1
|
Jobichen C, Saharan K, Samal A, Choong YK, Jagdev MK, Mohapatra C, Jian S, Babbar R, Dobson RCJ, Grover A, Vasudevan D, Sivaraman J. Cryo-EM structure provides insights into the unusual heptameric assembly of rice (Oryza sativa L.) ClpB1 AAA+ ATPase. Int J Biol Macromol 2025; 311:143917. [PMID: 40324502 DOI: 10.1016/j.ijbiomac.2025.143917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Heat stress disrupts the protein homeostasis leading to the accumulation of toxic aggregated proteins in the cell. ClpB disaggregase belonging to the AAA+ ATPase superfamily removes the aggregated toxic proteins. ClpB is present ubiquitously in bacteria, yeast, protozoans and plants and plays a role in acquired heat tolerance. This study was focused on cytoplasmic ClpB1 from rice which is the staple food for more than half of world's population. In bacteria and yeast, ClpB forms a hexameric assembly for carrying out the disaggregase function, however, none of the plant ClpB isoforms have been structurally characterized. Here, we report the cryo-EM structure of ClpB1 from rice (Oryza sativa L.; OsClpB1) at 4 Å resolution. The structure reveals that OsClpB1 assembles as an unusual heptameric ring, possibly representing a non-processive open conformation. Our results point to the structural plasticity of OsClpB1 since it exists in different oligomeric forms. Analytical ultracentrifugation studies confirmed OsClpB1 exist as a heptamer in solution as well, suggesting the presence of the heptameric form of OsClpB1 within the cellular milieu of the rice plant.
Collapse
Affiliation(s)
- Chacko Jobichen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| | - Ketul Saharan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Archana Samal
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Yeu Khai Choong
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Manas Kumar Jagdev
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Chinmayee Mohapatra
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India
| | - Shi Jian
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Richa Babbar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch 8140, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023, India; Structural Biology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram 695014, India.
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Zhang Y, Yang T, Han J, Su X, Cong Y, Zhou M, Wang Y, Lin T. Genome-Wide Identification of the ClpB Gene Family in Tomato and Expression Analysis Under Heat Stress. Int J Mol Sci 2024; 25:12325. [PMID: 39596389 PMCID: PMC11595012 DOI: 10.3390/ijms252212325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Tomato is a widely grown horticultural crop, and its growth process is often affected by high temperatures. Caseinolytic Protease B (ClpB), a homologous protein to heat shock protein 101 (HSP101), plays a vital role in plant heat adaptation and development. In this study, we identified six SlClpB genes in tomatoes, distributed across four chromosomes. Collinearity analysis revealed that the gene pairs SlClpB-2 and SlClpB-3A, as well as SlClpB-3C and SlClpB-12, resulted from segmental duplication events. Phylogenetic and motif analyses showed that ClpB proteins possess highly conserved domains across different species. We used RNA-seq data to analyze the expression patterns of the ClpB family. Among them, SlClpB-3A and SlClpB-12 exhibited increased expression in multiple tissues under heat stress. Specifically, SlClpB-2, SlClpB-3A, and SlClpB-3C were highly expressed in the fruit orange stage and in flower buds under heat treatment, while in seedlings, SlClpB-2 and SlClpB-3A exhibited heat-induced expression. Real-time quantitative fluorescent PCR (qRT-PCR) results showed that the expression of SlClpB-2 and SlClpB-3A was significantly increased under heat stress in the leaves and buds of Ailsa Craig, Micro-Tom, and M82. Overall, our findings provide valuable insights into the regulatory mechanisms of SlClpB genes in response to heat stress.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tailai Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Jiaxi Han
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Xiao Su
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Yanqing Cong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yan Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tao Lin
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| |
Collapse
|
3
|
Riven I, Mazal H, Iljina M, Haran G. Fast dynamics shape the function of the
AAA
+ machine
ClpB
: lessons from single‐molecule
FRET
spectroscopy. FEBS J 2022. [DOI: 10.1111/febs.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Inbal Riven
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Marija Iljina
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
4
|
Spaulding Z, Thevarajan I, Schrag LG, Zubcevic L, Zolkiewska A, Zolkiewski M. Human mitochondrial AAA+ ATPase SKD3/CLPB assembles into nucleotide-stabilized dodecamers. Biochem Biophys Res Commun 2022; 602:21-26. [PMID: 35247700 PMCID: PMC8957611 DOI: 10.1016/j.bbrc.2022.02.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
SKD3, also known as human CLPB, belongs to the AAA+ family of ATPases associated with various activities. Mutations in the SKD3/CLPB gene cause 3-methylglutaconic aciduria type VII and congenital neutropenia. SKD3 is upregulated in acute myeloid leukemia, where it contributes to anti-cancer drug resistance. SKD3 resides in the mitochondrial intermembrane space, where it forms ATP-dependent high-molecular weight complexes, but its biological function and mechanistic links to the clinical phenotypes are currently unknown. Using sedimentation equilibrium and dynamic light scattering, we show that SKD3 is monomeric at low protein concentration in the absence of nucleotides, but it forms oligomers at higher protein concentration or in the presence of adenine nucleotides. The apparent molecular weight of the nucleotide-bound SKD3 is consistent with self-association of 12 monomers. Image-class analysis and averaging from negative-stain electron microscopy (EM) of SKD3 in the ATP-bound state visualized cylinder-shaped particles with an open central channel along the cylinder axis. The dimensions of the EM-visualized particle suggest that the SKD3 dodecamer is formed by association of two hexameric rings. While hexameric structure has been often observed among AAA+ ATPases, a double-hexamer sandwich found for SKD3 appears uncommon within this protein family. A functional significance of the non-canonical structure of SKD3 remains to be determined.
Collapse
Affiliation(s)
- Zachary Spaulding
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Indhujah Thevarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Lynn G Schrag
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Lejla Zubcevic
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
5
|
Dasgupta B, Miyashita O, Uchihashi T, Tama F. Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images. Front Mol Biosci 2021; 8:704274. [PMID: 34422905 PMCID: PMC8376356 DOI: 10.3389/fmolb.2021.704274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
ClpB belongs to the cellular disaggretase machinery involved in rescuing misfolded or aggregated proteins during heat or other cellular shocks. The function of this protein relies on the interconversion between different conformations in its native condition. A recent high-speed-atomic-force-microscopy (HS-AFM) experiment on ClpB from Thermus thermophilus shows four predominant conformational classes, namely, open, closed, spiral, and half-spiral. Analyses of AFM images provide only partial structural information regarding the molecular surface, and thus computational modeling of three-dimensional (3D) structures of these conformations should help interpret dynamical events related to ClpB functions. In this study, we reconstruct 3D models of ClpB from HS-AFM images in different conformational classes. We have applied our recently developed computational method based on a low-resolution representation of 3D structure using a Gaussian mixture model, combined with a Monte-Carlo sampling algorithm to optimize the agreement with target AFM images. After conformational sampling, we obtained models that reflect conformational variety embedded within the AFM images. From these reconstructed 3D models, we described, in terms of relative domain arrangement, the different types of ClpB oligomeric conformations observed by HS-AFM experiments. In particular, we highlighted the slippage of the monomeric components around the seam. This study demonstrates that such details of information, necessary for annotating the different conformational states involved in the ClpB function, can be obtained by combining HS-AFM images, even with limited resolution, and computational modeling.
Collapse
Affiliation(s)
- Bhaskar Dasgupta
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan
| | - Osamu Miyashita
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan
| | - Takayuki Uchihashi
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Florence Tama
- Computational Structural Biology Research Team, RIKEN-Center for Computational Science, Kobe, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Iljina M, Mazal H, Goloubinoff P, Riven I, Haran G. Entropic Inhibition: How the Activity of a AAA+ Machine Is Modulated by Its Substrate-Binding Domain. ACS Chem Biol 2021; 16:775-785. [PMID: 33739813 PMCID: PMC8056383 DOI: 10.1021/acschembio.1c00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ClpB is a tightly regulated AAA+ disaggregation machine. Each ClpB molecule is composed of a flexibly attached N-terminal domain (NTD), an essential middle domain (MD) that activates the machine by tilting, and two nucleotide-binding domains. The NTD is not well-characterized structurally and is commonly considered to serve as a dispensable substrate-binding domain. Here, we use single-molecule FRET spectroscopy to directly monitor the real-time dynamics of ClpB's NTD and reveal its unexpected autoinhibitory function. We find that the NTD fluctuates on the microsecond time scale, and these dynamics result in steric hindrance that limits the conformational space of the MD to restrict its tilting. This leads to significantly inhibited ATPase and disaggregation activities of ClpB, an effect that is alleviated upon binding of a substrate protein or the cochaperone DnaK. This entropic inhibition mechanism, which is mediated by ultrafast motions of the NTD and is not dependent on any strong interactions, might be common in related ATP-dependent proteases and other multidomain proteins to ensure their fast and reversible activation.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
7
|
Singh P, Khurana H, Yadav SP, Dhiman K, Singh P, Ashish, Singh R, Sharma D. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors. Int J Biol Macromol 2020; 165:375-387. [PMID: 32987071 DOI: 10.1016/j.ijbiomac.2020.09.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis, caused by pathogenic M. tuberculosis, remains a global health concern among various infectious diseases. Studies show that ClpB, a major disaggregase, protects the pathogen from various stresses encountered in the host environment. In the present study we have performed a detailed biophysical characterization of M. tuberculosis ClpB followed by a high throughput screening to identify small molecule inhibitors. The sedimentation velocity studies reveal that ClpB oligomerization varies with its concentration and presence of nucleotides. Further, using high throughput malachite green-based screening assay, we identified potential novel inhibitors of ClpB ATPase activity. The enzyme kinetics revealed that the lead molecule inhibits ClpB activity in a competitive manner. These drugs were also able to inhibit ATPase activity associated with E. coli ClpB and yeast Hsp104. The identified drugs inhibited the growth of intracellular bacteria in macrophages. Small angle X-ray scattering based modeling shows that ATP, and not its non-hydrolyzable analogs induce large scale conformational rearrangements in ClpB. Remarkably, the identified small molecules inhibited these ATP inducible conformational changes, suggesting that nucleotide induced shape changes are crucial for ClpB activity. The study broadens our understanding of M. tuberculosis chaperone machinery and provides the basis for designing more potent inhibitors against ClpB chaperone.
Collapse
Affiliation(s)
- Prashant Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Harleen Khurana
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Shiv Pratap Yadav
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Kanika Dhiman
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India.
| |
Collapse
|
8
|
Lee S, Roh SH, Lee J, Sung N, Liu J, Tsai FTF. Cryo-EM Structures of the Hsp104 Protein Disaggregase Captured in the ATP Conformation. Cell Rep 2020; 26:29-36.e3. [PMID: 30605683 PMCID: PMC6347426 DOI: 10.1016/j.celrep.2018.12.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/12/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022] Open
Abstract
Hsp104 is a ring-forming, ATP-driven molecular machine that recovers functional protein from both stress-denatured and amyloid-forming aggregates. Although Hsp104 shares a common architecture with Clp/Hsp100 protein unfoldases, different and seemingly conflicting 3D structures have been reported. Examining the structure of Hsp104 poses considerable challenges because Hsp104 readily hydrolyzes ATP, whereas ATP analogs can be slowly turned over and are often contaminated with other nucleotide species. Here, we present the single-particle electron cryo-microscopy (cryo-EM) structures of a catalytically inactive Hsp104 variant (Hsp104DWB) in the ATP-bound state determined between 7.7 Å and 9.3 Å resolution. Surprisingly, we observe that the Hsp104DWB hexamer adopts distinct ring conformations (closed, extended, and open) despite being in the same nucleotide state. The latter underscores the structural plasticity of Hsp104 in solution, with different conformations stabilized by nucleotide binding. Our findings suggest that, in addition to ATP hydrolysis-driven conformational changes, Hsp104 uses stochastic motions to translocate unfolded polypeptides. Hsp104 is a ring-forming ATPase that facilitates the disaggregation of amorphous and amyloid-forming protein aggregates. Lee et al. present three distinct cryo-EM structures of a catalytically inactive Hsp104-ATP variant, demonstrating that Hsp104 is a dynamic molecular machine and providing the structural basis for the passive threading of unfolded polypeptides.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Soung Hun Roh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jungsoon Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nuri Sung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Francis T F Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Shorter J, Southworth DR. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034033. [PMID: 30745294 DOI: 10.1101/cshperspect.a034033] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hsp104 is a hexameric AAA+ ATPase and protein disaggregase found in yeast, which couples ATP hydrolysis to the dissolution of diverse polypeptides trapped in toxic preamyloid oligomers, phase-transitioned gels, disordered aggregates, amyloids, and prions. Hsp104 shows plasticity in disaggregating diverse substrates, but how its hexameric architecture operates as a molecular machine has remained unclear. Here, we highlight structural advances made via cryoelectron microscopy (cryo-EM) that enhance our mechanistic understanding of Hsp104 and other related AAA+ translocases. Hsp104 hexamers are dynamic and adopt open "lock-washer" spiral states and closed ring structures that envelope polypeptide substrate inside the axial channel. ATP hydrolysis-driven conformational changes at the spiral seam ratchet substrate deeper into the channel. Remarkably, this mode of polypeptide translocation is reminiscent of models for how hexameric helicases unwind DNA and RNA duplexes. Thus, Hsp104 likely adapts elements of a deeply rooted, ring-translocase mechanism to the specialized task of protein disaggregation.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics; and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
10
|
Chamera T, Kłosowska A, Janta A, Wyszkowski H, Obuchowski I, Gumowski K, Liberek K. Selective Hsp70-Dependent Docking of Hsp104 to Protein Aggregates Protects the Cell from the Toxicity of the Disaggregase. J Mol Biol 2019; 431:2180-2196. [PMID: 31026451 DOI: 10.1016/j.jmb.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/01/2023]
Abstract
Hsp104 is a yeast chaperone that rescues misfolded proteins from aggregates associated with proteotoxic stress and aging. Hsp104 consists of N-terminal domain, regulatory M-domain and two ATPase domains, assembled into a spiral-shaped hexamer. Protein disaggregation involves polypeptide extraction from an aggregate and its translocation through the central channel. This process relies on Hsp104 cooperation with the Hsp70 chaperone, which also plays important role in regulation of the disaggregase. Although Hsp104 protein-unfolding activity enables cells to survive stress, when uncontrolled, it becomes toxic to the cell. In this work, we investigated the significance of the interaction between Hsp70 and the M-domain of Hsp104 for functioning of the disaggregation system. We identified phenylalanine at position 508 in Hsp104 to be the key site of interaction with Hsp70. Disruption of this site makes Hsp104 unable to bind protein aggregates and to confer tolerance in yeast cells. The use of this Hsp104 variant demonstrates that Hsp70 allows successful initiation of disaggregation only as long as it is able to interact with the disaggregase. As reported previously, this interaction causes release of the M-domain-driven repression of Hsp104. Now we reveal that, apart from this allosteric effect, the interaction between the chaperone partners itself contributes to effective initiation of disaggregation and plays important role in cell protection against Hsp104-induced toxicity. Interaction with Hsp70 shifts Hsp104 substrate specificity from non-aggregated, disordered substrates toward protein aggregates. Accordingly, Hsp70-mediated sequestering of the Hsp104 unfoldase in aggregates makes it less toxic and more productive.
Collapse
Affiliation(s)
- Tomasz Chamera
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Agnieszka Kłosowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Anna Janta
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Hubert Wyszkowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Igor Obuchowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Krzysztof Gumowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland.
| |
Collapse
|
11
|
Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat Commun 2019; 10:1438. [PMID: 30926805 PMCID: PMC6440998 DOI: 10.1038/s41467-019-09474-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Large protein machines are tightly regulated through allosteric communication channels. Here we demonstrate the involvement of ultrafast conformational dynamics in allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins. Each subunit of ClpB contains a unique coiled-coil structure, the middle domain (M domain), proposed as a control element that binds the co-chaperone DnaK. Using single-molecule FRET spectroscopy, we probe the M domain during the chaperone cycle and find it to jump on the microsecond time scale between two states, whose structures are determined. The M-domain jumps are much faster than the overall activity of ClpB, making it an effectively continuous, tunable switch. Indeed, a series of allosteric interactions are found to modulate the dynamics, including binding of nucleotides, DnaK and protein substrates. This mode of dynamic control enables fast cellular adaptation and may be a general mechanism for the regulation of cellular machineries. Large protein machines are tightly regulated through allosteric communication channels. Here authors use single-molecule FRET and demonstrate the involvement of ultrafast conformational dynamics in the allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins.
Collapse
|
12
|
Hydrogen exchange reveals Hsp104 architecture, structural dynamics, and energetics in physiological solution. Proc Natl Acad Sci U S A 2019; 116:7333-7342. [PMID: 30918129 DOI: 10.1073/pnas.1816184116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hsp104 is a large AAA+ molecular machine that can rescue proteins trapped in amorphous aggregates and stable amyloids by drawing substrate protein into its central pore. Recent cryo-EM studies image Hsp104 at high resolution. We used hydrogen exchange mass spectrometry analysis (HX MS) to resolve and characterize all of the functionally active and inactive elements of Hsp104, many not accessible to cryo-EM. At a global level, HX MS confirms the one noncanonical interprotomer interface in the Hsp104 hexamer as a marker for the spiraled conformation revealed by cryo-EM and measures its fast conformational cycling under ATP hydrolysis. Other findings enable reinterpretation of the apparent variability of the regulatory middle domain. With respect to detailed mechanism, HX MS determines the response of each Hsp104 structural element to the different bound adenosine nucleotides (ADP, ATP, AMPPNP, and ATPγS). They are distinguished most sensitively by the two Walker A nucleotide-binding segments. Binding of the ATP analog, ATPγS, tightly restructures the Walker A segments and drives the global open-to-closed/extended transition. The global transition carries part of the ATP/ATPγS-binding energy to the somewhat distant central pore. The pore constricts and the tyrosine and other pore-related loops become more tightly structured, which seems to reflect the energy-requiring directional pull that translocates the substrate protein. ATP hydrolysis to ADP allows Hsp104 to relax back to its lowest energy open state ready to restart the cycle.
Collapse
|
13
|
Michalska K, Zhang K, March ZM, Hatzos-Skintges C, Pintilie G, Bigelow L, Castellano LM, Miles LJ, Jackrel ME, Chuang E, Jedrzejczak R, Shorter J, Chiu W, Joachimiak A. Structure of Calcarisporiella thermophila Hsp104 Disaggregase that Antagonizes Diverse Proteotoxic Misfolding Events. Structure 2018; 27:449-463.e7. [PMID: 30595457 DOI: 10.1016/j.str.2018.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/09/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023]
Abstract
Hsp104 is an AAA+ protein disaggregase with powerful amyloid-remodeling activity. All nonmetazoan eukaryotes express Hsp104 while eubacteria express an Hsp104 ortholog, ClpB. However, most studies have focused on Hsp104 from Saccharomyces cerevisiae and ClpB orthologs from two eubacterial species. Thus, the natural spectrum of Hsp104/ClpB molecular architectures and protein-remodeling activities remains largely unexplored. Here, we report two structures of Hsp104 from the thermophilic fungus Calcarisporiella thermophila (CtHsp104), a 2.70Å crystal structure and 4.0Å cryo-electron microscopy structure. Both structures reveal left-handed, helical assemblies with all domains clearly resolved. We thus provide the highest resolution and most complete view of Hsp104 hexamers to date. We also establish that CtHsp104 antagonizes several toxic protein-misfolding events in vivo where S. cerevisiae Hsp104 is ineffective, including rescue of TDP-43, polyglutamine, and α-synuclein toxicity. We suggest that natural Hsp104 variation is an invaluable, untapped resource for illuminating therapeutic disaggregases for fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kaiming Zhang
- Department of Bioengineering, and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Zachary M March
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine Hatzos-Skintges
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Grigore Pintilie
- Department of Bioengineering, and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Lance Bigelow
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leann J Miles
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Wah Chiu
- Department of Bioengineering, and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA.
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Uchihashi T, Watanabe YH, Nakazaki Y, Yamasaki T, Watanabe H, Maruno T, Ishii K, Uchiyama S, Song C, Murata K, Iino R, Ando T. Dynamic structural states of ClpB involved in its disaggregation function. Nat Commun 2018; 9:2147. [PMID: 29858573 PMCID: PMC5984625 DOI: 10.1038/s41467-018-04587-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/09/2018] [Indexed: 11/09/2022] Open
Abstract
The ATP-dependent bacterial protein disaggregation machine, ClpB belonging to the AAA+ superfamily, refolds toxic protein aggregates into the native state in cooperation with the cognate Hsp70 partner. The ring-shaped hexamers of ClpB unfold and thread its protein substrate through the central pore. However, their function-related structural dynamics has remained elusive. Here we directly visualize ClpB using high-speed atomic force microscopy (HS-AFM) to gain a mechanistic insight into its disaggregation function. The HS-AFM movies demonstrate massive conformational changes of the hexameric ring during ATP hydrolysis, from a round ring to a spiral and even to a pair of twisted half-spirals. HS-AFM observations of Walker-motif mutants unveil crucial roles of ATP binding and hydrolysis in the oligomer formation and structural dynamics. Furthermore, repressed and hyperactive mutations result in significantly different oligomeric forms. These results provide a comprehensive view for the ATP-driven oligomeric-state transitions that enable ClpB to disentangle protein aggregates. The bacterial protein disaggregation machine ClpB uses ATP to generate mechanical force to unfold and thread its protein substrates. Here authors visualize the ClpB ring using high-speed atomic force microscopy and capture conformational changes of the hexameric ring during the ATPase reaction.
Collapse
Affiliation(s)
- Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yo-Hei Watanabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan. .,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.
| | - Yosuke Nakazaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan
| | - Takashi Yamasaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan
| | - Hiroki Watanabe
- Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Kentaro Ishii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan. .,Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
15
|
Fusion protein analysis reveals the precise regulation between Hsp70 and Hsp100 during protein disaggregation. Sci Rep 2017; 7:8648. [PMID: 28819163 PMCID: PMC5561102 DOI: 10.1038/s41598-017-08917-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
ClpB, a bacterial Hsp100, is a ring-shaped AAA+ chaperone that can reactivate aggregated proteins in cooperation with DnaK, a bacterial Hsp70, and its co-factors. ClpB subunits comprise two AAA+ modules with an interstitial rod-shaped M-domain. The M-domain regulates ClpB ATPase activity and interacts directly with the DnaK nucleotide-binding domain (NBD). Here, to clarify how these functions contribute to the disaggregation process, we constructed ClpB, DnaK, and aggregated YFP fusion proteins in various combinations. Notably, i) DnaK activates ClpB only when the DnaK substrate-binding domain (SBD) is in the closed conformation, affording high DnaK-peptide affinity; ii) although NBD alone can activate ClpB, SBD is required for disaggregation; and iii) tethering aggregated proteins to the activated ClpB obviates SBD requirements. These results indicate that DnaK activates ClpB only when the SBD tightly holds aggregated proteins adjacent to ClpB for effective disaggregation.
Collapse
|
16
|
Duran EC, Weaver CL, Lucius AL. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Front Mol Biosci 2017; 4:54. [PMID: 28824920 PMCID: PMC5540906 DOI: 10.3389/fmolb.2017.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Clarissa L Weaver
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
17
|
Deville C, Carroni M, Franke KB, Topf M, Bukau B, Mogk A, Saibil HR. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. SCIENCE ADVANCES 2017; 3:e1701726. [PMID: 28798962 PMCID: PMC5544394 DOI: 10.1126/sciadv.1701726] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 05/03/2023]
Abstract
Refolding aggregated proteins is essential in combating cellular proteotoxic stress. Together with Hsp70, Hsp100 chaperones, including Escherichia coli ClpB, form a powerful disaggregation machine that threads aggregated polypeptides through the central pore of tandem adenosine triphosphatase (ATPase) rings. To visualize protein disaggregation, we determined cryo-electron microscopy structures of inactive and substrate-bound ClpB in the presence of adenosine 5'-O-(3-thiotriphosphate), revealing closed AAA+ rings with a pronounced seam. In the substrate-free state, a marked gradient of resolution, likely corresponding to mobility, spans across the AAA+ rings with a dynamic hotspot at the seam. On the seam side, the coiled-coil regulatory domains are locked in a horizontal, inactive orientation. On the opposite side, the regulatory domains are accessible for Hsp70 binding, substrate targeting, and activation. In the presence of the model substrate casein, the polypeptide threads through the entire pore channel and increased nucleotide occupancy correlates with higher ATPase activity. Substrate-induced domain displacements indicate a pathway of regulated substrate transfer from Hsp70 to the ClpB pore, inside which a spiral of loops contacts the substrate. The seam pore loops undergo marked displacements, along with ordering of the regulatory domains. These asymmetric movements suggest a mechanism for ATPase activation and substrate threading during disaggregation.
Collapse
Affiliation(s)
- Célia Deville
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Marta Carroni
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kamila B. Franke
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center, Heidelberg, Germany
| | - Maya Topf
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Bernd Bukau
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center, Heidelberg, Germany
| | - Helen R. Saibil
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
18
|
Johnston DM, Miot M, Hoskins JR, Wickner S, Doyle SM. Substrate Discrimination by ClpB and Hsp104. Front Mol Biosci 2017; 4:36. [PMID: 28611991 PMCID: PMC5447042 DOI: 10.3389/fmolb.2017.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
ClpB of E. coli and yeast Hsp104 are homologous molecular chaperones and members of the AAA+ (ATPases Associated with various cellular Activities) superfamily of ATPases. They are required for thermotolerance and function in disaggregation and reactivation of aggregated proteins that form during severe stress conditions. ClpB and Hsp104 collaborate with the DnaK or Hsp70 chaperone system, respectively, to dissolve protein aggregates both in vivo and in vitro. In yeast, the propagation of prions depends upon Hsp104. Since protein aggregation and amyloid formation are associated with many diseases, including neurodegenerative diseases and cancer, understanding how disaggregases function is important. In this study, we have explored the innate substrate preferences of ClpB and Hsp104 in the absence of the DnaK and Hsp70 chaperone system. The results suggest that substrate specificity is determined by nucleotide binding domain-1.
Collapse
Affiliation(s)
- Danielle M Johnston
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Marika Miot
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
19
|
Chang CW, Lee S, Tsai FTF. Structural Elements Regulating AAA+ Protein Quality Control Machines. Front Mol Biosci 2017; 4:27. [PMID: 28523272 PMCID: PMC5415569 DOI: 10.3389/fmolb.2017.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA
| | - Francis T F Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA.,Departments of Molecular and Cellular Biology, and Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
20
|
Weaver CL, Duran EC, Mack KL, Lin J, Jackrel ME, Sweeny EA, Shorter J, Lucius AL. Avidity for Polypeptide Binding by Nucleotide-Bound Hsp104 Structures. Biochemistry 2017; 56:2071-2075. [PMID: 28379007 DOI: 10.1021/acs.biochem.7b00225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent Hsp104 structural studies have reported both planar and helical models of the hexameric structure. The conformation of Hsp104 monomers within the hexamer is affected by nucleotide ligation. After nucleotide-driven hexamer formation, Hsp104-catalyzed disruption of protein aggregates requires binding to the peptide substrate. Here, we examine the oligomeric state of Hsp104 and its peptide binding competency in the absence of nucleotide and in the presence of ADP, ATPγS, AMPPNP, or AMPPCP. Surprisingly, we found that only ATPγS facilitates avid peptide binding by Hsp104. We propose that the modulation between high- and low-peptide affinity states observed with these ATP analogues is an important component of the disaggregation mechanism of Hsp104.
Collapse
Affiliation(s)
- Clarissa L Weaver
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Elizabeth C Duran
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| |
Collapse
|
21
|
Sysoeva TA. Assessing heterogeneity in oligomeric AAA+ machines. Cell Mol Life Sci 2017; 74:1001-1018. [PMID: 27669691 PMCID: PMC11107579 DOI: 10.1007/s00018-016-2374-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
ATPases Associated with various cellular Activities (AAA+ ATPases) are molecular motors that use the energy of ATP binding and hydrolysis to remodel their target macromolecules. The majority of these ATPases form ring-shaped hexamers in which the active sites are located at the interfaces between neighboring subunits. Structural changes initiate in an active site and propagate to distant motor parts that interface and reshape the target macromolecules, thereby performing mechanical work. During the functioning cycle, the AAA+ motor transits through multiple distinct states. Ring architecture and placement of the catalytic sites at the intersubunit interfaces allow for a unique level of coordination among subunits of the motor. This in turn results in conformational differences among subunits and overall asymmetry of the motor ring as it functions. To date, a large amount of structural information has been gathered for different AAA+ motors, but even for the most characterized of them only a few structural states are known and the full mechanistic cycle cannot be yet reconstructed. Therefore, the first part of this work will provide a broad overview of what arrangements of AAA+ subunits have been structurally observed focusing on diversity of ATPase oligomeric ensembles and heterogeneity within the ensembles. The second part of this review will concentrate on methods that assess structural and functional heterogeneity among subunits of AAA+ motors, thus bringing us closer to understanding the mechanism of these fascinating molecular motors.
Collapse
Affiliation(s)
- Tatyana A Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
22
|
Heuck A, Schitter-Sollner S, Suskiewicz MJ, Kurzbauer R, Kley J, Schleiffer A, Rombaut P, Herzog F, Clausen T. Structural basis for the disaggregase activity and regulation of Hsp104. eLife 2016; 5. [PMID: 27901467 PMCID: PMC5130295 DOI: 10.7554/elife.21516] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 11/13/2022] Open
Abstract
The Hsp104 disaggregase is a two-ring ATPase machine that rescues various forms of non-native proteins including the highly resistant amyloid fibers. The structural-mechanistic underpinnings of how the recovery of toxic protein aggregates is promoted and how this potent unfolding activity is prevented from doing collateral damage to cellular proteins are not well understood. Here, we present structural and biochemical data revealing the organization of Hsp104 from Chaetomium thermophilum at 3.7 Å resolution. We show that the coiled-coil domains encircling the disaggregase constitute a ‘restraint mask’ that sterically controls the mobility and thus the unfolding activity of the ATPase modules. In addition, we identify a mechanical linkage that coordinates the activity of the two ATPase rings and accounts for the high unfolding potential of Hsp104. Based on these findings, we propose a general model for how Hsp104 and related chaperones operate and are kept under control until recruited to appropriate substrates. DOI:http://dx.doi.org/10.7554/eLife.21516.001
Collapse
Affiliation(s)
- Alexander Heuck
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | | | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Juliane Kley
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | - Pascaline Rombaut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munich, Germany
| | - Franz Herzog
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munich, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
23
|
Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. Nat Struct Mol Biol 2016; 23:830-7. [PMID: 27478928 DOI: 10.1038/nsmb.3277] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022]
Abstract
Hsp104, a conserved AAA+ protein disaggregase, promotes survival during cellular stress. Hsp104 remodels amyloids, thereby supporting prion propagation, and disassembles toxic oligomers associated with neurodegenerative diseases. However, a definitive structural mechanism for its disaggregase activity has remained elusive. We determined the cryo-EM structure of wild-type Saccharomyces cerevisiae Hsp104 in the ATP state, revealing a near-helical hexamer architecture that coordinates the mechanical power of the 12 AAA+ domains for disaggregation. An unprecedented heteromeric AAA+ interaction defines an asymmetric seam in an apparent catalytic arrangement that aligns the domains in a two-turn spiral. N-terminal domains form a broad channel entrance for substrate engagement and Hsp70 interaction. Middle-domain helices bridge adjacent protomers across the nucleotide pocket, thus explaining roles in ATP hydrolysis and protein disaggregation. Remarkably, substrate-binding pore loops line the channel in a spiral arrangement optimized for substrate transfer across the AAA+ domains, thereby establishing a continuous path for polypeptide translocation.
Collapse
|
24
|
Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers 2016; 99:846-59. [PMID: 23877967 PMCID: PMC3814418 DOI: 10.1002/bip.22361] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
This review is focused on the mechanisms by which ATP binding and hydrolysis drive chaperone machines assisting protein folding and unfolding. A survey of the key, general chaperone systems Hsp70 and Hsp90, and the unfoldase Hsp100 is followed by a focus on the Hsp60 chaperonin machine which is understood in most detail. Cryo-electron microscopy analysis of the E. coli Hsp60 GroEL reveals intermediate conformations in the ATPase cycle and in substrate folding. These structures suggest a mechanism by which GroEL can forcefully unfold and then encapsulate substrates for subsequent folding in isolation from all other binding surfaces.
Collapse
Affiliation(s)
- Daniel K Clare
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
25
|
Rosenzweig R, Kay LE. Solution NMR Spectroscopy Provides an Avenue for the Study of Functionally Dynamic Molecular Machines: The Example of Protein Disaggregation. J Am Chem Soc 2015; 138:1466-77. [PMID: 26651836 DOI: 10.1021/jacs.5b11346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution-based NMR spectroscopy has been an important tool for studying the structure and dynamics of relatively small proteins and protein complexes with aggregate molecular masses under approximately 50 kDa. The development of new experiments and labeling schemes, coupled with continued improvements in hardware, has significantly reduced this size limitation, enabling atomic-resolution studies of molecular machines in the 1 MDa range. In this Perspective, some of the important advances are highlighted in the context of studies of molecular chaperones involved in protein disaggregation. New insights into the structural biology of disaggregation obtained from NMR studies are described, focusing on the unique capabilities of the methodology for obtaining atomic-resolution descriptions of dynamic systems.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario, Canada M5S 1A8
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario, Canada M5S 1A8.,Program in Molecular Structure and Function, Hospital for Sick Children , 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
26
|
Rosenzweig R, Farber P, Velyvis A, Rennella E, Latham MP, Kay LE. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proc Natl Acad Sci U S A 2015; 112:E6872-81. [PMID: 26621746 PMCID: PMC4687599 DOI: 10.1073/pnas.1512783112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpB/Hsp100 is an ATP-dependent disaggregase that solubilizes and reactivates protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. The ClpB-substrate interaction is mediated by conserved tyrosine residues located in flexible loops in nucleotide-binding domain-1 that extend into the ClpB central pore. In addition to the tyrosines, the ClpB N-terminal domain (NTD) was suggested to provide a second substrate-binding site; however, the manner in which the NTD recognizes and binds substrate proteins has remained elusive. Herein, we present an NMR spectroscopy study to structurally characterize the NTD-substrate interaction. We show that the NTD includes a substrate-binding groove that specifically recognizes exposed hydrophobic stretches in unfolded or aggregated client proteins. Using an optimized segmental labeling technique in combination with methyl-transverse relaxation optimized spectroscopy (TROSY) NMR, the interaction of client proteins with both the NTD and the pore-loop tyrosines in the 580-kDa ClpB hexamer has been characterized. Unlike contacts with the tyrosines, the NTD-substrate interaction is independent of the ClpB nucleotide state and protein conformational changes that result from ATP hydrolysis. The NTD interaction destabilizes client proteins, priming them for subsequent unfolding and translocation. Mutations in the NTD substrate-binding groove are shown to have a dramatic effect on protein translocation through the ClpB central pore, suggesting that, before their interaction with substrates, the NTDs block the translocation channel. Together, our findings provide both a detailed characterization of the NTD-substrate complex and insight into the functional regulatory role of the ClpB NTD in protein disaggregation.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8;
| | - Patrick Farber
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Algirdas Velyvis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Michael P Latham
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| |
Collapse
|
27
|
Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104. J Mol Biol 2015; 428:1870-85. [PMID: 26608812 DOI: 10.1016/j.jmb.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
Abstract
Hsp104 is a dynamic ring translocase and hexameric AAA+ protein found in yeast, which couples ATP hydrolysis to disassembly and reactivation of proteins trapped in soluble preamyloid oligomers, disordered protein aggregates, and stable amyloid or prion conformers. Here, we highlight advances in our structural understanding of Hsp104 and how Hsp104 deconstructs Sup35 prions. Although the atomic structure of Hsp104 hexamers remains uncertain, volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (ATP hydrolysis transition-state mimic), and ADP via small-angle x-ray scattering has revealed a peristaltic pumping motion upon ATP hydrolysis. This pumping motion likely drives directional substrate translocation across the central Hsp104 channel. Hsp104 initially engages Sup35 prions immediately C-terminal to their cross-β structure. Directional pulling by Hsp104 then resolves N-terminal cross-β structure in a stepwise manner. First, Hsp104 fragments the prion. Second, Hsp104 unfolds cross-β structure. Third, Hsp104 releases soluble Sup35. Deletion of the Hsp104 N-terminal domain yields a hypomorphic disaggregase, Hsp104(∆N), with an altered pumping mechanism. Hsp104(∆N) fragments Sup35 prions without unfolding cross-β structure or releasing soluble Sup35. Moreover, Hsp104(∆N) activity cannot be enhanced by mutations in the middle domain that potentiate disaggregase activity. Thus, the N-terminal domain is critical for the full repertoire of Hsp104 activities.
Collapse
|
28
|
Lin J, Lucius AL. Examination of the dynamic assembly equilibrium for E. coli ClpB. Proteins 2015; 83:2008-24. [PMID: 26313457 DOI: 10.1002/prot.24914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 12/17/2022]
Abstract
Escherichia coli ClpB is a heat shock protein that belongs to the AAA+ protein superfamily. Studies have shown that ClpB and its homologue in yeast, Hsp104, can disrupt protein aggregates in vivo. It is thought that ClpB requires binding of nucleoside triphosphate to assemble into hexameric rings with protein binding activity. In addition, it is widely assumed that ClpB is uniformly hexameric in the presence of nucleotides. Here we report, in the absence of nucleotide, that increasing ClpB concentration leads to ClpB hexamer formation, decreasing NaCl concentration stabilizes ClpB hexamers, and the ClpB assembly reaction is best described by a monomer, dimer, tetramer, hexamer equilibrium under the three salt concentrations examined. Further, we found that ClpB oligomers exhibit relatively fast dissociation on the time scale of sedimentation. We anticipate our studies on ClpB assembly to be a starting point to understand how ClpB assembly is linked to the binding and disaggregation of denatured proteins.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
29
|
AhYoung AP, Koehl A, Cascio D, Egea PF. Structural mapping of the ClpB ATPases of Plasmodium falciparum: Targeting protein folding and secretion for antimalarial drug design. Protein Sci 2015; 24:1508-20. [PMID: 26130467 DOI: 10.1002/pro.2739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 11/08/2022]
Abstract
Caseinolytic chaperones and proteases (Clp) belong to the AAA+ protein superfamily and are part of the protein quality control machinery in cells. The eukaryotic parasite Plasmodium falciparum, the causative agent of malaria, has evolved an elaborate network of Clp proteins including two distinct ClpB ATPases. ClpB1 and ClpB2 are involved in different aspects of parasitic proteostasis. ClpB1 is present in the apicoplast, a parasite-specific and plastid-like organelle hosting various metabolic pathways necessary for parasite growth. ClpB2 localizes to the parasitophorous vacuole membrane where it drives protein export as core subunit of a parasite-derived protein secretion complex, the Plasmodium Translocon of Exported proteins (PTEX); this process is central to parasite virulence and survival in the human host. The functional associations of these two chaperones with parasite-specific metabolism and protein secretion make them prime drug targets. ClpB proteins function as unfoldases and disaggregases and share a common architecture consisting of four domains-a variable N-terminal domain that binds different protein substrates, followed by two highly conserved catalytic ATPase domains, and a C-terminal domain. Here, we report and compare the first crystal structures of the N terminal domains of ClpB1 and ClpB2 from Plasmodium and analyze their molecular surfaces. Solution scattering analysis of the N domain of ClpB2 shows that the average solution conformation is similar to the crystalline structure. These structures represent the first step towards the characterization of these two malarial chaperones and the reconstitution of the entire PTEX to aid structure-based design of novel anti-malarial drugs.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Antoine Koehl
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Duilio Cascio
- Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California
| | - Pascal F Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California.,Molecular Biology Institute, UCLA, Los Angeles, California
| |
Collapse
|
30
|
Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Arch Biochem Biophys 2015; 580:121-34. [PMID: 26159839 DOI: 10.1016/j.abb.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 12/15/2022]
Abstract
The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed.
Collapse
|
31
|
Escherichia coli ClpB is a non-processive polypeptide translocase. Biochem J 2015; 470:39-52. [PMID: 26251445 PMCID: PMC4692069 DOI: 10.1042/bj20141457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/05/2015] [Indexed: 11/17/2022]
Abstract
Escherichia coli caseinolytic protease (Clp)B is a hexameric AAA+ [expanded superfamily of AAA (ATPase associated with various cellular activities)] enzyme that has the unique ability to catalyse protein disaggregation. Such enzymes are essential for proteome maintenance. Based on structural comparisons to homologous enzymes involved in ATP-dependent proteolysis and clever protein engineering strategies, it has been reported that ClpB translocates polypeptide through its axial channel. Using single-turnover fluorescence and anisotropy experiments we show that ClpB is a non-processive polypeptide translocase that catalyses disaggregation by taking one or two translocation steps followed by rapid dissociation. Using single-turnover FRET experiments we show that ClpB containing the IGL loop from ClpA does not translocate substrate through its axial channel and into ClpP for proteolytic degradation. Rather, ClpB containing the IGL loop dysregulates ClpP leading to non-specific proteolysis reminiscent of ADEP (acyldepsipeptide) dysregulation. Our results support a molecular mechanism where ClpB catalyses protein disaggregation by tugging and releasing exposed tails or loops.
Collapse
|
32
|
Mogk A, Kummer E, Bukau B. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2015; 2:22. [PMID: 26042222 PMCID: PMC4436881 DOI: 10.3389/fmolb.2015.00022] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity.
Collapse
Affiliation(s)
- Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Eva Kummer
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|
33
|
Allosteric communication in the dynein motor domain. Cell 2015; 159:857-68. [PMID: 25417161 DOI: 10.1016/j.cell.2014.10.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/30/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
Collapse
|
34
|
Jeng W, Lee S, Sung N, Lee J, Tsai FT. Molecular chaperones: guardians of the proteome in normal and disease states. F1000Res 2015; 4:F1000 Faculty Rev-1448. [PMID: 26918154 PMCID: PMC4754035 DOI: 10.12688/f1000research.7214.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Proteins must adopt a defined three-dimensional structure in order to gain functional activity, or must they? An ever-increasing number of intrinsically disordered proteins and amyloid-forming polypeptides challenge this dogma. While molecular chaperones and proteases are traditionally associated with protein quality control inside the cell, it is now apparent that molecular chaperones not only promote protein folding in the "forward" direction by facilitating folding and preventing misfolding and aggregation, but also facilitate protein unfolding and even disaggregation resulting in the recovery of functional protein from aggregates. Here, we review our current understanding of ATP-dependent molecular chaperones that harness the energy of ATP binding and hydrolysis to fuel their chaperone functions. An emerging theme is that most of these chaperones do not work alone, but instead function together with other chaperone systems to maintain the proteome. Hence, molecular chaperones are the major component of the proteostasis network that guards and protects the proteome from damage. Furthermore, while a decline of this network is detrimental to cell and organismal health, a controlled perturbation of the proteostasis network may offer new therapeutic avenues against human diseases.
Collapse
Affiliation(s)
- Wilson Jeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nuri Sung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jungsoon Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Li T, Lin J, Lucius AL. Examination of polypeptide substrate specificity for Escherichia coli ClpB. Proteins 2014; 83:117-34. [PMID: 25363713 DOI: 10.1002/prot.24710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 12/16/2022]
Abstract
Escherichia coli ClpB is a molecular chaperone that belongs to the Clp/Hsp100 family of AAA+ proteins. ClpB is able to form a hexameric ring structure to catalyze protein disaggregation with the assistance of the DnaK chaperone system. Our knowledge of the mechanism of how ClpB recognizes its substrates is still limited. In this study, we have quantitatively investigated ClpB binding to a number of unstructured polypeptides using steady-state anisotropy titrations. To precisely determine the binding affinity for the interaction between ClpB hexamers and polypeptide substrates the titration data were subjected to global non-linear least squares analysis incorporating the dynamic equilibrium of ClpB assembly. Our results show that ClpB hexamers bind tightly to unstructured polypeptides with binding affinities in the range of ∼3-16 nM. ClpB exhibits a modest preference of binding to Peptide B1 with a binding affinity of (1.7 ± 0.2) nM. Interestingly, we found that ClpB binds to an unstructured polypeptide substrate of 40 and 50 amino acids containing the SsrA sequence at the C-terminus with an affinity of (12 ± 3) nM and (4 ± 2) nM, respectively. Whereas, ClpB binds the 11-amino acid SsrA sequence with an affinity of (140 ± 20) nM, which is significantly weaker than other polypeptide substrates that we tested here. We hypothesize that ClpB, like ClpA, requires substrates with a minimum length for optimal binding. Finally, we present evidence showing that multiple ClpB hexamers are involved in binding to polypeptides ≥152 amino acids.
Collapse
Affiliation(s)
- Tao Li
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama, 35294-1240
| | | | | |
Collapse
|
36
|
Nakazaki Y, Watanabe YH. ClpB chaperone passively threads soluble denatured proteins through its central pore. Genes Cells 2014; 19:891-900. [PMID: 25288401 DOI: 10.1111/gtc.12188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/08/2014] [Indexed: 11/27/2022]
Abstract
ClpB disaggregase forms a ring-shaped hexamer that threads substrate proteins through the central pore using energy from ATP. The ClpB protomer consists of an N-terminal domain, a middle domain, and two AAA+ modules. These two AAA+ modules bind and hydrolyze ATP and construct the core of the hexameric ring. Here, we investigated the roles of the two AAA+ modules in substrate threading. BAP is an engineered ClpB that can bind ClpP proteolytic chamber; substrates threaded by BAP are degraded by ClpP. We combined BAP with conserved motif mutations in two AAA+ modules and measured the steady-state rates of threading of soluble denatured proteins by these mutants over a range of substrate concentrations. By fitting the data to the Michaelis-Menten equation, k(cat) and K(m) values were determined. We found that the kinetic parameters of the substrate threading correlate with the type of mutation introduced rather than the ATPase activity of the mutant. Moreover, some mutants having no or marginal ATPase activity could thread denatured proteins significantly. These results indicate that ClpB can passively thread soluble denatured proteins.
Collapse
Affiliation(s)
- Yosuke Nakazaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan
| | | |
Collapse
|
37
|
Zeymer C, Fischer S, Reinstein J. trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication. J Biol Chem 2014; 289:32965-76. [PMID: 25253689 PMCID: PMC4239642 DOI: 10.1074/jbc.m114.608828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone ClpB/Hsp104, a member of the AAA+ superfamily (ATPases associated with various cellular activities), rescues proteins from the aggregated state in collaboration with the DnaK/Hsp70 chaperone system. ClpB/Hsp104 forms a hexameric, ring-shaped complex that functions as a tightly regulated, ATP-powered molecular disaggregation machine. Highly conserved and essential arginine residues, often called arginine fingers, are located at the subunit interfaces of the complex, which also harbor the catalytic sites. Several AAA+ proteins, including ClpB/Hsp104, possess a pair of such trans-acting arginines in the N-terminal nucleotide binding domain (NBD1), both of which were shown to be crucial for oligomerization and ATPase activity. Here, we present a mechanistic study elucidating the role of this conserved arginine pair. First, we found that the arginines couple nucleotide binding to oligomerization of NBD1, which is essential for the activity. Next, we designed a set of covalently linked, dimeric ClpB NBD1 variants, carrying single subunits deficient in either ATP binding or hydrolysis, to study allosteric regulation and intersubunit communication. Using this well defined environment of site-specifically modified, cross-linked AAA+ domains, we found that the conserved arginine pair mediates the cooperativity of ATP binding and hydrolysis in an allosteric fashion.
Collapse
Affiliation(s)
- Cathleen Zeymer
- From the Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Sebastian Fischer
- From the Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jochen Reinstein
- From the Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Carroni M, Kummer E, Oguchi Y, Wendler P, Clare DK, Sinning I, Kopp J, Mogk A, Bukau B, Saibil HR. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. eLife 2014; 3:e02481. [PMID: 24843029 PMCID: PMC4023160 DOI: 10.7554/elife.02481] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The hexameric AAA+ chaperone ClpB reactivates aggregated proteins in cooperation with the Hsp70 system. Essential for disaggregation, the ClpB middle domain (MD) is a coiled-coil propeller that binds Hsp70. Although the ClpB subunit structure is known, positioning of the MD in the hexamer and its mechanism of action are unclear. We obtained electron microscopy (EM) structures of the BAP variant of ClpB that binds the protease ClpP, clearly revealing MD density on the surface of the ClpB ring. Mutant analysis and asymmetric reconstructions show that MDs adopt diverse positions in a single ClpB hexamer. Adjacent, horizontally oriented MDs form head-to-tail contacts and repress ClpB activity by preventing Hsp70 interaction. Tilting of the MD breaks this contact, allowing Hsp70 binding, and releasing the contact in adjacent subunits. Our data suggest a wavelike activation of ClpB subunits around the ring.DOI: http://dx.doi.org/10.7554/eLife.02481.001.
Collapse
Affiliation(s)
- Marta Carroni
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| | - Eva Kummer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Yuki Oguchi
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Petra Wendler
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel K Clare
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| | - Irmgard Sinning
- Biochemie-Zentrum, Universität Heidelberg, Heidelberg, Germany
| | - Jürgen Kopp
- Biochemie-Zentrum, Universität Heidelberg, Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Helen R Saibil
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| |
Collapse
|
39
|
Zeymer C, Barends TRM, Werbeck ND, Schlichting I, Reinstein J. Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor. ACTA ACUST UNITED AC 2014; 70:582-95. [PMID: 24531492 PMCID: PMC3940203 DOI: 10.1107/s1399004713030629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/07/2013] [Indexed: 12/12/2022]
Abstract
ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high-resolution crystal structures in different nucleotide states, mutational analysis and nucleotide-binding kinetics experiments, the ATPase cycle of the C-terminal nucleotide-binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active-site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side-chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.
Collapse
Affiliation(s)
- Cathleen Zeymer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicolas D Werbeck
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Desantis ME, Sweeny EA, Snead D, Leung EH, Go MS, Gupta K, Wendler P, Shorter J. Conserved distal loop residues in the Hsp104 and ClpB middle domain contact nucleotide-binding domain 2 and enable Hsp70-dependent protein disaggregation. J Biol Chem 2013; 289:848-67. [PMID: 24280225 PMCID: PMC3887210 DOI: 10.1074/jbc.m113.520759] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The homologous hexameric AAA+ proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.
Collapse
|
41
|
Doyle SM, Genest O, Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 2013; 14:617-29. [PMID: 24061228 DOI: 10.1038/nrm3660] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein quality control within the cell requires the interplay of many molecular chaperones and proteases. When this quality control system is disrupted, polypeptides follow pathways leading to misfolding, inactivity and aggregation. Among the repertoire of molecular chaperones are remarkable proteins that forcibly untangle protein aggregates, called disaggregases. Structural and biochemical studies have led to new insights into how these proteins collaborate with co-chaperones and utilize ATP to power protein disaggregation. Understanding how energy-dependent protein disaggregating machines function is universally important and clinically relevant, as protein aggregation is linked to medical conditions such as Alzheimer's disease, Parkinson's disease, amyloidosis and prion diseases.
Collapse
Affiliation(s)
- Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg. 37, Room 5144, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
42
|
Abstract
Heat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. However, like Hsp104, Hsp70 is an active ATPase, which recognizes aggregated and aggregation-prone proteins, making it difficult to differentiate the mechanistic roles of Hsp104 and Hsp70 during protein disaggregation. Mapping the Hsp70-binding sites in yeast Hsp104 using peptide array technology and photo-cross-linking revealed a striking conservation of the primary Hsp70-binding motifs on the Hsp104 middle-domain across species, despite lack of sequence identity. Remarkably, inserting a Strep-Tactin binding motif at the spatially conserved Hsp70-binding site elicits the Hsp104 protein disaggregating activity that now depends on Strep-Tactin but no longer requires Hsp70/40. Consistent with a Strep-Tactin-dependent activation step, we found that full-length Hsp70 on its own could activate the Hsp104 hexamer by promoting intersubunit coordination, suggesting that Hsp70 is an activator of the Hsp104 motor.
Collapse
|
43
|
Liu J, Mei Z, Li N, Qi Y, Xu Y, Shi Y, Wang F, Lei J, Gao N. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. J Biol Chem 2013; 288:17597-608. [PMID: 23595989 DOI: 10.1074/jbc.m113.458752] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.
Collapse
Affiliation(s)
- Jing Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zeymer C, Werbeck ND, Schlichting I, Reinstein J. The molecular mechanism of Hsp100 chaperone inhibition by the prion curing agent guanidinium chloride. J Biol Chem 2013; 288:7065-76. [PMID: 23341453 DOI: 10.1074/jbc.m112.432583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Hsp100 chaperones ClpB and Hsp104 utilize the energy from ATP hydrolysis to reactivate aggregated proteins in concert with the DnaK/Hsp70 chaperone system, thereby playing an important role in protein quality control. They belong to the family of AAA+ proteins (ATPases associated with various cellular activities), possess two nucleotide binding domains per monomer (NBD1 and NBD2), and oligomerize into hexameric ring complexes. Furthermore, Hsp104 is involved in yeast prion propagation and inheritance. It is well established that low concentrations of guanidinium chloride (GdmCl) inhibit the ATPase activity of Hsp104, leading to so called "prion curing," the loss of prion-related phenotypes. Here, we present mechanistic details about the Hsp100 chaperone inhibition by GdmCl using the Hsp104 homolog ClpB from Thermus thermophilus. Initially, we demonstrate that NBD1 of ClpB, which was previously considered inactive as a separately expressed construct, is a fully active ATPase on its own. Next, we show that only NBD1, but not NBD2, is affected by GdmCl. We present a crystal structure of ClpB NBD1 in complex with GdmCl and ADP, showing that the Gdm(+) ion binds specifically to the active site of NBD1. A conserved essential glutamate residue is involved in this interaction. Additionally, Gdm(+) interacts directly with the nucleotide, thereby increasing the nucleotide binding affinity of NBD1. We propose that both the interference with the essential glutamate and the modulation of nucleotide binding properties in NBD1 is responsible for the GdmCl-specific inhibition of Hsp100 chaperones.
Collapse
Affiliation(s)
- Cathleen Zeymer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Oguchi Y, Kummer E, Seyffer F, Berynskyy M, Anstett B, Zahn R, Wade RC, Mogk A, Bukau B. A tightly regulated molecular toggle controls AAA+ disaggregase. Nat Struct Mol Biol 2012; 19:1338-46. [PMID: 23160353 DOI: 10.1038/nsmb.2441] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/15/2012] [Indexed: 01/22/2023]
Abstract
The ring-forming AAA+ protein ClpB cooperates with the DnaK chaperone system to refold aggregated proteins in Escherichia coli. The M domain, a ClpB-specific coiled-coil structure with two wings, motif 1 and motif 2, is essential to disaggregation, but the positioning and mechanistic role of M domains in ClpB hexamers remain unresolved. We show that M domains nestle at the ClpB ring surface, with both M-domain motifs contacting the first ATPase domain (AAA-1). Both wings contribute to maintaining a repressed ClpB activity state. Motif 2 docks intramolecularly to AAA-1 to regulate ClpB unfolding power, and motif 1 contacts a neighboring AAA-1 domain. Mutations that stabilize motif 2 docking repress ClpB, whereas destabilization leads to derepressed ClpB activity with greater unfolding power that is toxic in vivo. Our results underline the vital nature of tight ClpB activity control and elucidate a regulated M-domain toggle control mechanism.
Collapse
Affiliation(s)
- Yuki Oguchi
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Structural basis for intersubunit signaling in a protein disaggregating machine. Proc Natl Acad Sci U S A 2012; 109:12515-20. [PMID: 22802670 DOI: 10.1073/pnas.1207040109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpB is a ring-forming, ATP-dependent protein disaggregase that cooperates with the cognate Hsp70 system to recover functional protein from aggregates. How ClpB harnesses the energy of ATP binding and hydrolysis to facilitate the mechanical unfolding of previously aggregated, stress-damaged proteins remains unclear. Here, we present crystal structures of the ClpB D2 domain in the nucleotide-bound and -free states, and the fitted cryoEM structure of the D2 hexamer ring, which provide a structural understanding of the ATP power stroke that drives protein translocation through the ClpB hexamer. We demonstrate that the conformation of the substrate-translocating pore loop is coupled to the nucleotide state of the cis subunit, which is transmitted to the neighboring subunit via a conserved but structurally distinct intersubunit-signaling pathway common to diverse AAA+ machines. Furthermore, we found that an engineered, disulfide cross-linked ClpB hexamer is fully functional biochemically, suggesting that ClpB deoligomerization is not required for protein disaggregation.
Collapse
|
47
|
Doyle SM, Hoskins JR, Wickner S. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine. J Biol Chem 2012; 287:28470-9. [PMID: 22745126 DOI: 10.1074/jbc.m112.383091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protein disaggregation in Escherichia coli is carried out by ClpB, an AAA(+) (ATPases associated with various cellular activities) molecular chaperone, together with the DnaK chaperone system. Conformational changes in ClpB driven by ATP binding and hydrolysis promote substrate binding, unfolding, and translocation. Conserved pore tyrosines in both nucleotide-binding domain-1 (NBD-1) and -2 (NBD-2), which reside in flexible loops extending into the central pore of the ClpB hexamer, bind substrates. When the NBD-1 pore loop tyrosine is substituted with alanine (Y251A), ClpB can collaborate with the DnaK system in disaggregation, although activity is reduced. The N-domain has also been implicated in substrate binding, and like the NBD-1 pore loop tyrosine, it is not essential for disaggregation activity. To further probe the function and interplay of the ClpB N-domain and the NBD-1 pore loop, we made a double mutant with an N-domain deletion and a Y251A substitution. This ClpB double mutant is inactive in substrate disaggregation with the DnaK system, although each single mutant alone can function with DnaK. Our data suggest that this loss in activity is primarily due to a decrease in substrate engagement by ClpB prior to substrate unfolding and translocation and indicate an overlapping function for the N-domain and NBD-1 pore tyrosine. Furthermore, the functional overlap seen in the presence of the DnaK system is not observed in the absence of DnaK. For innate ClpB unfolding activity, the NBD-1 pore tyrosine is required, and the presence of the N-domain is insufficient to overcome the defect of the ClpB Y251A mutant.
Collapse
Affiliation(s)
- Shannon M Doyle
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
48
|
Hodson S, Marshall JJT, Burston SG. Mapping the road to recovery: the ClpB/Hsp104 molecular chaperone. J Struct Biol 2012; 179:161-71. [PMID: 22659404 DOI: 10.1016/j.jsb.2012.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 11/26/2022]
Abstract
The AAA(+)-ATPases are a family of molecular motors which have been seconded into a plethora of cellular tasks. One subset, the Hsp100 molecular chaperones, are general protein remodellers that help to maintain the integrity of the cellular proteome by means of protein destruction or resurrection. In this review we focus on one family of Hsp100s, the homologous ClpB and Hsp104 molecular chaperones that convey thermotolerance by resolubilising and rescuing proteins from aggregates. We explore how the nucleotide binding and hydrolysis properties at the twelve nucleotide-binding domains of these hexameric rings are coupled to protein disaggregation, highlighting similarities and differences between ClpB and Hsp104.
Collapse
Affiliation(s)
- Skye Hodson
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
49
|
Biter AB, Lee J, Sung N, Tsai FTF, Lee S. Functional analysis of conserved cis- and trans-elements in the Hsp104 protein disaggregating machine. J Struct Biol 2012; 179:172-80. [PMID: 22634726 DOI: 10.1016/j.jsb.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/24/2012] [Accepted: 05/16/2012] [Indexed: 11/17/2022]
Abstract
Hsp104 is a double ring-forming AAA+ ATPase, which harnesses the energy of ATP binding and hydrolysis to rescue proteins from a previously aggregated state. Like other AAA+ machines, Hsp104 features conserved cis- and trans-acting elements, which are hallmarks of AAA+ members and are essential to Hsp104 function. Despite these similarities, it was recently proposed that Hsp104 is an atypical AAA+ ATPase, which markedly differs in 3D structure from other AAA+ machines. Consequently, it was proposed that arginines found in the non-conserved M-domain, but not the predicted Arg-fingers, serve the role of the critical trans-acting element in Hsp104. While the structural discrepancy has been resolved, the role of the Arg-finger residues in Hsp104 remains controversial. Here, we exploited the ability of Hsp104 variants featuring mutations in one ring to retain ATPase and chaperone activities, to elucidate the functional role of the predicted Arg-finger residues. We found that the evolutionarily conserved Arg-fingers are absolutely essential for ATP hydrolysis but are dispensable for hexamer assembly in Hsp104. On the other hand, M-domain arginines are not strictly required for ATP hydrolysis and affect the ATPase and chaperone activities in a complex manner. Our results confirm that Hsp104 is not an atypical AAA+ ATPase, and uses conserved structural elements common to diverse AAA+ machines to drive the mechanical unfolding of aggregated proteins.
Collapse
Affiliation(s)
- Amadeo B Biter
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Mizuno S, Nakazaki Y, Yoshida M, Watanabe YH. Orientation of the amino-terminal domain of ClpB affects the disaggregation of the protein. FEBS J 2012; 279:1474-84. [PMID: 22348341 DOI: 10.1111/j.1742-4658.2012.08540.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ClpB/Hsp104 efficiently reactivates protein aggregates in cooperation with the DnaK/Hsp70 system. As a member of the AAA+ protein family (i.e. an expanded superfamily of ATPases associated with diverse cellular activities), ClpB forms a ring-shaped hexamer in an ATP-dependent manner. A protomer of ClpB consists of an N-terminal domain (NTD), an AAA+ module, a middle domain and another AAA+ module. In the crystal structures, the NTDs point to two different directions relative to other domains and are not visible in the single-particle cryo-electron microscopy reconstruction, suggesting that the NTD is highly mobile. In the present study, we generated mutants in which the NTD was anchored to other domain by disulfide cross-linking and compared several aspects of ClpB function between the reduced and oxidized mutants, using the wild-type and NTD-truncated ClpB (ClpBΔN) as references. In their oxidized form, the mutants and wild-type bind casein with a similar affinity, although the affinity of ClpBΔN for casein was significantly low. However, the extent of casein-induced stimulation of ATPase, the rate of substrate threading and the efficiency of protein disaggregation of these mutants were all lower than those of the wild-type but similar to those of ClpBΔN. These results indicate that the NTD supports the substrate binding of ClpB and that its conformational shift assists the threading and disaggregation of substrate proteins.
Collapse
Affiliation(s)
- Sayaka Mizuno
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | | | | |
Collapse
|