1
|
Cai M, Ying J, Lopez JM, Huang Y, Clore GM. Unraveling structural transitions and kinetics along the fold-switching pathway of the RfaH C-terminal domain using exchange-based NMR. Proc Natl Acad Sci U S A 2025; 122:e2506441122. [PMID: 40366684 PMCID: PMC12107155 DOI: 10.1073/pnas.2506441122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
The bacterial transcriptional regulator RfaH comprises structurally and functionally distinct N- (NTD) and C- (CTD) terminal domains. The latter switches from a helical hairpin packed against the NTD to a five-stranded β-roll upon displacement by RNA polymerase binding. Here, we use exchange-based NMR to probe fold-switching intermediates sampled by the isolated CTD. In addition to the predominant (~76 to 77%), semistable β-roll conformation (state A), we identify four structurally and kinetically distinct states: A', B, B', and B″. State B is NMR observable with an occupancy of ~23%, exchanges slowly (τex ~ 300 ms) with the major A species, and comprises a largely unfolded ensemble with transient occupancy of helical (α5*) and β-hairpin (β1*/β2*) elements. Backbone chemical shift-based structure predictions using the program CS-ROSETTA suggest that the two transient structural elements within the B state may interact with one another to form a semicompact structure. A' (~0.35%) is an off-pathway state that exchanges rapidly (τex ~ 1 ms) with state A and likely entails a minor localized conformational change in the β1/β2 loop. State B' (~0.3%) exchanges rapidly (τex ~ 1.2 ms) with state B and exhibits downfield 15N backbone shifts (relative to B) in the α5* region indicative of reduced helicity. Finally state B″ (~0.05%) exchanges rapidly (τex ~ 0.8 to 1 ms) with either B' (linear model) or B (branched model), displays significant differences in absolute 15N chemical shift from states B and B', and likely represents a further intermediate with increased helicity along the fold-switching pathway.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Juan M. Lopez
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
- Departmento de Ciencia–Quimica, Centro de Espectroscopia de Resonancia Magnética Nuclear, Pontificia Universidad Católica del Perú, Lima 32, Perú
| | - Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
2
|
Seifi B, Wallin S. Impact of N-Terminal Domain Conformation and Domain Interactions on RfaH Fold Switching. Proteins 2025; 93:608-619. [PMID: 39400465 DOI: 10.1002/prot.26755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
RfaH is a two-domain metamorphic protein involved in transcription regulation and translation initiation. To carry out its dual functions, RfaH relies on two coupled structural changes: Domain dissociation and fold switching. In the free state, the C-terminal domain (CTD) of RfaH adopts an all-α fold and is tightly associated with the N-terminal domain (NTD). Upon binding to RNA polymerase (RNAP), the domains dissociate and the CTD transforms into an all-β fold while the NTD remains largely, but not entirely, unchanged. We test the idea that a change in the conformation of an extended β-hairpin (β3-β4) located on the NTD, helps trigger domain dissociation. To this end, we use homology modeling to construct a structure, H1, which is similar to free RfaH but with a remodeled β3-β4 hairpin. We then use an all-atom physics-based model enhanced with a dual basin structure-based potential to simulate domain separation driven by the thermal unfolding of the CTD with NTD in a fixed, folded conformation. We apply our model to both free RfaH and H1. For H1 we find, in line with our hypothesis, that the CTD exhibits lower stability and the domains dissociate at a lower temperature T, as compared to free RfaH. We do not, however, observe complete refolding to the all-β state in these simulations, suggesting that a change in β3-β4 orientation aids in, but is not sufficient for, domain dissociation. In addition, we study the reverse fold switch in which RfaH returns from a domain-open all-β state to its domain-closed all-α state. We observe a T-dependent transition rate; fold switching is slow at low T, where the CTD tends to be kinetically trapped in its all-β state, and at high-T, where the all-α state becomes unstable. Consequently, our simulations suggest an optimal T at which fold switching is most rapid. At this T, the stabilities of both folds are reduced. Overall, our study suggests that both inter-domain interactions and conformational changes within NTD may be important for the proper functioning of RfaH.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, NL, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, NL, Canada
| |
Collapse
|
3
|
Chatzimiltis S, Agathocleous M, Promponas VJ, Christodoulou C. Post-processing enhances protein secondary structure prediction with second order deep learning and embeddings. Comput Struct Biotechnol J 2025; 27:243-251. [PMID: 39866664 PMCID: PMC11764030 DOI: 10.1016/j.csbj.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
Protein Secondary Structure Prediction (PSSP) is regarded as a challenging task in bioinformatics, and numerous approaches to achieve a more accurate prediction have been proposed. Accurate PSSP can be instrumental in inferring protein tertiary structure and their functions. Machine Learning and in particular Deep Learning approaches show promising results for the PSSP problem. In this paper, we deploy a Convolutional Neural Network (CNN) trained with the Subsampled Hessian Newton (SHN) method (a Hessian Free Optimisation variant), with a two- dimensional input representation of embeddings extracted from a language model pretrained with protein sequences. Utilising a CNN trained with the SHN method and the input embeddings, we achieved on average a 79.96% per residue (Q3) accuracy on the CB513 dataset and 81.45% Q3 accuracy on the PISCES dataset (without any post-processing techniques applied). The application of ensembles and filtering techniques to the results of the CNN improved the overall prediction performance. The Q3 accuracy on the CB513 increased to 93.65% and for the PISCES dataset to 87.13%. Moreover, our method was evaluated using the CASP13 dataset where we showed that as the post-processing window size increased, the prediction performance increased as well. In fact, with the biggest post-processing window size (limited by the smallest CASP13 protein), we achieved a Q3 accuracy of 98.12% and a Segment Overlap (SOV) score of 96.98 on the CASP13 dataset when the CNNs were trained with the PISCES dataset. Finally, we showed that input representations from embeddings can perform equally well as representations extracted from multiple sequence alignments.
Collapse
Affiliation(s)
- Sotiris Chatzimiltis
- University of Cyprus, Department of Computer Science, Nicosia, Cyprus
- 5G/6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, United Kingdom
| | - Michalis Agathocleous
- University of Cyprus, Department of Computer Science, Nicosia, Cyprus
- University of Nicosia, Department of Computer Science, Nicosia, Cyprus
| | | | | |
Collapse
|
4
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2025; 437:168814. [PMID: 39374889 PMCID: PMC12045467 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
5
|
González‐Higueras J, Freiberger MI, Galaz‐Davison P, Parra RG, Ramírez‐Sarmiento CA. A contact-based analysis of local energetic frustration dynamics identifies key residues enabling RfaH fold-switch. Protein Sci 2024; 33:e5182. [PMID: 39324667 PMCID: PMC11425668 DOI: 10.1002/pro.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Fold-switching enables metamorphic proteins to reversibly interconvert between two highly dissimilar native states to regulate their protein functions. While about 100 proteins have been identified to undergo fold-switching, unveiling the key residues behind this mechanism for each protein remains challenging. Reasoning that fold-switching in proteins is driven by dynamic changes in local energetic frustration, we combined fold-switching simulations generated using simplified structure-based models with frustration analysis to identify key residues involved in this process based on the change in the density of minimally frustrated contacts during refolding. Using this approach to analyze the fold-switch of the bacterial transcription factor RfaH, we identified 20 residues that significantly change their frustration during its fold-switch, some of which have been experimentally and computationally reported in previous works. Our approach, which we developed as an additional module for the FrustratometeR package, highlights the role of local frustration dynamics in protein fold-switching and offers a robust tool to enhance our understanding of other proteins with significant conformational shifts.
Collapse
Affiliation(s)
- Jorge González‐Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)SantiagoChile
| | - María Inés Freiberger
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Laboratoire de Biologie Computationnelle et Quantitative (LCQB)Sorbonne Université, CNRS, IBPSParisFrance
| | - Pablo Galaz‐Davison
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of EngineeringUniversidad de TalcaTalcaChile
| | | | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
6
|
Chakravarty D, Schafer JW, Chen EA, Thole JF, Ronish LA, Lee M, Porter LL. AlphaFold predictions of fold-switched conformations are driven by structure memorization. Nat Commun 2024; 15:7296. [PMID: 39181864 PMCID: PMC11344769 DOI: 10.1038/s41467-024-51801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Recent work suggests that AlphaFold (AF)-a deep learning-based model that can accurately infer protein structure from sequence-may discern important features of folded protein energy landscapes, defined by the diversity and frequency of different conformations in the folded state. Here, we test the limits of its predictive power on fold-switching proteins, which assume two structures with regions of distinct secondary and/or tertiary structure. We find that (1) AF is a weak predictor of fold switching and (2) some of its successes result from memorization of training-set structures rather than learned protein energetics. Combining >280,000 models from several implementations of AF2 and AF3, a 35% success rate was achieved for fold switchers likely in AF's training sets. AF2's confidence metrics selected against models consistent with experimentally determined fold-switching structures and failed to discriminate between low and high energy conformations. Further, AF captured only one out of seven experimentally confirmed fold switchers outside of its training sets despite extensive sampling of an additional ~280,000 models. Several observations indicate that AF2 has memorized structural information during training, and AF3 misassigns coevolutionary restraints. These limitations constrain the scope of successful predictions, highlighting the need for physically based methods that readily predict multiple protein conformations.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Joseph W Schafer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Ethan A Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Joseph F Thole
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leslie A Ronish
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Myeongsang Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Cai M, Agarwal N, Garrett DS, Baber J, Clore GM. A Transient, Excited Species of the Autoinhibited α-State of the Bacterial Transcription Factor RfaH May Represent an Early Intermediate on the Fold-Switching Pathway. Biochemistry 2024; 63:2030-2039. [PMID: 39088556 PMCID: PMC11345854 DOI: 10.1021/acs.biochem.4c00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
RfaH is a two-domain transcription factor in which the C-terminal domain switches fold from an α-helical hairpin to a β-roll upon binding the ops-paused RNA polymerase. To ascertain the presence of a sparsely populated excited state that may prime the autoinhibited resting state of RfaH for binding ops-paused RNA polymerase, we carried out a series of NMR-based exchange experiments to probe for conformational exchange on the millisecond time scale. Quantitative analysis of these data reveals exchange between major ground (∼95%) and sparsely populated excited (∼5%) states with an exchange lifetime of ∼3 ms involving residues at the interface between the N-terminal and C-terminal domains formed by the β3/β4 hairpin and helix α3 of the N-terminal domain and helices α4 and α5 of the C-terminal domain. The largest 15N backbone chemical shift differences are associated with the β3/β4 hairpin, leading us to suggest that the excited state may involve a rigid body lateral displacement/rotation away from the C-terminal domain to adopt a position similar to that seen in the active RNA polymerase-bound state. Such a rigid body reorientation would result in a reduction in the interface between the N- and C-terminal domains with the possible introduction of a cavity or cavities. This hypothesis is supported by the observation that the population of the excited species and the exchange rate of interconversion between ground and excited states are reduced at a high (2.5 kbar) pressure. Mechanistic implications for fold switching of the C-terminal domain in the context of RNA polymerase binding are discussed.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Nipanshu Agarwal
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Daniel S. Garrett
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - James Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
8
|
Porter LL, Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins and how to find them. Curr Opin Struct Biol 2024; 86:102807. [PMID: 38537533 PMCID: PMC11102287 DOI: 10.1016/j.sbi.2024.102807] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In the last two decades, our existing notion that most foldable proteins have a unique native state has been challenged by the discovery of metamorphic proteins, which reversibly interconvert between multiple, sometimes highly dissimilar, native states. As the number of known metamorphic proteins increases, several computational and experimental strategies have emerged for gaining insights about their refolding processes and identifying unknown metamorphic proteins amongst the known proteome. In this review, we describe the current advances in biophysically and functionally ascertaining the structural interconversions of metamorphic proteins and how coevolution can be harnessed to identify novel metamorphic proteins from sequence information. We also discuss the challenges and ongoing efforts in using artificial intelligence-based protein structure prediction methods to discover metamorphic proteins and predict their corresponding three-dimensional structures.
Collapse
Affiliation(s)
- Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 833150, Chile.
| |
Collapse
|
9
|
Zuber PK, Said N, Hilal T, Wang B, Loll B, González-Higueras J, Ramírez-Sarmiento CA, Belogurov GA, Artsimovitch I, Wahl MC, Knauer SH. Concerted transformation of a hyper-paused transcription complex and its reinforcing protein. Nat Commun 2024; 15:3040. [PMID: 38589445 PMCID: PMC11001881 DOI: 10.1038/s41467-024-47368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a β-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.
Collapse
Affiliation(s)
- Philipp K Zuber
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nelly Said
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tarek Hilal
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | | | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
| | - Stefan H Knauer
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany.
- Bristol-Myers Squibb GmbH & Co. KGaA, Munich, Germany.
| |
Collapse
|
10
|
Bhuvaneshwari RA, Shivamani A, Sengupta I. Line Shape Analysis of 19F NMR-Monitored Chemical Denaturation of a Fold-Switching Protein RfaH Reveals Its Slow Folding Dynamics. J Phys Chem B 2024; 128:465-471. [PMID: 37991741 DOI: 10.1021/acs.jpcb.3c06550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The recent discovery of metamorphic proteins, which can switch between multiple conformations under native conditions, has challenged the well-established one sequence-one structure paradigm of protein folding. This is exemplified in the C-terminal domain of the multidomain transcription factor RfaH, which converts from an α-helical coiled-coil conformation in its autoinhibited state to a β-barrel conformation upon activation. Here, we use multisite line shape analysis of 19F NMR-monitored equilibrium chemical denaturation measurements of two 19F-labeled variants of full-length RfaH, to show that it folds/unfolds slowly on the NMR time scale, in an apparent all-or-none fashion at physiological pH and room temperature in the 3.3-4.8 M urea concentration range. The significant thermodynamic stability and slow unfolding rate (kinetic stability) are likely responsible for maintaining the closed autoinhibited state of RfaH, preventing spurious interactions with RNA polymerase (RNAP) when not functional. Our results provide a quantitative understanding of the folding-function relationship in the model fold-switching protein RfaH.
Collapse
Affiliation(s)
| | - Anish Shivamani
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Ishita Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Chakravarty D, Schafer JW, Chen EA, Thole JR, Porter LL. AlphaFold2 has more to learn about protein energy landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571380. [PMID: 38168383 PMCID: PMC10760193 DOI: 10.1101/2023.12.12.571380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Recent work suggests that AlphaFold2 (AF2)-a deep learning-based model that can accurately infer protein structure from sequence-may discern important features of folded protein energy landscapes, defined by the diversity and frequency of different conformations in the folded state. Here, we test the limits of its predictive power on fold-switching proteins, which assume two structures with regions of distinct secondary and/or tertiary structure. Using several implementations of AF2, including two published enhanced sampling approaches, we generated >280,000 models of 93 fold-switching proteins whose experimentally determined conformations were likely in AF2's training set. Combining all models, AF2 predicted fold switching with a modest success rate of ~25%, indicating that it does not readily sample both experimentally characterized conformations of most fold switchers. Further, AF2's confidence metrics selected against models consistent with experimentally determined fold-switching conformations in favor of inconsistent models. Accordingly, these confidence metrics-though suggested to evaluate protein energetics reliably-did not discriminate between low and high energy states of fold-switching proteins. We then evaluated AF2's performance on seven fold-switching proteins outside of its training set, generating >159,000 models in total. Fold switching was accurately predicted in one of seven targets with moderate confidence. Further, AF2 demonstrated no ability to predict alternative conformations of two newly discovered targets without homologs in the set of 93 fold switchers. These results indicate that AF2 has more to learn about the underlying energetics of protein ensembles and highlight the need for further developments of methods that readily predict multiple protein conformations.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Joseph W. Schafer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Ethan A. Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Joseph R. Thole
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
12
|
Chen EA, Porter LL. SSDraw: Software for generating comparative protein secondary structure diagrams. Protein Sci 2023; 32:e4836. [PMID: 37953705 PMCID: PMC10680343 DOI: 10.1002/pro.4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
The program SSDraw generates publication-quality protein secondary structure diagrams from three-dimensional protein structures. To depict relationships between secondary structure and other protein features, diagrams can be colored by conservation score, B-factor, or custom scoring. Diagrams of homologous proteins can be registered according to an input multiple sequence alignment. Linear visualization allows the user to stack registered diagrams, facilitating comparison of secondary structure and other properties among homologous proteins. SSDraw can be used to compare secondary structures of homologous proteins with both conserved and divergent folds. It can also generate one secondary structure diagram from an input protein structure of interest. The source code can be downloaded (https://github.com/ncbi/SSDraw) and run locally for rapid structure generation, while a Google Colab notebook allows easy use.
Collapse
Affiliation(s)
- Ethan A. Chen
- National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaMarylandUSA
| | - Lauren L. Porter
- National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaMarylandUSA
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
13
|
Parui S, Brini E, Dill KA. Computing Free Energies of Fold-Switching Proteins Using MELD x MD. J Chem Theory Comput 2023; 19:6839-6847. [PMID: 37725050 DOI: 10.1021/acs.jctc.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Some proteins are conformational switches, able to transition between relatively different conformations. To understand what drives them requires computing the free-energy difference ΔGAB between their stable states, A and B. Molecular dynamics (MD) simulations alone are often slow because they require a reaction coordinate and must sample many transitions in between. Here, we show that modeling employing limited data (MELD) x MD on known endstates A and B is accurate and efficient because it does not require passing over barriers or knowing reaction coordinates. We validate this method on two problems: (1) it gives correct relative populations of α and β conformers for small designed chameleon sequences of protein G; and (2) it correctly predicts the conformations of the C-terminal domain (CTD) of RfaH. Free-energy methods like MELD x MD can often resolve structures that confuse machine-learning (ML) methods.
Collapse
Affiliation(s)
- Sridip Parui
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Emiliano Brini
- School of Chemistry and Materials Science, 85 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
14
|
Woodgate J, Zenkin N. Transcription-translation coupling: Recent advances and future perspectives. Mol Microbiol 2023; 120:539-546. [PMID: 37856403 PMCID: PMC10953045 DOI: 10.1111/mmi.15076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 10/21/2023]
Abstract
The flow of genetic information from the chromosome to protein in all living organisms consists of two steps: (1) copying information coded in DNA into an mRNA intermediate via transcription by RNA polymerase, followed by (2) translation of this mRNA into a polypeptide by the ribosome. Unlike eukaryotes, where transcription and translation are separated by a nuclear envelope, in bacterial cells, these two processes occur within the same compartment. This means that a pioneering ribosome starts translation on nascent mRNA that is still being actively transcribed by RNA polymerase. This tethering via mRNA is referred to as 'coupling' of transcription and translation (CTT). CTT raises many questions regarding physical interactions and potential mutual regulation between these large (ribosome is ~2.5 MDa and RNA polymerase is 0.5 MDa) and powerful molecular machines. Accordingly, we will discuss some recently discovered structural and functional aspects of CTT.
Collapse
Affiliation(s)
- Jason Woodgate
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
15
|
Schafer JW, Porter LL. Evolutionary selection of proteins with two folds. Nat Commun 2023; 14:5478. [PMID: 37673981 PMCID: PMC10482954 DOI: 10.1038/s41467-023-41237-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Although most globular proteins fold into a single stable structure, an increasing number have been shown to remodel their secondary and tertiary structures in response to cellular stimuli. State-of-the-art algorithms predict that these fold-switching proteins adopt only one stable structure, missing their functionally critical alternative folds. Why these algorithms predict a single fold is unclear, but all of them infer protein structure from coevolved amino acid pairs. Here, we hypothesize that coevolutionary signatures are being missed. Suspecting that single-fold variants could be masking these signatures, we developed an approach, called Alternative Contact Enhancement (ACE), to search both highly diverse protein superfamilies-composed of single-fold and fold-switching variants-and protein subfamilies with more fold-switching variants. ACE successfully revealed coevolution of amino acid pairs uniquely corresponding to both conformations of 56/56 fold-switching proteins from distinct families. Then, we used ACE-derived contacts to (1) predict two experimentally consistent conformations of a candidate protein with unsolved structure and (2) develop a blind prediction pipeline for fold-switching proteins. The discovery of widespread dual-fold coevolution indicates that fold-switching sequences have been preserved by natural selection, implying that their functionalities provide evolutionary advantage and paving the way for predictions of diverse protein structures from single sequences.
Collapse
Affiliation(s)
- Joseph W Schafer
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Lauren L Porter
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA.
- National Heart, Lung, and Blood Institute, Biochemistry and Biophysics Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Porter LL. Fluid protein fold space and its implications. Bioessays 2023; 45:e2300057. [PMID: 37431685 PMCID: PMC10529699 DOI: 10.1002/bies.202300057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold-switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert between folds with distinct secondary structures, (2) some naturally occurring sequences have switched folds by stepwise mutation, and (3) fold switching is evolutionarily selected and likely confers advantage. These observations indicate that minor amino acid sequence modifications can transform protein structure and function. Consequently, proteomic structural and functional diversity may be expanded by alternative splicing, small nucleotide polymorphisms, post-translational modifications, and modified translation rates.
Collapse
Affiliation(s)
- Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Retamal-Farfán I, González-Higueras J, Galaz-Davison P, Rivera M, Ramírez-Sarmiento CA. Exploring the structural acrobatics of fold-switching proteins using simplified structure-based models. Biophys Rev 2023; 15:787-799. [PMID: 37681096 PMCID: PMC10480104 DOI: 10.1007/s12551-023-01087-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 09/09/2023] Open
Abstract
Metamorphic proteins are a paradigm of the protein folding process, by encoding two or more native states, highly dissimilar in terms of their secondary, tertiary, and even quaternary structure, on a single amino acid sequence. Moreover, these proteins structurally interconvert between these native states in a reversible manner at biologically relevant timescales as a result of different environmental cues. The large-scale rearrangements experienced by these proteins, and their sometimes high mass interacting partners that trigger their metamorphosis, makes the computational and experimental study of their structural interconversion challenging. Here, we present our efforts in studying the refolding landscapes of two quintessential metamorphic proteins, RfaH and KaiB, using simplified dual-basin structure-based models (SBMs), rigorously footed on the energy landscape theory of protein folding and the principle of minimal frustration. By using coarse-grained models in which the native contacts and bonded interactions extracted from the available experimental structures of the two native states of RfaH and KaiB are merged into a single Hamiltonian, dual-basin SBM models can be generated and savvily calibrated to explore their fold-switch in a reversible manner in molecular dynamics simulations. We also describe how some of the insights offered by these simulations have driven the design of experiments and the validation of the conformational ensembles and refolding routes observed using this simple and computationally efficient models.
Collapse
Affiliation(s)
- Ignacio Retamal-Farfán
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8 Canada
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
18
|
Serafin P, Kowalczyk P, Mollica A, Stefanucci A, Laskowska AK, Zawadzka M, Kramkowski K, Kleczkowska P. Evaluation of Antimicrobial Activities against Various E. coli Strains of a Novel Hybrid Peptide-LENART01. Molecules 2023; 28:4955. [PMID: 37446618 DOI: 10.3390/molecules28134955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Finding the ideal antimicrobial drug with improved efficacy and a safety profile that eliminates antibiotic resistance caused by pathogens remains a difficult task. Indeed, there is an urgent need for innovation in the design and development of a microbial inhibitor. Given that many promising antimicrobial peptides with excellent broad-spectrum antibacterial properties are secreted by some frog species (e.g., bombesins, opioids, temporins, etc.), our goal was to identify the antimicrobial properties of amphibian-derived dermorphin and ranatensin peptides, which were combined to produce a hybrid compound. This new chimera (named LENART01) was tested for its antimicrobial activity against E. coli strains K12 and R1-R4, which are characterized by differences in lipopolysaccharide (LPS) core oligosaccharide structure. The results showed that LENART01 had superior activity against the R2 and R4 strains compared with the effects of the clinically available antibiotics ciprofloxacin or bleomycin (MIC values). Importantly, the inhibitory effect was not concentration dependent; however, LENART01 showed a time- and dose-dependent hemolytic effect in hemolytic assays.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Anna K Laskowska
- Centre for Preclinical Research and Technology (CePT), Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Zawadzka
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Epidemiology and Public Health Lodz, Medical University of Lodz, 90-419 Lodz, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| |
Collapse
|
19
|
Chakravarty D, Sreenivasan S, Swint-Kruse L, Porter LL. Identification of a covert evolutionary pathway between two protein folds. Nat Commun 2023; 14:3177. [PMID: 37264049 PMCID: PMC10235069 DOI: 10.1038/s41467-023-38519-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Although homologous protein sequences are expected to adopt similar structures, some amino acid substitutions can interconvert α-helices and β-sheets. Such fold switching may have occurred over evolutionary history, but supporting evidence has been limited by the: (1) abundance and diversity of sequenced genes, (2) quantity of experimentally determined protein structures, and (3) assumptions underlying the statistical methods used to infer homology. Here, we overcome these barriers by applying multiple statistical methods to a family of ~600,000 bacterial response regulator proteins. We find that their homologous DNA-binding subunits assume divergent structures: helix-turn-helix versus α-helix + β-sheet (winged helix). Phylogenetic analyses, ancestral sequence reconstruction, and AlphaFold2 models indicate that amino acid substitutions facilitated a switch from helix-turn-helix into winged helix. This structural transformation likely expanded DNA-binding specificity. Our approach uncovers an evolutionary pathway between two protein folds and provides a methodology to identify secondary structure switching in other protein families.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins under a computational microscope: Lessons from a fold-switching RfaH protein. Comput Struct Biotechnol J 2022; 20:5824-5837. [PMID: 36382197 PMCID: PMC9630627 DOI: 10.1016/j.csbj.2022.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Metamorphic proteins constitute unexpected paradigms of the protein folding problem, as their sequences encode two alternative folds, which reversibly interconvert within biologically relevant timescales to trigger different cellular responses. Once considered a rare aberration, metamorphism may be common among proteins that must respond to rapidly changing environments, exemplified by NusG-like proteins, the only transcription factors present in every domain of life. RfaH, a specialized paralog of bacterial NusG, undergoes an all-α to all-β domain switch to activate expression of virulence and conjugation genes in many animal and plant pathogens and is the quintessential example of a metamorphic protein. The dramatic nature of RfaH structural transformation and the richness of its evolutionary history makes for an excellent model for studying how metamorphic proteins switch folds. Here, we summarize the structural and functional evidence that sparked the discovery of RfaH as a metamorphic protein, the experimental and computational approaches that enabled the description of the molecular mechanism and refolding pathways of its structural interconversion, and the ongoing efforts to find signatures and general properties to ultimately describe the protein metamorphome.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
21
|
Porter LL, Kim AK, Rimal S, Looger LL, Majumdar A, Mensh BD, Starich MR, Strub MP. Many dissimilar NusG protein domains switch between α-helix and β-sheet folds. Nat Commun 2022; 13:3802. [PMID: 35778397 PMCID: PMC9247905 DOI: 10.1038/s41467-022-31532-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Folded proteins are assumed to be built upon fixed scaffolds of secondary structure, α-helices and β-sheets. Experimentally determined structures of >58,000 non-redundant proteins support this assumption, though it has recently been challenged by ~100 fold-switching proteins. Though ostensibly rare, these proteins raise the question of how many uncharacterized proteins have shapeshifting-rather than fixed-secondary structures. Here, we use a comparative sequence-based approach to predict fold switching in the universally conserved NusG transcription factor family, one member of which has a 50-residue regulatory subunit experimentally shown to switch between α-helical and β-sheet folds. Our approach predicts that 24% of sequences in this family undergo similar α-helix ⇌ β-sheet transitions. While these predictions cannot be reproduced by other state-of-the-art computational methods, they are confirmed by circular dichroism and nuclear magnetic resonance spectroscopy for 10 out of 10 sequence-diverse variants. This work suggests that fold switching may be a pervasive mechanism of transcriptional regulation in all kingdoms of life.
Collapse
Affiliation(s)
- Lauren L Porter
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA.
- National Heart, Lung, and Blood Institute, Biochemistry and Biophysics Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Allen K Kim
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Swechha Rimal
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20894, USA
- National Heart, Lung, and Blood Institute, Biochemistry and Biophysics Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Ananya Majumdar
- The Johns Hopkins University Biomolecular NMR Center, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Brett D Mensh
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Mary R Starich
- National Heart, Lung, and Blood Institute, Biochemistry and Biophysics Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, Biochemistry and Biophysics Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Molina JA, Galaz-Davison P, Komives EA, Artsimovitch I, Ramírez-Sarmiento CA. Allosteric couplings upon binding of RfaH to transcription elongation complexes. Nucleic Acids Res 2022; 50:6384-6397. [PMID: 35670666 PMCID: PMC9226497 DOI: 10.1093/nar/gkac453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
In every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis. Some of these differences could be due to conformational changes in RNAP and NusG-like proteins, which cannot be captured in static structures. Here, we employed hydrogen-deuterium exchange mass spectrometry to investigate changes in local and non-local structural dynamics of Escherichia coli NusG and its paralog RfaH, which have opposite effects on expression of xenogenes, upon binding to TEC. We found that NusG and RfaH regions that bind RNAP became solvent-protected in factor-bound TECs, whereas RNAP regions that interact with both factors showed opposite deuterium uptake changes when bound to NusG or RfaH. Additional changes far from the factor-binding site were observed only with RfaH. Our results provide insights into differences in structural dynamics exerted by NusG and RfaH during binding to TEC, which may explain their different functional outcomes and allosteric regulation of transcriptional pausing by RfaH.
Collapse
Affiliation(s)
- José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
23
|
Galaz‐Davison P, Ferreiro DU, Ramírez‐Sarmiento CA. Coevolution-derived native and non-native contacts determine the emergence of a novel fold in a universally conserved family of transcription factors. Protein Sci 2022; 31:e4337. [PMID: 35634768 PMCID: PMC9123645 DOI: 10.1002/pro.4337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/07/2022]
Abstract
The NusG protein family is structurally and functionally conserved in all domains of life. Its members directly bind RNA polymerases and regulate transcription processivity and termination. RfaH, a divergent sub-family in its evolutionary history, is known for displaying distinct features than those in NusG proteins, which allows them to regulate the expression of virulence factors in enterobacteria in a DNA sequence-dependent manner. A striking feature is its structural interconversion between an active fold, which is the canonical NusG three-dimensional structure, and an autoinhibited fold, which is distinctively novel. How this novel fold is encoded within RfaH sequence to encode a metamorphic protein remains elusive. In this work, we used publicly available genomic RfaH protein sequences to construct a complete multiple sequence alignment, which was further augmented with metagenomic sequences and curated by predicting their secondary structure propensities using JPred. Coevolving pairs of residues were calculated from these sequences using plmDCA and GREMLIN, which allowed us to detect the enrichment of key metamorphic contacts after sequence filtering. Finally, we combined our coevolutionary predictions with molecular dynamics to demonstrate that these interactions are sufficient to predict the structures of both native folds, where coevolutionary-derived non-native contacts may play a key role in achieving the compact RfaH novel fold. All in all, emergent coevolutionary signals found within RfaH sequences encode the autoinhibited and active folds of this protein, shedding light on the key interactions responsible for the action of this metamorphic protein.
Collapse
Affiliation(s)
- Pablo Galaz‐Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET)Universidad de Buenos AiresBuenos AiresArgentina
| | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
24
|
Tawde M, Bior A, Feiss M, Teng F, Freimuth P. A polypeptide model for toxic aberrant proteins induced by aminoglycoside antibiotics. PLoS One 2022; 17:e0258794. [PMID: 35486612 PMCID: PMC9053816 DOI: 10.1371/journal.pone.0258794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Aminoglycoside antibiotics interfere with the selection of cognate tRNAs during translation, resulting in the synthesis of aberrant proteins that are the ultimate cause of cell death. However, the toxic potential of aberrant proteins and how they avoid degradation by the cell’s protein quality control (QC) machinery are not understood. Here we report that levels of the heat shock (HS) transcription factor σ32 increased sharply following exposure of Escherichia coli to the aminoglycoside kanamycin (Kan), suggesting that at least some of the aberrant proteins synthesized in these cells were recognized as substrates by DnaK, a molecular chaperone that regulates the HS response, the major protein QC pathway in bacteria. To further investigate aberrant protein toxic potential and interaction with cell QC factors, we studied an acutely toxic 48-residue polypeptide (ARF48) that is encoded by an alternate reading frame in a plant cDNA. As occurred in cells exposed to Kan, σ32 levels were strongly elevated following ARF48 expression, suggesting that ARF48 was recognized as a substrate by DnaK. Paradoxically, an internal 10-residue region that was tightly bound by DnaK in vitro also was required for the ARF48 toxic effect. Despite the increased levels of σ32, levels of several HS proteins were unchanged following ARF48 expression, suggesting that the HS response had been aborted. Nucleoids were condensed and cell permeability increased rapidly following ARF48 expression, together suggesting that ARF48 disrupts DNA-membrane interactions that could be required for efficient gene expression. Our results are consistent with earlier studies showing that aberrant proteins induced by aminoglycoside antibiotics disrupt cell membrane integrity. Insights into the mechanism for this effect could be gained by further study of the ARF48 model system.
Collapse
Affiliation(s)
- Mangala Tawde
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, Bayside, New York, United States of America
| | - Abdelaziz Bior
- Department of Natural and Applied Sciences, Cheyney University of Pennsylvania, Cheyney, Pennsylvania, United States of America
| | - Michael Feiss
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Feiyue Teng
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Paul Freimuth
- Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wang Y, Zhao L, Zhou X, Zhang J, Jiang J, Dong H. Global Fold Switching of the RafH Protein: Diverse Structures with a Conserved Pathway. J Phys Chem B 2022; 126:2979-2989. [PMID: 35438983 DOI: 10.1021/acs.jpcb.1c10965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is generally believed that a protein's sequence uniquely determines its structure, the basis for a protein to perform biological functions. However, as a representative metamorphic protein, RfaH can be encoded by a single amino acid sequence into two distinct native state structures. Its C-terminal domain (CTD) either takes an all-α-helical configuration to pack tightly with its N-terminal domain (NTD), or the CTD disassociates from the NTD, transforms into an all-β-barrel fold, and further attaches to the ribosome, leaving the NTD exposed to bind RNA polymerases. Therefore, the RfaH protein couples transcription and translation processes. Although previous studies have provided a preliminary understanding of its function, the full course of the conformational change of RfaH-CTD at the atomic level is elusive. We used teDA2, a feature space-based enhanced sampling protocol, to explore the transformation of RfaH-CTD. We found that it undergoes a large-scale structural rearrangement, with characteristic spectra as the fingerprint, and a global unfolding transition with a tighter and energetically moderate molten globule-like nucleus formed in between. The formation of this nucleus limits the possible intermediate conformations, facilitates the formation of secondary and tertiary structures, and thus ensures the efficiency of transformation. The key features along the transition path disclosed from this work are likely associated with the evolution of RfaH, such that encoding a single sequence into multiple folds with distinct biological functions is energetically unhindered.
Collapse
Affiliation(s)
- Yiqiao Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Luyuan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xuejie Zhou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.,Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Malinen AM, Bakermans J, Aalto-Setälä E, Blessing M, Bauer DLV, Parilova O, Belogurov GA, Dulin D, Kapanidis AN. Real-Time Single-Molecule Studies of RNA Polymerase-Promoter Open Complex Formation Reveal Substantial Heterogeneity Along the Promoter-Opening Pathway. J Mol Biol 2022; 434:167383. [PMID: 34863780 PMCID: PMC8783055 DOI: 10.1016/j.jmb.2021.167383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/25/2023]
Abstract
The expression of most bacterial genes commences with the binding of RNA polymerase (RNAP)-σ70 holoenzyme to the promoter DNA. This initial RNAP-promoter closed complex undergoes a series of conformational changes, including the formation of a transcription bubble on the promoter and the loading of template DNA strand into the RNAP active site; these changes lead to the catalytically active open complex (RPO) state. Recent cryo-electron microscopy studies have provided detailed structural insight on the RPO and putative intermediates on its formation pathway. Here, we employ single-molecule fluorescence microscopy to interrogate the conformational dynamics and reaction kinetics during real-time RPO formation on a consensus lac promoter. We find that the promoter opening may proceed rapidly from the closed to open conformation in a single apparent step, or may instead involve a significant intermediate between these states. The formed RPO complexes are also different with respect to their transcription bubble stability. The RNAP cleft loops, and especially the β' rudder, stabilise the transcription bubble. The RNAP interactions with the promoter upstream sequence (beyond -35) stimulate transcription bubble nucleation and tune the reaction path towards stable forms of the RPO.
Collapse
Affiliation(s)
- Anssi M Malinen
- Department of Life Technologies, University of Turku, 20014 Turku, Finland; Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Jacob Bakermans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Emil Aalto-Setälä
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Martin Blessing
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| | - David L V Bauer
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Olena Parilova
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | | | - David Dulin
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany; Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford.
| |
Collapse
|
27
|
Shi W, Zhou W, Chen M, Yang Y, Hu Y, Liu B. Structural basis for activation of Swi2/Snf2 ATPase RapA by RNA polymerase. Nucleic Acids Res 2021; 49:10707-10716. [PMID: 34428297 PMCID: PMC8501970 DOI: 10.1093/nar/gkab744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/14/2022] Open
Abstract
RapA is a bacterial RNA polymerase (RNAP)-associated Swi2/Snf2 ATPase that stimulates RNAP recycling. The ATPase activity of RapA is autoinhibited by its N-terminal domain (NTD) but activated with RNAP bound. Here, we report a 3.4-Å cryo-EM structure of Escherichia coli RapA-RNAP elongation complex, in which the ATPase active site of RapA is structurally remodeled. In this process, the NTD of RapA is wedged open by RNAP β' zinc-binding domain (ZBD). In addition, RNAP β flap tip helix (FTH) forms extensive hydrophobic interactions with RapA ATPase core domains. Functional assay demonstrates that removing the ZBD or FTH of RNAP significantly impairs its ability to activate the ATPase activity of RapA. Our results provide the structural basis of RapA ATPase activation by RNAP, through the active site remodeling driven by the ZBD-buttressed large-scale opening of NTD and the direct interactions between FTH and ATPase core domains.
Collapse
Affiliation(s)
- Wei Shi
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
28
|
Mazumder A, Ebright RH, Kapanidis AN. Transcription initiation at a consensus bacterial promoter proceeds via a 'bind-unwind-load-and-lock' mechanism. eLife 2021; 10:70090. [PMID: 34633286 PMCID: PMC8536254 DOI: 10.7554/elife.70090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/06/2021] [Indexed: 01/24/2023] Open
Abstract
Transcription initiation starts with unwinding of promoter DNA by RNA polymerase (RNAP) to form a catalytically competent RNAP-promoter complex (RPo). Despite extensive study, the mechanism of promoter unwinding has remained unclear, in part due to the transient nature of intermediates on path to RPo. Here, using single-molecule unwinding-induced fluorescence enhancement to monitor promoter unwinding, and single-molecule fluorescence resonance energy transfer to monitor RNAP clamp conformation, we analyse RPo formation at a consensus bacterial core promoter. We find that the RNAP clamp is closed during promoter binding, remains closed during promoter unwinding, and then closes further, locking the unwound DNA in the RNAP active-centre cleft. Our work defines a new, ‘bind-unwind-load-and-lock’, model for the series of conformational changes occurring during promoter unwinding at a consensus bacterial promoter and provides the tools needed to examine the process in other organisms and at other promoters.
Collapse
Affiliation(s)
- Abhishek Mazumder
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, United States
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Sanchez-Pulido L, Ponting CP. Extending the Horizon of Homology Detection with Coevolution-based Structure Prediction. J Mol Biol 2021; 433:167106. [PMID: 34139218 PMCID: PMC8527833 DOI: 10.1016/j.jmb.2021.167106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Traditional sequence analysis algorithms fail to identify distant homologies when they lie beyond a detection horizon. In this review, we discuss how co-evolution-based contact and distance prediction methods are pushing back this homology detection horizon, thereby yielding new functional insights and experimentally testable hypotheses. Based on correlated substitutions, these methods divine three-dimensional constraints among amino acids in protein sequences that were previously devoid of all annotated domains and repeats. The new algorithms discern hidden structure in an otherwise featureless sequence landscape. Their revelatory impact promises to be as profound as the use, by archaeologists, of ground-penetrating radar to discern long-hidden, subterranean structures. As examples of this, we describe how triplicated structures reflecting longin domains in MON1A-like proteins, or UVR-like repeats in DISC1, emerge from their predicted contact and distance maps. These methods also help to resolve structures that do not conform to a "beads-on-a-string" model of protein domains. In one such example, we describe CFAP298 whose ubiquitin-like domain was previously challenging to perceive owing to a large sequence insertion within it. More generally, the new algorithms permit an easier appreciation of domain families and folds whose evolution involved structural insertion or rearrangement. As we exemplify with α1-antitrypsin, coevolution-based predicted contacts may also yield insights into protein dynamics and conformational change. This new combination of structure prediction (using innovative co-evolution based methods) and homology inference (using more traditional sequence analysis approaches) shows great promise for bringing into view a sea of evolutionary relationships that had hitherto lain far beyond the horizon of homology detection.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
30
|
Das M, Chen N, LiWang A, Wang LP. Identification and characterization of metamorphic proteins: Current and future perspectives. Biopolymers 2021; 112:e23473. [PMID: 34528703 DOI: 10.1002/bip.23473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
Proteins that can reversibly alternate between distinctly different folds under native conditions are described as being metamorphic. The "metamorphome" is the collection of all metamorphic proteins in the proteome, but it remains unknown the extent to which the proteome is populated by this class of proteins. We propose that uncovering the metamorphome will require a synergy of computational screening of protein sequences to identify potential metamorphic behavior and validation through experimental techniques. This perspective discusses computational and experimental approaches that are currently used to predict and characterize metamorphic proteins as well as the need for developing improved methodologies. Since metamorphic proteins act as molecular switches, understanding their properties and behavior could lead to novel applications of these proteins as sensors in biological or environmental contexts.
Collapse
Affiliation(s)
- Madhurima Das
- School of Natural Sciences, University of California, Merced, California, USA
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, California, USA
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, California, USA.,Department of Chemistry and Biochemistry, University of California, Merced, California, USA.,Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA.,Center for Circadian Biology, University of California, San Diego, California, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
31
|
Galaz-Davison P, Román EA, Ramírez-Sarmiento CA. The N-terminal domain of RfaH plays an active role in protein fold-switching. PLoS Comput Biol 2021; 17:e1008882. [PMID: 34478435 PMCID: PMC8454952 DOI: 10.1371/journal.pcbi.1008882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/21/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
The bacterial elongation factor RfaH promotes the expression of virulence factors by specifically binding to RNA polymerases (RNAP) paused at a DNA signal. This behavior is unlike that of its paralog NusG, the major representative of the protein family to which RfaH belongs. Both proteins have an N-terminal domain (NTD) bearing an RNAP binding site, yet NusG C-terminal domain (CTD) is folded as a β-barrel while RfaH CTD is forming an α-hairpin blocking such site. Upon recognition of the specific DNA exposed by RNAP, RfaH is activated via interdomain dissociation and complete CTD structural rearrangement into a β-barrel structurally identical to NusG CTD. Although RfaH transformation has been extensively characterized computationally, little attention has been given to the role of the NTD in the fold-switching process, as its structure remains unchanged. Here, we used Associative Water-mediated Structure and Energy Model (AWSEM) molecular dynamics to characterize the transformation of RfaH, spotlighting the sequence-dependent effects of NTD on CTD fold stabilization. Umbrella sampling simulations guided by native contacts recapitulate the thermodynamic equilibrium experimentally observed for RfaH and its isolated CTD. Temperature refolding simulations of full-length RfaH show a high success towards α-folded CTD, whereas the NTD interferes with βCTD folding, becoming trapped in a β-barrel intermediate. Meanwhile, NusG CTD refolding is unaffected by the presence of RfaH NTD, showing that these NTD-CTD interactions are encoded in RfaH sequence. Altogether, these results suggest that the NTD of RfaH favors the α-folded RfaH by specifically orienting the αCTD upon interdomain binding and by favoring β-barrel rupture into an intermediate from which fold-switching proceeds. Proteins commonly adopt a single three-dimensional structure that is required for biological function. Nevertheless, proteins are not isolated in the cell, and the presence of binding partners can give rise to alternate structural configurations. Metamorphic proteins represent an extreme case of the latter, by folding into at least two well-defined configurations that are both structurally and functionally different. For RfaH, a virulence factor in enterobacteria, two distinct folds are found: an autoinhibited state in which its two protein domains strongly interact, and an active state in which these domains dissociate due to a specific DNA signal on RNA polymerases. This activation is accompanied by the refolding of the C-terminal domain (CTD) from an α-helical structure to a β-barrel. Our work employs computational simulations to explore the role of the N-terminal domain (NTD) in regulating the metamorphic behavior of RfaH, determining that this domain has a major part in orienting and binding to the CTD in its α-helical fold, and in stabilizing an intermediate state instead of the fully folded β-barrel. These results suggest that the NTD not only participates in stabilizing the autoinhibited state, but also aids in fold-switching back to it after active RfaH is released from RNA polymerase.
Collapse
Affiliation(s)
- Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Ernesto A. Román
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- * E-mail:
| |
Collapse
|
32
|
Abstract
Cellular life depends on transcription of DNA by RNA polymerase to express genetic information. RNA polymerase has evolved not just to read information from DNA and write it to RNA but also to sense and process information from the cellular and extracellular environments. Much of this information processing occurs during transcript elongation, when transcriptional pausing enables regulatory decisions. Transcriptional pauses halt RNA polymerase in response to DNA and RNA sequences and structures at locations and times that help coordinate interactions with small molecules and transcription factors important for regulation. Four classes of transcriptional pause signals are now evident after decades of study: elemental pauses, backtrack pauses, hairpin-stabilized pauses, and regulator-stabilized pauses. In this review, I describe current understanding of the molecular mechanisms of these four classes of pause signals, remaining questions about how RNA polymerase responds to pause signals, and the many exciting directions now open to understand pausing and the regulation of transcript elongation on a genome-wide scale. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| |
Collapse
|
33
|
Kawale AA, Burmann BM. Inherent backbone dynamics fine-tune the functional plasticity of Tudor domains. Structure 2021; 29:1253-1265.e4. [PMID: 34197736 DOI: 10.1016/j.str.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Tudor domains are crucial for mediating a diversity of protein-protein or protein-DNA interactions involved in nucleic acid metabolism. Using solution NMR spectroscopy, we assess the comprehensive understanding of the dynamical properties of the respective Tudor domains from four different bacterial (Escherichia coli) proteins UvrD, Mfd, RfaH, and NusG involved in different aspects of bacterial transcription regulation and associated processes. These proteins are benchmarked to the canonical Tudor domain fold from the human SMN protein. The detailed analysis of protein backbone dynamics and subsequent analysis by the Lipari-Szabo model-free approach revealed subtle differences in motions of the amide-bond vector on both pico- to nanosecond and micro- to millisecond timescales. On these timescales, our comparative approach reveals the usefulness of discrete amplitudes of dynamics to discern the different functionalities for Tudor domains exhibiting promiscuous binding, including the metamorphic Tudor domain included in the study.
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
34
|
Shi W, Zhang B, Jiang Y, Liu C, Zhou W, Chen M, Yang Y, Hu Y, Liu B. Structural basis of copper-efflux-regulator-dependent transcription activation. iScience 2021; 24:102449. [PMID: 34113812 PMCID: PMC8169799 DOI: 10.1016/j.isci.2021.102449] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
The copper efflux regulator (CueR), a representative member of mercury resistance regulator (MerR) family metalloregulators, controls expression of copper homeostasis-regulating genes in bacteria. The mechanism of transcription activation by CueR and other MerR family regulators is bending the spacer domain of promoter DNA. Here, we report the cryo-EM structures of the intact CueR-dependent transcription activation complexes. The structures show that CueR dimer bends the 19-bp promoter spacer to realign the -35 and -10 elements for recognition by σ70-RNA polymerase holoenzyme and reveal a previously unreported interaction between the DNA-binding domain (DBD) from one CueR subunit and the σ70 nonconserved region (σNCR). Functional studies have shown that the CueR-σNCR interaction plays an auxiliary role in CueR-dependent transcription, assisting the activation mechanism of bending promoter DNA by CueR dimer. Because DBDs are highly conserved in sequence and structure, this transcription-activating mechanism could be generally used by MerR family regulators.
Collapse
Affiliation(s)
- Wei Shi
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Baoyue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Jiang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chang Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
35
|
Madhurima K, Nandi B, Sekhar A. Metamorphic proteins: the Janus proteins of structural biology. Open Biol 2021; 11:210012. [PMID: 33878950 PMCID: PMC8059507 DOI: 10.1098/rsob.210012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The structural paradigm that the sequence of a protein encodes for a unique three-dimensional native fold does not acknowledge the intrinsic plasticity encapsulated in conformational free energy landscapes. Metamorphic proteins are a recently discovered class of biomolecules that illustrate this plasticity by folding into at least two distinct native state structures of comparable stability in the absence of ligands or cofactors to facilitate fold-switching. The expanding list of metamorphic proteins clearly shows that these proteins are not mere aberrations in protein evolution, but may have actually been a consequence of distinctive patterns in selection pressure such as those found in virus–host co-evolution. In this review, we describe the structure–function relationships observed in well-studied metamorphic protein systems, with specific focus on how functional residues are sequestered or exposed in the two folds of the protein. We also discuss the implications of metamorphosis for protein evolution and the efforts that are underway to predict metamorphic systems from sequence properties alone.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
36
|
A translational riboswitch coordinates nascent transcription-translation coupling. Proc Natl Acad Sci U S A 2021; 118:2023426118. [PMID: 33850018 DOI: 10.1073/pnas.2023426118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial messenger RNA (mRNA) synthesis by RNA polymerase (RNAP) and first-round translation by the ribosome are often coupled to regulate gene expression, yet how coupling is established and maintained is ill understood. Here, we develop biochemical and single-molecule fluorescence approaches to probe the dynamics of RNAP-ribosome interactions on an mRNA with a translational preQ1-sensing riboswitch in its 5' untranslated region. Binding of preQ1 leads to the occlusion of the ribosome binding site (RBS), inhibiting translation initiation. We demonstrate that RNAP poised within the mRNA leader region promotes ribosomal 30S subunit binding, antagonizing preQ1-induced RBS occlusion, and that the RNAP-30S bridging transcription factors NusG and RfaH distinctly enhance 30S recruitment and retention, respectively. We further find that, while 30S-mRNA interaction significantly impedes RNAP in the absence of translation, an actively translating ribosome promotes productive transcription. A model emerges wherein mRNA structure and transcription factors coordinate to dynamically modulate the efficiency of transcription-translation coupling.
Collapse
|
37
|
Seifi B, Wallin S. The C-terminal domain of transcription factor RfaH: Folding, fold switching and energy landscape. Biopolymers 2021; 112:e23420. [PMID: 33521926 DOI: 10.1002/bip.23420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
We simulate the folding and fold switching of the C-terminal domain (CTD) of the transcription factor RfaH using an all-atom physics-based model augmented with a dual-basin structure-based potential energy term. We show that this hybrid model captures the essential thermodynamic behavior of this metamorphic domain, that is, a change in the global free energy minimum from an α-helical hairpin to a 5-stranded β-barrel upon the dissociation of the CTD from the rest of the protein. Using Monte Carlo sampling techniques, we then analyze the energy landscape of the CTD in terms of progress variables for folding toward the two folds. We find that, below the folding transition, the energy landscape is characterized by a single, dominant funnel to the native β-barrel structure. The absence of a deep funnel to the α-helical hairpin state reflects a negligible population of this fold for the isolated CTD. We observe, however, a higher α-helix structure content in the unfolded state compared to results from a similar but fold switch-incompetent version of our model. Moreover, in folding simulations started from an extended chain conformation we find transiently formed α-helical structure, occurring early in the process and disappearing as the chain progresses toward the thermally stable β-barrel state.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Canada
| |
Collapse
|
38
|
Kim AK, Porter LL. Functional and Regulatory Roles of Fold-Switching Proteins. Structure 2020; 29:6-14. [PMID: 33176159 DOI: 10.1016/j.str.2020.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Fold-switching proteins respond to cellular stimuli by remodeling their secondary structures and changing their functions. Whereas several previous reviews have focused on various structural, physical-chemical, and evolutionary aspects of this newly emerging class of proteins, this minireview focuses on how fold switching modulates protein function and regulates biological processes. It first compares and contrasts fold switchers with other known types of proteins. Second, it presents examples of how various proteins can change their functions through fold switching. Third, it demonstrates that fold switchers can regulate biological processes by discussing two proteins, RfaH and KaiB, whose dramatic secondary structure remodeling events directly affect gene expression and a circadian clock, respectively. Finally, this minireview discusses how the field of protein fold switching might advance.
Collapse
Affiliation(s)
- Allen K Kim
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren L Porter
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Wang B, Gumerov VM, Andrianova EP, Zhulin IB, Artsimovitch I. Origins and Molecular Evolution of the NusG Paralog RfaH. mBio 2020; 11:e02717-20. [PMID: 33109766 PMCID: PMC7593976 DOI: 10.1128/mbio.02717-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
The only universally conserved family of transcription factors comprises housekeeping regulators and their specialized paralogs, represented by well-studied NusG and RfaH. Despite their ubiquity, little information is available on the evolutionary origins, functions, and gene targets of the NusG family members. We built a hidden Markov model profile of RfaH and identified its homologs in sequenced genomes. While NusG is widespread among bacterial phyla and coresides with genes encoding RNA polymerase and ribosome in all except extremely reduced genomes, RfaH is mostly limited to Proteobacteria and lacks common gene neighbors. RfaH activates only a few xenogeneic operons that are otherwise silenced by NusG and Rho. Phylogenetic reconstructions reveal extensive duplications and horizontal transfer of rfaH genes, including those borne by plasmids, and the molecular evolution pathway of RfaH, from "early" exclusion of the Rho terminator and tightened RNA polymerase binding to "late" interactions with the ops DNA element and autoinhibition, which together define the RfaH regulon. Remarkably, NusG is not only ubiquitous in Bacteria but also common in plants, where it likely modulates the transcription of plastid genes.IMPORTANCE In all domains of life, NusG-like proteins make contacts similar to those of RNA polymerase and promote pause-free transcription yet may play different roles, defined by their divergent interactions with nucleic acids and accessory proteins, in the same cell. This duality is illustrated by Escherichia coli NusG and RfaH, which silence and activate xenogenes, respectively. We combined sequence analysis and recent functional and structural insights to envision the evolutionary transformation of NusG, a core regulator that we show is present in all cells using bacterial RNA polymerase, into a virulence factor, RfaH. Our results suggest a stepwise conversion of a NusG duplicate copy into a sequence-specific regulator which excludes NusG from its targets but does not compromise the regulation of housekeeping genes. We find that gene duplication and lateral transfer give rise to a surprising diversity within the only ubiquitous family of transcription factors.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vadim M Gumerov
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
40
|
Seifi B, Aina A, Wallin S. Structural fluctuations and mechanical stabilities of the metamorphic protein RfaH. Proteins 2020; 89:289-300. [PMID: 32996201 DOI: 10.1002/prot.26014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
RfaH is a compact two-domain bacterial transcription factor that functions both as a regulator of transcription and an enhancer of translation. Underpinning the dual functional roles of RfaH is a partial but dramatic fold switch, which completely transforms the ~50-amino acid C-terminal domain (CTD) from an all-α state to an all-β state. The fold switch of the CTD occurs when RfaH binds to RNA polymerase (RNAP), however, the details of how this structural transformation is triggered is not well understood. Here we use all-atom Monte Carlo simulations to characterize structural fluctuations and mechanical stability properties of the full-length RfaH and the CTD as an isolated fragment. In agreement with experiments, we find that interdomain contacts are crucial for maintaining a stable, all-α CTD in free RfaH. To probe mechanical properties, we use pulling simulations to measure the work required to inflict local deformations at different positions along the chain. The resulting mechanical stability profile reveals that free RfaH can be divided into a "rigid" part and a "soft" part, with a boundary that nearly coincides with the boundary between the two domains. We discuss the potential role of this feature for how fold switching may be triggered by interaction with RNAP.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| | - Adekunle Aina
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| |
Collapse
|
41
|
Huang YH, Hilal T, Loll B, Bürger J, Mielke T, Böttcher C, Said N, Wahl MC. Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis. Mol Cell 2020; 79:1024-1036.e5. [DOI: 10.1016/j.molcel.2020.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
|
42
|
Washburn RS, Zuber PK, Sun M, Hashem Y, Shen B, Li W, Harvey S, Acosta Reyes FJ, Gottesman ME, Knauer SH, Frank J. Escherichia coli NusG Links the Lead Ribosome with the Transcription Elongation Complex. iScience 2020; 23:101352. [PMID: 32726726 PMCID: PMC7390762 DOI: 10.1016/j.isci.2020.101352] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide conclusive evidence that NusG can physically link transcription with translation by contacting both RNA polymerase and the ribosome. We present a cryo-electron microscopy structure of a NusG:70S ribosome complex and nuclear magnetic resonance spectroscopy data revealing simultaneous binding of NusG to RNAP and the intact 70S ribosome, providing the first direct structural evidence for NusG-mediated coupling. Furthermore, in vivo reporter assays show that recruitment of NusG occurs late in transcription and strongly depends on translation. Thus, our data suggest that coupling occurs initially via direct RNAP:ribosome contacts and is then mediated by NusG.
Collapse
Affiliation(s)
- Robert S Washburn
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Philipp K Zuber
- Biochemistry IV - Biopolymers, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yaser Hashem
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Sho Harvey
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Francisco J Acosta Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Stefan H Knauer
- Biochemistry IV - Biopolymers, University of Bayreuth, 95447 Bayreuth, Germany.
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
43
|
Wang C, Molodtsov V, Firlar E, Kaelber JT, Blaha G, Su M, Ebright RH. Structural basis of transcription-translation coupling. Science 2020; 369:1359-1365. [PMID: 32820061 DOI: 10.1126/science.abb5317] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of Escherichia coli transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.
Collapse
Affiliation(s)
- Chengyuan Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Vadim Molodtsov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Emre Firlar
- Rutgers New Jersey CryoEM/CryoET Core Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jason T Kaelber
- Rutgers New Jersey CryoEM/CryoET Core Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI,48109, USA.
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Abstract
It is a common belief that metamorphic proteins challenge Anfinsen's thermodynamic hypothesis (or dogma). Here we argue against this view and aim to show that metamorphic proteins not only fulfill Anfinsen's dogma but also exhibit marginal stability comparable to that seen on biomolecules and macromolecular complexes. This work contributes to our general understanding of protein classification and may spur significant progress in our effort to analyze protein evolvability.
Collapse
Affiliation(s)
- Jorge A Vila
- IMASL-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
45
|
Shi W, Zhou W, Zhang B, Huang S, Jiang Y, Schammel A, Hu Y, Liu B. Structural basis of bacterial σ 28 -mediated transcription reveals roles of the RNA polymerase zinc-binding domain. EMBO J 2020; 39:e104389. [PMID: 32484956 DOI: 10.15252/embj.2020104389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 11/09/2022] Open
Abstract
In bacteria, σ28 is the flagella-specific sigma factor that targets RNA polymerase (RNAP) to control the expression of flagella-related genes involving bacterial motility and chemotaxis. However, the structural mechanism of σ28 -dependent promoter recognition remains uncharacterized. Here, we report cryo-EM structures of E. coli σ28 -dependent transcribing complexes on a complete flagella-specific promoter. These structures reveal how σ28 -RNAP recognizes promoter DNA through strong interactions with the -10 element, but weak contacts with the -35 element, to initiate transcription. In addition, we observed a distinct architecture in which the β' zinc-binding domain (ZBD) of RNAP stretches out from its canonical position to interact with the upstream non-template strand. Further in vitro and in vivo assays demonstrate that this interaction has the overall effect of facilitating closed-to-open isomerization of the RNAP-promoter complex by compensating for the weak interaction between σ4 and -35 element. This suggests that ZBD relocation may be a general mechanism employed by σ70 family factors to enhance transcription from promoters with weak σ4/-35 element interactions.
Collapse
Affiliation(s)
- Wei Shi
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Wei Zhou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baoyue Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaojia Huang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Jiang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Abigail Schammel
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
46
|
Galaz-Davison P, Molina JA, Silletti S, Komives EA, Knauer SH, Artsimovitch I, Ramírez-Sarmiento CA. Differential Local Stability Governs the Metamorphic Fold Switch of Bacterial Virulence Factor RfaH. Biophys J 2019; 118:96-104. [PMID: 31810657 DOI: 10.1016/j.bpj.2019.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
RfaH, a two-domain protein from a universally conserved NusG/Spt5 family of regulators, is required for the transcription and translation of long virulence and conjugation operons in many Gram-negative bacterial pathogens. Escherichia coli RfaH action is controlled by a unique large-scale structural rearrangement triggered by recruitment to transcription elongation complexes through a specific DNA element. Upon recruitment, the C-terminal domain of RfaH refolds from an α-hairpin, which is bound to RNA polymerase binding site within the N-terminal domain, into an unbound β-barrel that interacts with the ribosome. Although structures of the autoinhibited (α-hairpin) and active (β-barrel) states and plausible refolding pathways have been reported, how this reversible switch is encoded within RfaH sequence and structure is poorly understood. Here, we combined hydrogen-deuterium exchange measurements by mass spectrometry and nuclear magnetic resonance with molecular dynamics to evaluate the differential local stability between both RfaH folds. Deuteron incorporation reveals that the tip of the C-terminal hairpin (residues 125-145) is stably folded in the autoinhibited state (∼20% deuteron incorporation), whereas the rest of this domain is highly flexible (>40% deuteron incorporation), and its flexibility only decreases in the β-folded state. Computationally predicted ΔG agree with these results by displaying similar anisotropic stability within the tip of the α-hairpin and on neighboring N-terminal domain residues. Remarkably, the β-folded state shows comparable structural flexibility than nonmetamorphic homologs. Our findings provide information critical for understanding the metamorphic behavior of RfaH and other chameleon proteins and for devising targeted strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Stefan H Knauer
- Lehrstuhl Biopolymere, Universität Bayreuth, Bayreuth, Germany
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
47
|
Zamora-Carreras H, Maestro B, Sanz JM, Jiménez MA. Turncoat Polypeptides: We Adapt to Our Environment. Chembiochem 2019; 21:432-441. [PMID: 31456307 DOI: 10.1002/cbic.201900446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 01/25/2023]
Abstract
A common interpretation of Anfinsen's hypothesis states that one amino acid sequence should fold into a single, native, ordered state, or a highly similar set thereof, coinciding with the global minimum in the folding-energy landscape, which, in turn, is responsible for the function of the protein. However, this classical view is challenged by many proteins and peptide sequences, which can adopt exchangeable, significantly dissimilar conformations that even fulfill different biological roles. The similarities and differences of concepts related to these proteins, mainly chameleon sequences, metamorphic proteins, and switch peptides, which are all denoted herein "turncoat" polypeptides, are reviewed. As well as adding a twist to the conventional view of protein folding, the lack of structural definition adds clear versatility to the activity of proteins and can be used as a tool for protein design and further application in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química-Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Beatriz Maestro
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jesús M Sanz
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5. Pabellón, 28029, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química-Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
48
|
Duchi D, Gryte K, Robb NC, Morichaud Z, Sheppard C, Brodolin K, Wigneshweraraj S, Kapanidis AN. Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes. Nucleic Acids Res 2019; 46:677-688. [PMID: 29177430 PMCID: PMC5778504 DOI: 10.1093/nar/gkx1146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex subsequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear. To address the conformational landscape and transitions in transcription initiation, we applied single-molecule Förster resonance energy transfer (smFRET) on immobilized Escherichia coli transcription open complexes. Our results revealed the existence of two stable states within RNAP–DNA complexes in which the promoter DNA appears to adopt closed and partially open conformations, and we observed large-scale transitions in which the transcription bubble fluctuated between open and closed states; these transitions, which occur roughly on the 0.1 s timescale, are distinct from the millisecond-timescale dynamics previously observed within diffusing open complexes. Mutational studies indicated that the σ70 region 3.2 of the RNAP significantly affected the bubble dynamics. Our results have implications for many steps of transcription initiation, and support a bend-load-open model for the sequence of transitions leading to bubble opening during open complex formation.
Collapse
Affiliation(s)
- Diego Duchi
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Kristofer Gryte
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Nicole C Robb
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Zakia Morichaud
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Carol Sheppard
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Konstantin Brodolin
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | | | - Achillefs N Kapanidis
- Gene Machines Group, Biological Physics Research Unit, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
49
|
Kang JY, Mishanina TV, Landick R, Darst SA. Mechanisms of Transcriptional Pausing in Bacteria. J Mol Biol 2019; 431:4007-4029. [PMID: 31310765 DOI: 10.1016/j.jmb.2019.07.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Pausing by RNA polymerase (RNAP) during transcription regulates gene expression in all domains of life. In this review, we recap the history of transcriptional pausing discovery, summarize advances in our understanding of the underlying causes of pausing since then, and describe new insights into the pausing mechanisms and pause modulation by transcription factors gained from structural and biochemical experiments. The accumulated evidence to date suggests that upon encountering a pause signal in the nucleic-acid sequence being transcribed, RNAP rearranges into an elemental, catalytically inactive conformer unable to load NTP substrate. The conformation, and as a consequence lifetime, of an elemental paused RNAP is modulated by backtracking, nascent RNA structure, binding of transcription regulators, or a combination of these mechanisms. We conclude the review by outlining open questions and directions for future research in the field of transcriptional pausing.
Collapse
Affiliation(s)
- Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea.
| | - Tatiana V Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
50
|
Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling. Int J Mol Sci 2019; 20:ijms20102595. [PMID: 31137816 PMCID: PMC6566652 DOI: 10.3390/ijms20102595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.
Collapse
|