] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Non-degradative ubiquitin chains and phosphorylation events govern signaling responses by innate immune receptors. The deubiquitinase CYLD in complex with SPATA2 is recruited to receptor signaling complexes by the ubiquitin ligase LUBAC and regulates Met1- and Lys63-linked polyubiquitin and receptor signaling outcomes. Here, we investigate the molecular determinants of CYLD activity. We reveal that two CAP-Gly domains in CYLD are ubiquitin-binding domains and demonstrate a requirement of CAP-Gly3 for CYLD activity and regulation of immune receptor signaling. Moreover, we identify a phosphorylation switch outside of the catalytic USP domain, which activates CYLD toward Lys63-linked polyubiquitin. The phosphorylated residue Ser568 is a novel tumor necrosis factor (TNF)-regulated phosphorylation site in CYLD and works in concert with Ser418 to enable CYLD-mediated deubiquitination and immune receptor signaling. We propose that phosphorylated CYLD, together with SPATA2 and LUBAC, functions as a ubiquitin-editing complex that balances Lys63- and Met1-linked polyubiquitin at receptor signaling complexes to promote LUBAC signaling.
Collapse
Affiliation(s)
- Paul R Elliott
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Derek Leske
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jane Wagstaff
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lisa Schlicher
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Georgina Berridge
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Sarah Maslen
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Frederik Timmermann
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Biao Ma
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Stefan M V Freund
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne VIC 3000, Australia.
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK; LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
11
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
12
|
Tolsma TO, Febvre HP, Olson DM, Di Pietro SM. Cargo-mediated recruitment of the endocytic adaptor protein Sla1 in S. cerevisiae. J Cell Sci 2020; 133:jcs247684. [PMID: 32907853 PMCID: PMC7578355 DOI: 10.1242/jcs.247684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Endocytosis of plasma membrane proteins is mediated by their interaction with adaptor proteins. Conversely, emerging evidence suggests that adaptor protein recruitment to the plasma membrane may depend on binding to endocytic cargo. To test this idea, we analyzed the yeast adaptor protein Sla1, which binds membrane proteins harboring the endocytic signal NPFxD via the Sla1 SHD1 domain. Consistently, SHD1 domain point mutations that disrupted NPFxD binding caused a proportional reduction in Sla1-GFP recruitment to endocytic sites. Furthermore, simultaneous SHD1 domain point mutation and deletion of the C-terminal LxxQxTG repeat (SR) region linking Sla1 to coat proteins Pan1 and End3 resulted in total loss of Sla1-GFP recruitment to the plasma membrane. These data suggest that multiple interactions are needed for recruitment of Sla1 to the membrane. Interestingly, a Sla1 fragment containing just the third SH3 domain, which binds ubiquitin, and the SHD1 domain displayed broad surface localization, suggesting plasma membrane recruitment is mediated by interaction with both NPFxD-containing and ubiquitylated plasma membrane proteins. Our results also imply that a Sla1 NPF motif adjacent to the SR region might regulate the Sla1-cargo interaction, mechanistically linking Sla1 cargo binding to endocytic site recruitment.
Collapse
Affiliation(s)
- Thomas O Tolsma
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Hallie P Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Deanna M Olson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
13
|
Kliza K, Husnjak K. Resolving the Complexity of Ubiquitin Networks. Front Mol Biosci 2020; 7:21. [PMID: 32175328 PMCID: PMC7056813 DOI: 10.3389/fmolb.2020.00021] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ubiquitination regulates nearly all cellular processes by coordinated activity of ubiquitin writers (E1, E2, and E3 enzymes), erasers (deubiquitinating enzymes) and readers (proteins that recognize ubiquitinated proteins by their ubiquitin-binding domains). By differentially modifying cellular proteome and by recognizing these ubiquitin modifications, ubiquitination machinery tightly regulates execution of specific cellular events in space and time. Dynamic and complex ubiquitin architecture, ranging from monoubiquitination, multiple monoubiquitination, eight different modes of homotypic and numerous types of heterogeneous polyubiquitin linkages, enables highly dynamic and complex regulation of cellular processes. We discuss available tools and approaches to study ubiquitin networks, including methods for the identification and quantification of ubiquitin-modified substrates, as well as approaches to quantify the length, abundance, linkage type and architecture of different ubiquitin chains. Furthermore, we also summarize the available approaches for the discovery of novel ubiquitin readers and ubiquitin-binding domains, as well as approaches to monitor and visualize activity of ubiquitin conjugation and deconjugation machineries. We also discuss benefits, drawbacks and limitations of available techniques, as well as what is still needed for detailed spatiotemporal dissection of cellular ubiquitination networks.
Collapse
Affiliation(s)
- Katarzyna Kliza
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
14
|
The 'dark matter' of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 2020; 47:1949-1962. [PMID: 31829417 DOI: 10.1042/bst20190869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined by a combination of polyubiquitin chain length, linkage type, numbers of ubiquitin chains per target, and decoration of ubiquitin with other small modifiers. However, many questions remain about how different ubiquitin signals are specifically recognised and transduced by the decoding ubiquitin-binding domains (UBDs) within ubiquitin-binding proteins. This review briefly outlines our current knowledge surrounding the diversity of UBDs, identifies key challenges in their discovery and considers recent structural studies with implications for the increasing complexity of UBD function and identification. Given the comparatively low numbers of functionally characterised polyubiquitin-selective UBDs relative to the ever-expanding variety of polyubiquitin modifications, it is possible that many UBDs have been overlooked, in part due to limitations of current approaches used to predict their presence within the proteome. Potential experimental approaches for UBD discovery are considered; web-based informatic analyses, Next-Generation Phage Display, deubiquitinase-resistant diubiquitin, proximity-dependent biotinylation and Ubiquitin-Phototrap, including possible advantages and limitations. The concepts discussed here work towards identifying new UBDs which may represent the 'dark matter' of the ubiquitin system.
Collapse
|
15
|
Mosesso N, Nagel MK, Isono E. Ubiquitin recognition in endocytic trafficking - with or without ESCRT-0. J Cell Sci 2019; 132:132/16/jcs232868. [PMID: 31416855 DOI: 10.1242/jcs.232868] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability to sense and adapt to the constantly changing environment is important for all organisms. Cell surface receptors and transporters are key for the fast response to extracellular stimuli and, thus, their abundance on the plasma membrane has to be strictly controlled. Heteromeric endosomal sorting complexes required for transport (ESCRTs) are responsible for mediating the post-translational degradation of endocytosed plasma membrane proteins in eukaryotes and are essential both in animals and plants. ESCRTs bind and sort ubiquitylated cargoes for vacuolar degradation. Although many components that comprise the multi-subunit ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III complexes are conserved in eukaryotes, plant and animal ESCRTs have diverged during the course of evolution. Homologues of ESCRT-0, which recognises ubiquitylated cargo, have emerged in metazoan and fungi but are not found in plants. Instead, the Arabidopsis genome encodes plant-specific ubiquitin adaptors and a greater number of target of Myb protein 1 (TOM1) homologues than in mammals. In this Review, we summarise and discuss recent findings on ubiquitin-binding proteins in Arabidopsis that could have equivalent functions to ESCRT-0. We further hypothesise that SH3 domain-containing proteins might serve as membrane curvature-sensing endophilin and amphiphysin homologues during plant endocytosis.
Collapse
Affiliation(s)
- Niccolò Mosesso
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | | | - Erika Isono
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
16
|
Mattern M, Sutherland J, Kadimisetty K, Barrio R, Rodriguez MS. Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends Biochem Sci 2019; 44:599-615. [PMID: 30819414 DOI: 10.1016/j.tibs.2019.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) by ubiquitin (Ub) are versatile, highly dynamic, and involved in nearly all aspects of eukaryote biological function. The reversibility and heterogeneity of Ub chains attached to protein substrates have complicated their isolation, quantification, and characterization. Strategies have emerged to isolate endogenous ubiquitylated targets, including technologies based on the use of Ub-binding peptides, such as tandem-repeated Ub-binding entities (TUBEs). TUBEs allow the identification and characterization of Ub chains, and novel substrates for deubiquitylases (DUBs) and Ub ligases (E3s). Here we review their impact on purification, analysis of pan or chain-selective polyubiquitylated proteins and underline the biological relevance of this information. Together with peptide aptamers and other Ub affinity-based approaches, TUBEs will contribute to unraveling the secrets of the Ub code.
Collapse
Affiliation(s)
- Michael Mattern
- Progenra Inc., 277 Great Valley Parkway, Malvern 19355, Pennsylvania, USA; These authors contributed equally
| | - James Sutherland
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain; These authors contributed equally
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Malvern 19355, Pennsylvania, USA
| | - Rosa Barrio
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain
| | - Manuel S Rodriguez
- ITAV-IPBS-UPS CNRS USR3505, 1 place Pierre Potier, Oncopole entrée B, 31106 Toulouse, France.
| |
Collapse
|
17
|
Ortega-Roldan JL, Blackledge M, Jensen MR. Characterizing Protein-Protein Interactions Using Solution NMR Spectroscopy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1764:73-85. [PMID: 29605909 DOI: 10.1007/978-1-4939-7759-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this chapter, we describe how NMR chemical shift titrations can be used to study the interaction between two proteins with emphasis on mapping the interface of the complex and determining the binding affinity from a quantitative analysis of the experimental data. In particular, we discuss the appearance of NMR spectra in different chemical exchange regimes (fast, intermediate, and slow) and how these regimes affect NMR data analysis.
Collapse
|
18
|
Ishida H, Skorobogatov A, Yamniuk AP, Vogel HJ. Solution structures of the
SH
3 domains from Shank scaffold proteins and their interactions with Cav1.3 calcium channels. FEBS Lett 2018; 592:2786-2797. [DOI: 10.1002/1873-3468.13209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hiroaki Ishida
- Department of Biological Sciences University of Calgary Canada
| | | | | | - Hans J. Vogel
- Department of Biological Sciences University of Calgary Canada
| |
Collapse
|
19
|
Brown T, Brown N, Stollar EJ. Most yeast SH3 domains bind peptide targets with high intrinsic specificity. PLoS One 2018; 13:e0193128. [PMID: 29470497 PMCID: PMC5823434 DOI: 10.1371/journal.pone.0193128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/04/2018] [Indexed: 01/07/2023] Open
Abstract
A need exists to develop bioinformatics for predicting differences in protein function, especially for members of a domain family who share a common fold, yet are found in a diverse array of proteins. Many domain families have been conserved over large evolutionary spans and representative genomic data during these periods are now available. This allows a simple method for grouping domain sequences to reveal common and unique/specific binding residues. As such, we hypothesize that sequence alignment analysis of the yeast SH3 domain family across ancestral species in the fungal kingdom can determine whether each member encodes specific information to bind unique peptide targets. With this approach, we identify important specific residues for a given domain as those that show little conservation within an alignment of yeast domain family members (paralogs) but are conserved in an alignment of its direct relatives (orthologs). We find most of the yeast SH3 domain family members have maintained unique amino acid conservation patterns that suggest they bind peptide targets with high intrinsic specificity through varying degrees of non-canonical recognition. For a minority of domains, we predict a less diverse binding surface, likely requiring additional factors to bind targets specifically. We observe that our predictions are consistent with high throughput binding data, which suggests our approach can probe intrinsic binding specificity in any other interaction domain family that is maintained during evolution.
Collapse
Affiliation(s)
- Tom Brown
- Math and Computer Science Department, Eastern New Mexico University, Portales, NM, United States of America
| | - Nick Brown
- Portales High School, Portales, NM, United States of America
| | - Elliott J. Stollar
- Physical Sciences Department, Eastern New Mexico University, Portales, NM, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cohen A, Rosenthal E, Shifman JM. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions. J Mol Biol 2017; 429:3353-3362. [DOI: 10.1016/j.jmb.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/26/2022]
|
21
|
Nagel MK, Kalinowska K, Vogel K, Reynolds GD, Wu Z, Anzenberger F, Ichikawa M, Tsutsumi C, Sato MH, Kuster B, Bednarek SY, Isono E. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proc Natl Acad Sci U S A 2017; 114:E7197-E7204. [PMID: 28784794 PMCID: PMC5576839 DOI: 10.1073/pnas.1710866114] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta, indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.
Collapse
Affiliation(s)
- Marie-Kristin Nagel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kamila Kalinowska
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Karin Vogel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhixiang Wu
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Franziska Anzenberger
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mie Ichikawa
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Chie Tsutsumi
- Department of Botany, National Museum of Nature and Science, 305-0005 Tsukuba, Japan
| | - Masa H Sato
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | - Erika Isono
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
22
|
Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, Heldin CH, Landström M. TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Sci Signal 2017; 10:10/486/eaal4186. [PMID: 28676490 DOI: 10.1126/scisignal.aal4186] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-β (TGF-β) is a pluripotent cytokine that regulates cell fate and plasticity in normal tissues and tumors. The multifunctional cellular responses evoked by TGF-β are mediated by the canonical SMAD pathway and by noncanonical pathways, including mitogen-activated protein kinase (MAPK) pathways and the phosphatidylinositol 3'-kinase (PI3K)-protein kinase B (AKT) pathway. We found that TGF-β activated PI3K in a manner dependent on the activity of the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6). TRAF6 polyubiquitylated the PI3K regulatory subunit p85α and promoted the formation of a complex between the TGF-β type I receptor (TβRI) and p85α, which led to the activation of PI3K and AKT. Lys63-linked polyubiquitylation of p85α on Lys513 and Lys519 in the iSH2 (inter-Src homology 2) domain was required for TGF-β-induced activation of PI3K-AKT signaling and cell motility in prostate cancer cells and activated macrophages. Unlike the activation of SMAD pathways, the TRAF6-mediated activation of PI3K and AKT was not dependent on the kinase activity of TβRI. In situ proximity ligation assays revealed that polyubiquitylation of p85α was evident in aggressive prostate cancer tissues. Thus, our data reveal a molecular mechanism by which TGF-β activates the PI3K-AKT pathway to drive cell migration.
Collapse
Affiliation(s)
- Anahita Hamidi
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden
| | - Jie Song
- Unit of Pathology, Department of Medical Biosciences, Umeå University, Umeå SE 901 85, Sweden
| | - Noopur Thakur
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Anders Marcusson
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden
| | - Anders Bergh
- Unit of Pathology, Department of Medical Biosciences, Umeå University, Umeå SE 901 85, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden.
| | - Maréne Landström
- Ludwig Institute for Cancer Research and Science for Life Laboratory, Uppsala University, Uppsala SE 751 24, Sweden. .,Unit of Pathology, Department of Medical Biosciences, Umeå University, Umeå SE 901 85, Sweden
| |
Collapse
|
23
|
Kelil A, Dubreuil B, Levy ED, Michnick SW. Exhaustive search of linear information encoding protein-peptide recognition. PLoS Comput Biol 2017; 13:e1005499. [PMID: 28426660 PMCID: PMC5417721 DOI: 10.1371/journal.pcbi.1005499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/04/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022] Open
Abstract
High-throughput in vitro methods have been extensively applied to identify linear information that encodes peptide recognition. However, these methods are limited in number of peptides, sequence variation, and length of peptides that can be explored, and often produce solutions that are not found in the cell. Despite the large number of methods developed to attempt addressing these issues, the exhaustive search of linear information encoding protein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy, called DALEL, for the exhaustive search of linear sequence information encoded in proteins that bind to a common partner. We applied DALEL to explore binding specificity of SH3 domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide sequences of SH3 domain binding proteins, we succeeded in identifying the majority of known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we discovered a number of sites with both non-canonical sequences and distinct properties that may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-of-the-art algorithms in the blind identification of known binding sites of the human Grb2 SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs. Our strategy can be applied in conjunction with experimental data of proteins interacting with a common partner to identify binding sites among them. Yet, our strategy can also be applied to any group of proteins of interest to identify enriched linear motifs or to exhaustively explore the space of linear information encoded in a polypeptide sequence. Finally, we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering user-friendly interface and providing different scenarios utilizing DALEL. Here we describe the first strategy for the exhaustive search of the linear information encoding protein-peptide recognition; an approach that has previously been physically unfeasible because the combinatorial space of polypeptide sequences is too vast. The search covers the entire space of sequences with no restriction on motif length or composition, and includes all possible combinations of amino acids at distinct positions of each sequence, as well as positions with correlated preferences for amino acids.
Collapse
Affiliation(s)
- Abdellali Kelil
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D. Levy
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephen W. Michnick
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Abstract
Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process.
Collapse
Affiliation(s)
- Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Proc Natl Acad Sci U S A 2016; 113:E3862-71. [PMID: 27317745 DOI: 10.1073/pnas.1518469113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.
Collapse
|
26
|
Vásquez-Soto B, Manríquez N, Cruz-Amaya M, Zouhar J, Raikhel NV, Norambuena L. Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae. Biol Res 2015. [PMID: 26209329 PMCID: PMC4515019 DOI: 10.1186/s40659-015-0032-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae. RESULTS A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.
Collapse
Affiliation(s)
- Beatriz Vásquez-Soto
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Nicolás Manríquez
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Mirna Cruz-Amaya
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Natasha V Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| |
Collapse
|
27
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
28
|
Adair BD, Altintas MM, Möller CC, Arnaout MA, Reiser J. Structure of the kidney slit diaphragm adapter protein CD2-associated protein as determined with electron microscopy. J Am Soc Nephrol 2014; 25:1465-73. [PMID: 24511139 DOI: 10.1681/asn.2013090949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD2-associated protein (CD2AP) is a multidomain scaffolding protein that has a critical role in renal function. CD2AP is expressed in glomerular podocytes at the slit diaphragm, a modified adherens junction that comprises the protein filtration barrier of the kidney, and interacts with a number of protein ligands involved in cytoskeletal remodeling, membrane trafficking, cell motility, and cell survival. The structure of CD2AP is unknown. We used electron microscopy and single particle image analysis to determine the three-dimensional structure of recombinant full-length CD2AP and found that the protein is a tetramer in solution. Image reconstruction of negatively stained protein particles generated a structure at 21 Å resolution. The protein assumed a roughly spherical, very loosely packed structure. Analysis of the electron density map revealed that CD2AP consists of a central coiled-coil domain, which forms the tetramer interface, surrounded by four symmetry-related motifs, each containing three globular domains corresponding to the three SH3 domains. The spatial organization exposes the binding sites of all 12 SH3 domains in the tetramer, allowing simultaneous binding to multiple targets. Determination of the structure of CD2AP provides novel insights into the biology of this slit diaphragm protein and lays the groundwork for characterizing the interactions between key molecules of the slit diaphragm that control glomerular filtration.
Collapse
Affiliation(s)
- Brian D Adair
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, Illinois; and
| | - Clemens C Möller
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - M Amin Arnaout
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois; and
| |
Collapse
|
29
|
Piper RC, Dikic I, Lukacs GL. Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016808. [PMID: 24384571 DOI: 10.1101/cshperspect.a016808] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When ubiquitin (Ub) is attached to membrane proteins on the plasma membrane, it directs them through a series of sorting steps that culminate in their delivery to the lumen of the lysosome where they undergo complete proteolysis. Ubiquitin is recognized by a series of complexes that operate at a number of vesicle transport steps. Ubiquitin serves as a sorting signal for internalization at the plasma membrane and is the major signal for incorporation into intraluminal vesicles of multivesicular late endosomes. The sorting machineries that catalyze these steps can bind Ub via a variety of Ub-binding domains. At the same time, many of these complexes are themselves ubiquitinated, thus providing a plethora of potential mechanisms to regulate their activity. Here we provide an overview of how membrane proteins are selected for ubiquitination and deubiquitination within the endocytic pathway and how that ubiquitin signal is interpreted by endocytic sorting machineries.
Collapse
Affiliation(s)
- Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | | | | |
Collapse
|
30
|
Davies CW, Paul LN, Das C. Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 2013; 52:7818-29. [PMID: 24151880 DOI: 10.1021/bi401106b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AMSH, a deubiquitinating enzyme (DUB) with exquisite specificity for Lys63-linked polyubiquitin chains, is an endosome-associated DUB that regulates sorting of activated cell-surface signaling receptors to the lysosome, a process mediated by the members of the endosomal sorting complexes required for transport (ESCRT) machinery. Whole-exome sequencing of DNA samples from children with microcephaly capillary malformation (MIC-CAP) syndrome identified recessive mutations encoded in the AMSH gene causatively linked to the disease. Herein, we report a number of important observations that significantly advance our understanding of AMSH within the context of the ESCRT machinery. First, we performed mutational and kinetic analysis of the putative residues involved in diubiquitin recognition and catalysis with a view of better understanding the catalytic mechanism of AMSH. Our mutational and kinetic analysis reveals that recognition of the proximal ubiquitin is imperative for the linkage specificity and catalytic efficiency of the enzyme. The MIC-CAP disease mutation, Thr313Ile, yields a substantial loss of catalytic activity without any significant change in the thermodynamic stability of the protein, indicating that its perturbed catalytic activity is the basis of the disease. The catalytic activity of AMSH is stimulated upon binding to the ESCRT-0 member STAM; however, the precise mechanism and its significance are not known. On the basis of a number of biochemical and biophysical analyses, we are able to propose a model for activation according to which activation of AMSH is allowed by facile, simultaneous binding to two ubiquitin groups in a polyubiquitin substrate, one by the catalytic domain of the DUB (binding to the distal ubiquitin) and the other (the proximal ubiquitin) by the ubiquitin interacting motif (UIM) from STAM. Such a mode of binding would stabilize the ubiquitin chain in a productive orientation, resulting in an enhancement of the activity of the enzyme. These data together provide a mechanism for understanding the recruitment and activation of AMSH at ESCRT-0, providing biochemical and biophysical evidence that supports a role for AMSH when it is recruited to the initial ESCRT complex: it functions to facilitate the transfer of ubiquitinated receptors (cargo) from one ESCRT member to the next by disassembling the polyubiquitin chain while leaving some ubiquitin groups still attached to the cargo.
Collapse
Affiliation(s)
- Christopher W Davies
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
31
|
Ortega Roldan JL, Casares S, Ringkjøbing Jensen M, Cárdenes N, Bravo J, Blackledge M, Azuaga AI, van Nuland NAJ. Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications. PLoS One 2013; 8:e73018. [PMID: 24039852 PMCID: PMC3770644 DOI: 10.1371/journal.pone.0073018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/18/2013] [Indexed: 12/03/2022] Open
Abstract
SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination.
Collapse
Affiliation(s)
- Jose L. Ortega Roldan
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Salvador Casares
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility by NMR, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, Grenoble, France
| | - Nayra Cárdenes
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jerónimo Bravo
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Martin Blackledge
- Protein Dynamics and Flexibility by NMR, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, Grenoble, France
| | - Ana I. Azuaga
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail: (AIA); (NAJvN)
| | - Nico A. J. van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Structural Biology, VIB, Brussels, Belgium
- * E-mail: (AIA); (NAJvN)
| |
Collapse
|
32
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
33
|
Abstract
Modular protein interaction domains (PIDs) that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some PIDs such as SH2, 14-3-3, Chromo, and Bromo domains serve to recognize posttranslational modification (PTM) of amino acids (such as phosphorylation, acetylation, methylation, etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PSD-95/Discs-large/ZO-1 (PDZ) domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate-specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High-throughput (HTP) analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry, or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls associated with HTP analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of PIDs and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
34
|
Lange A, Ismail MB, Rivière G, Hologne M, Lacabanne D, Guillière F, Lancelin JM, Krimm I, Walker O. Competitive binding of UBPY and ubiquitin to the STAM2 SH3 domain revealed by NMR. FEBS Lett 2012; 586:3379-84. [PMID: 22841719 DOI: 10.1016/j.febslet.2012.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
To date, the signal transducing adaptor molecule 2 (STAM2) was shown to harbour two ubiquitin binding domains (UBDs) known as the VHS and UIM domains, while the SH3 domain of STAM2 was reported to interact with deubiquitinating enzymes (DUBs) like UBPY and AMSH. In the present study, NMR evidences the interaction of the STAM2 SH3 domain with ubiquitin, demonstrating that SH3 constitutes the third UBD of STAM2. Furthermore, we show that a UBPY-derived peptide can outcompete ubiquitin for SH3 binding and vice versa. These results suggest that the SH3 domain of STAM2 plays versatile roles in the context of ubiquitin mediated receptor sorting.
Collapse
Affiliation(s)
- Anja Lange
- Université de Lyon, Université Claude Bernard Lyon1, CNRS, UMR 5280 Institut des Sciences Analytiques, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Post-translational modification by ubiquitin (ubiquitination, ubiquitylation, ubiquitinylation) is used as a robust signaling mechanism in a variety of processes that are essential for cell homeostasis. Its signaling specificity is conferred by the inherent dynamics of ubiquitin, the multivalency of ubiquitin chains, and its subcellular context, often defined by ubiquitin receptors and the substrate. Greater than 150 ubiquitin receptors have been found and their ubiquitin-binding domains (UBDs) are structurally diverse and include alpha-helical motifs, zinc fingers (ZnF), pleckstrin-homology (PH) domains, ubiquitin conjugating (Ubc)-related structures and src homology 3 (SH3) domains. New UBD structural motifs continue to be identified expanding the ubiquitin-signaling map to proteins and structural families not previously associated with ubiquitin trafficking. In this manuscript, we highlight several ubiquitin receptors from the multiple UBD folds with a focus on the structural characteristics of their interaction with ubiquitin.
Collapse
Affiliation(s)
- Leah Randles
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
36
|
Abstract
Post-translational modifications are used by cells to link additional information to proteins. Most modifications are subtle and concern small moieties such as a phosphate group or a lipid. In contrast, protein ubiquitylation entails the covalent attachment of a full-length protein such as ubiquitin. The protein ubiquitylation machinery is remarkably complex, comprising more than 15 Ubls (ubiquitin-like proteins) and several hundreds of ubiquitin-conjugating enzymes. Ubiquitin is best known for its role as a tag that induces protein destruction either by the proteasome or through targeting to lysosomes. However, addition of one or more Ubls also affects vesicular traffic, protein-protein interactions and signal transduction. It is by now well established that ubiquitylation is a component of most, if not all, cellular signalling pathways. Owing to its abundance in controlling cellular functions, ubiquitylation is also of key relevance to human pathologies, including cancer and inflammation. In the present review, we focus on its role in the control of cell adhesion, polarity and directional migration. It will become clear that protein modification by Ubls occurs at every level from the receptors at the plasma membrane down to cytoskeletal components such as actin, with differential consequences for the pathway's final output. Since ubiquitylation is fast as well as reversible, it represents a bona fide signalling event, which is used to fine-tune a cell's responses to receptor agonists.
Collapse
|
37
|
Abstract
From the moment of cotranslational insertion into the lipid bilayer of the endoplasmic reticulum (ER), newly synthesized integral membrane proteins are subject to a complex series of sorting, trafficking, quality control, and quality maintenance systems. Many of these processes are intimately controlled by ubiquitination, a posttranslational modification that directs trafficking decisions related to both the biosynthetic delivery of proteins to the plasma membrane (PM) via the secretory pathway and the removal of proteins from the PM via the endocytic pathway. Ubiquitin modification of integral membrane proteins (or "cargoes") generally acts as a sorting signal, which is recognized, captured, and delivered to a specific cellular destination via specialized trafficking events. By affecting the quality, quantity, and localization of integral membrane proteins in the cell, defects in these processes contribute to human diseases, including cystic fibrosis, circulatory diseases, and various neuropathies. This review summarizes our current understanding of how ubiquitin modification influences cargo trafficking, with a special emphasis on mechanisms of quality control and quality maintenance in the secretory and endocytic pathways.
Collapse
Affiliation(s)
- Jason A MacGurn
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
38
|
CIN85 is required for Cbl-mediated regulation of antigen receptor signaling in human B cells. Blood 2012; 119:2263-73. [PMID: 22262777 DOI: 10.1182/blood-2011-04-351965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The aberrant regulation of B-cell receptor (BCR) signaling allows unwanted B cells to persist, thereby potentially leading to autoimmunity and B-cell malignancies. Casitas B-lineage lymphoma (Cbl) proteins suppress BCR signaling; however, the molecular mechanisms that control Cbl function in human B cells remain unclear. Here, we demonstrate that CIN85 (c-Cbl interacting protein of 85 kDa) is constitutively associated with c-Cbl, Cbl-b, and B-cell linker in B cells. Experiments using CIN85-overexpressing and CIN85-knockdown B-cell lines revealed that CIN85 increased c-Cbl phosphorylation and inhibited BCR-induced calcium flux and phosphorylation of Syk and PLCγ2, whereas it did not affect BCR internalization. The Syk phosphorylation in CIN85-overexpressing and CIN85-knockdown cells was inversely correlated with the ubiquitination and degradation of Syk. Moreover, CIN85 knockdown in primary B cells enhanced BCR-induced survival and growth, and increased the expression of BcLxL, A1, cyclin D2, and myc. Following the stimulation of BCR and Toll-like receptor 9, B-cell differentiation- associated molecules were up-regulated in CIN85-knockdown cells. Together, these results suggest that CIN85 is required for Cbl-mediated regulation of BCR signaling and for downstream events such as survival, growth, and differentiation of human B cells.
Collapse
|
39
|
Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, Howie RL, O'Dell A, McNally JG, Liebman SW, Chernoff YO, Wilkinson KD. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 2012; 43:242-52. [PMID: 21777813 DOI: 10.1016/j.molcel.2011.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/23/2011] [Accepted: 07/05/2011] [Indexed: 02/05/2023]
Abstract
Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Clathrin-mediated endocytosis (CME) is the major pathway for internalization of membrane proteins from the cell surface. Half a century of studies have uncovered tremendous insights into how a clathrin-coated vesicle is formed. More recently, the advent of live-cell imaging has provided a dynamic view of this process. As CME is highly conserved from yeast to humans, budding yeast provides an evolutionary template for this process and has been a valuable system for dissecting the underlying molecular mechanisms. In this review we trace the formation of a clathrin-coated vesicle from initiation to uncoating, focusing on key findings from the yeast system.
Collapse
|
41
|
Kaminska J, Spiess M, Stawiecka-Mirota M, Monkaityte R, Haguenauer-Tsapis R, Urban-Grimal D, Winsor B, Zoladek T. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro. Eur J Cell Biol 2011; 90:1016-28. [DOI: 10.1016/j.ejcb.2011.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 10/16/2022] Open
|
42
|
Reider A, Wendland B. Endocytic adaptors--social networking at the plasma membrane. J Cell Sci 2011; 124:1613-22. [PMID: 21536832 DOI: 10.1242/jcs.073395] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors.
Collapse
Affiliation(s)
- Amanda Reider
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
43
|
Weinberg J, Drubin DG. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 2011; 22:1-13. [PMID: 22018597 DOI: 10.1016/j.tcb.2011.09.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 02/04/2023]
Abstract
Clathrin-mediated endocytosis in the budding yeast Saccharomyces cerevisiae involves the ordered recruitment, activity and disassembly of nearly 60 proteins at distinct sites on the plasma membrane. Two-color live-cell fluorescence microscopy has proven to be invaluable for in vivo analysis of endocytic proteins: identifying new components, determining the order of protein arrival and dissociation, and revealing even very subtle mutant phenotypes. Yeast genetics and functional genomics facilitate identification of complex interaction networks between endocytic proteins and their regulators. Quantitative datasets produced by these various analyses have made theoretical modeling possible. Here, we discuss recent findings on budding yeast endocytosis that have advanced our knowledge of how -60 endocytic proteins are recruited, perform their functions, are regulated by lipid and protein modifications, and are disassembled, all with remarkable regularity.
Collapse
Affiliation(s)
- Jasper Weinberg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
44
|
Carducci M, Perfetto L, Briganti L, Paoluzi S, Costa S, Zerweck J, Schutkowski M, Castagnoli L, Cesareni G. The protein interaction network mediated by human SH3 domains. Biotechnol Adv 2011; 30:4-15. [PMID: 21740962 DOI: 10.1016/j.biotechadv.2011.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/31/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Families of conserved protein domains, specialized in mediating interactions with short linear peptide motifs, are responsible for the formation of a variety of dynamic complexes in the cell. An important subclass of these motifs are characterized by a high proline content and play a pivotal role in biological processes requiring the coordinated assembly of multi-protein complexes. This is achieved via interaction of proteins containing modules such as Src Homology-3 (SH3) or WW domains and specific proline rich patterns. Here we make available via a publicly accessible database a synopsis of our current understanding of the interaction landscape of the human SH3 protein family. This is achieved by integrating an information extraction strategy with a new experimental approach. In a first approach we have used a text mining strategy to capture a large number of manuscripts reporting interactions between SH3 domains and target peptides. Relevant information was annotated in the MINT database. In a second experimental approach we have used a variant of the WISE (Whole Interactome Scanning Experiment) strategy to probe a large number of naturally occurring and chemically-synthesized peptides arrayed at high density on a glass surface. By this method we have tested 60 human SH3 domains for their ability to bind a collection of 9192 poly-proline containing peptides immobilized on a glass chip. To evaluate the quality of the resulting interaction dataset, we retested some of the interactions on a smaller scale and performed a series of pull down experiments on native proteins. Peptide chips, pull down assays, SPOT synthesis and phage display experiments have allowed us to further characterize the specificity and promiscuity of proline-rich binding domains and to map their interaction network. Both the information captured from the literature and the interactions inferred from the peptide chip experiments were collected and stored in the PepspotDB (http://mint.bio.uniroma2.it/PepspotDB/).
Collapse
Affiliation(s)
- Martina Carducci
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jensen MR, Ortega-Roldan JL, Salmon L, van Nuland N, Blackledge M. Characterizing weak protein-protein complexes by NMR residual dipolar couplings. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1371-81. [PMID: 21710303 DOI: 10.1007/s00249-011-0720-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Protein-protein interactions occur with a wide range of affinities from tight complexes characterized by femtomolar dissociation constants to weak, and more transient, complexes of millimolar affinity. Many of the weak and transiently formed protein-protein complexes have escaped characterization due to the difficulties in obtaining experimental parameters that report on the complexes alone without contributions from the unbound, free proteins. Here, we review recent developments for characterizing the structures of weak protein-protein complexes using nuclear magnetic resonance spectroscopy with special emphasis on the utility of residual dipolar couplings.
Collapse
Affiliation(s)
- Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | | | | | | | | |
Collapse
|
46
|
Nethe M, Hordijk PL. The role of ubiquitylation and degradation in RhoGTPase signalling. J Cell Sci 2011; 123:4011-8. [PMID: 21084561 DOI: 10.1242/jcs.078360] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rho-like guanosine triphosphatases (RhoGTPases) control many aspects of cellular physiology through their effects on the actin cytoskeleton and on gene transcription. Signalling by RhoGTPases is tightly coordinated and requires a series of regulatory proteins, including guanine-nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). GEFs and GAPs regulate GTPase cycling between the active (GTP-bound) and inactive (GDP-bound) states, whereas GDI is a cytosolic chaperone that binds inactive RhoGTPases. Like many other proteins, RhoGTPases are subject to degradation following the covalent conjugation of ubiquitin. There have been increasing indications that ubiquitylation of small GTPases occurs in a regulated fashion, primarily upon activation, and is an important means to control signalling output. Recent work has identified cellular proteins that control RasGTPase and RhoGTPase ubiquitylation and degradation, allowing us to amend the canonical model for GTPase (in)activation. Moreover, accumulating evidence for indirect regulation of GTPase function through the ubiquitylation of GTPase regulators makes this post-translational modification a key feature of GTPase-dependent signalling pathways. Here, we will discuss these recent insights into the regulation of RhoGTPase ubiquitylation and their relevance for cell signalling.
Collapse
Affiliation(s)
- Micha Nethe
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
47
|
Pashkova N, Gakhar L, Winistorfer SC, Yu L, Ramaswamy S, Piper RC. WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell 2010; 40:433-43. [PMID: 21070969 PMCID: PMC3266742 DOI: 10.1016/j.molcel.2010.10.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/01/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
WD40-repeat β-propellers are found in a wide range of proteins involved in distinct biological activities. We define a large subset of WD40 β-propellers as a class of ubiquitin-binding domains. Using the β-propeller from Doa1/Ufd3 as a paradigm, we find the conserved top surface of the Doa1 β-propeller binds the hydrophobic patch of ubiquitin centered on residues I44, L8, and V70. Mutations that disrupt ubiquitin binding abrogate Doa1 function, demonstrating the importance of this interaction. We further demonstrate that WD40 β-propellers from a functionally diverse set of proteins bind ubiquitin in a similar fashion. This set includes members of the F box family of SCF ubiquitin E3 ligase adaptors. Using mutants defective in binding, we find that ubiquitin interaction by the F box protein Cdc4 promotes its autoubiquitination and turnover. Collectively, our results reveal a molecular mechanism that may account for how ubiquitin controls a broad spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Facility
| | | | - Liping Yu
- Carver College of Medicine Protein NMR Facility
| | - S. Ramaswamy
- Department of Biochemistry University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
48
|
Zhadina M, Bieniasz PD. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog 2010; 6:e1001153. [PMID: 20975941 PMCID: PMC2958808 DOI: 10.1371/journal.ppat.1001153] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/17/2010] [Indexed: 12/17/2022] Open
Abstract
The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed. The release of an enveloped virus particle from an infected cell requires the separation of the viral and cell membranes. Many enveloped viruses accomplish this by parasitizing a set of cellular proteins, termed the ESCRT pathway, that normally separates cellular membranes from each other. In some cases, viral structural proteins encode peptides motifs that bind directly to, and thereby recruit, the ESCRT machinery. Alternatively, viruses can recruit enzymes, termed ubiquitin ligases, that bind to other proteins, and catalyze the addition of ubiquitin to them. It has, heretofore, been somewhat unclear precisely how the recruitment of ubiquitin ligases leads to the engagement of the ESCRT machinery. We show that the simple recruitment of a fragment of a ubiquitin ligase that is responsible for the addition of ubiquitin to other proteins is sufficient to drive virus particle release, even when it is not possible to attach ubiquitin to viral proteins. Paradoxically, we also found that simple attachment of ubiquitin to the same viral protein can also drive particle release. These results show that there is flexibility in the ways in which the ESCRT machinery can be recruited and how ubiquitin can be co-opted to enable this.
Collapse
Affiliation(s)
- Maria Zhadina
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, the Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, the Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Song AX, Zhou CJ, Guan X, Sze KH, Hu HY. Solution structure of the N-terminal domain of DC-UbP/UBTD2 and its interaction with ubiquitin. Protein Sci 2010; 19:1104-9. [PMID: 20440844 DOI: 10.1002/pro.386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DC-UbP/UBTD2 is a ubiquitin (Ub) domain-containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C-terminal Ub-like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC-UbP, we then solved the solution structure of the N-terminal domain of DC-UbP (DC-UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC-UbP_N holds a novel structural fold and acts as a Ub-binding domain (UBD) but with low affinity. This implies that the DC-UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.
Collapse
Affiliation(s)
- Ai-Xin Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
50
|
Winget JM, Mayor T. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol Cell 2010; 38:627-35. [PMID: 20541996 DOI: 10.1016/j.molcel.2010.05.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/26/2010] [Accepted: 05/04/2010] [Indexed: 01/11/2023]
Abstract
Ubiquitin is attached to a large number of proteins and gives rise to signaling events that modulate many cellular functions. These signals are often based on the recognition of polyubiquitin chains, which are produced in a variety of lengths and linkage patterns. In addition, proteins that are similar to ubiquitin in structure and function are often recognized by an overlapping set of partners. Research over the past several years has expanded our understanding of how ubiquitin and ubiquitin-like proteins are recognized. Most interactions occur at a few distinct surface areas; however, individual binding partners have specific, unique contacts that impart specificity. In this review, we summarize available information to facilitate comparisons across the ubiquitin-like family.
Collapse
Affiliation(s)
- Jason M Winget
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|