1
|
Thalalla Gamage S, Khoogar R, Howpay Manage S, DaRos JT, Crawford MC, Georgeson J, Polevoda BV, Sanders C, Lee KA, Nance KD, Iyer V, Kustanovich A, Perez M, Thu CT, Nance SR, Amin R, Miller CN, Holewinski RJ, Das S, Meyer TJ, Koparde V, Yang A, Jailwala P, Nguyen JT, Andresson T, Hunter K, Gu S, Mock BA, Edmondson EF, Difilippantonio S, Chari R, Schwartz S, O’Connell MR, Wu CCC, Meier JL. Transfer RNA acetylation regulates in vivo mammalian stress signaling. SCIENCE ADVANCES 2025; 11:eads2923. [PMID: 40106564 PMCID: PMC11922055 DOI: 10.1126/sciadv.ads2923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here, we investigate the impact of N4-acetylcytidine (ac4C), a highly conserved tRNA modification catalyzed by the essential acetyltransferase Nat10. By targeting Thumpd1, a nonessential adapter protein required for Nat10-catalyzed tRNA acetylation, we determine that loss of tRNA acetylation leads to reduced levels of tRNALeu, increased ribosome stalling, and activation of eIF2α phosphorylation. Thumpd1 knockout mice exhibit growth defects and sterility. Concurrent knockout of Thumpd1 and the stress-sensing kinase Gcn2 causes penetrant postnatal lethality in mice, indicating a critical genetic interaction. Our findings demonstrate that a modification restricted to a single position within type II cytosolic tRNAs can regulate ribosome-mediated stress signaling in mammalian organisms, with implications for our understanding of translational control and therapeutic interventions.
Collapse
Affiliation(s)
- Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Roxane Khoogar
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shereen Howpay Manage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Judey T. DaRos
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - McKenna C. Crawford
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Joe Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bogdan V. Polevoda
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Chelsea Sanders
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kendall A. Lee
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kellie D. Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Vinithra Iyer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anatoly Kustanovich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Minervo Perez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Chu T. Thu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sam R. Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ruhul Amin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christine N. Miller
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Ronald J. Holewinski
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sudipto Das
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Acong Yang
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Parthav Jailwala
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Joe T. Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thorkell Andresson
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Beverly A. Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elijah F. Edmondson
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mitchell R. O’Connell
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Colin Chih-Chien Wu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jordan L. Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
2
|
Kopietz K, Raorane K, Guo W, Flegler F, Bourguignon V, Thuillier Q, Kilz LM, Weber M, Marchand V, Reuter K, Tuorto F, Helm M, Motorin Y. TGT Damages its Substrate tRNAs by the Formation of Abasic Sites in the Anticodon Loop. J Mol Biol 2025:169000. [PMID: 40011082 DOI: 10.1016/j.jmb.2025.169000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
RNA modification is a well-recognized way for gene expression regulation in a living cell. Natural enzymatic RNA modifications have been characterized for decades. Recently, additional mechanisms, more related to RNA damage, have emerged, which do not involve targeted enzymatic activity but nonetheless alter the chemical structure of nucleosides. Aberrantly modified RNA may also appear due to incomplete or erroneous enzymatic reactions. We demonstrate that tRNA-guanine transglycosylase (TGT) in bacteria and eukaryotes accidentally leaves RNA abasic sites (rAP) in the anticodon loop of substrate tRNAs. The formation of an rAP site is a part of the TGT catalytic mechanism, involving the cleavage of the N-glycosidic bond, and the formation of a covalent enzyme-tRNA adduct. The phenomenon of rAP site formation is readily detectable for tRNATyr(GUA) in bacteria and tRNAAsp(GUC) in eukaryotes and is amplified when the supply for preQ1 in bacteria is compromised. The TGT-mediated accumulation of rAP sites in tRNAs is strongly induced upon stress, and most prominent upon oxidative stress in bacteria. Polysome profiling in bacteria points out the partial exclusion of rAP-containing tRNAs from the translating ribosome fraction, prompting a consideration of these tRNA species as "damaged" and most likely non-functional. The exploratory analysis of rAP tRNA(GUN) sites in mice demonstrates a substantial variability among different tissues, with the highest accumulation of damaged tRNA observed in the brain, the lung and the spleen. Altogether, these results uncover a unique molecular mechanism of RNA modification that, via a presumably erroneous reaction, diminishes RNA function rather than enhancing it.
Collapse
Affiliation(s)
- Kevin Kopietz
- Johannes Gutenberg-University Mainz, Institute of Pharmacy and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany
| | - Kasturi Raorane
- Université de Lorraine, CNRS, IMoPA UMR7365, F-54000 Nancy, France; Université de Lorraine, SMP IBSLor, Epitranscriptomics and RNA Sequencing Core Facility, F-54000 Nancy, France
| | - Wei Guo
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Florian Flegler
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35037 Marburg, Germany
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, IMoPA UMR7365, F-54000 Nancy, France; Université de Lorraine, SMP IBSLor, Epitranscriptomics and RNA Sequencing Core Facility, F-54000 Nancy, France
| | - Quentin Thuillier
- Université de Lorraine, CNRS, IMoPA UMR7365, F-54000 Nancy, France; Université de Lorraine, SMP IBSLor, Epitranscriptomics and RNA Sequencing Core Facility, F-54000 Nancy, France
| | - Lea-Marie Kilz
- Johannes Gutenberg-University Mainz, Institute of Pharmacy and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany
| | - Marlies Weber
- Johannes Gutenberg-University Mainz, Institute of Pharmacy and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany
| | - Virginie Marchand
- Université de Lorraine, SMP IBSLor, Epitranscriptomics and RNA Sequencing Core Facility, F-54000 Nancy, France
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35037 Marburg, Germany
| | - Francesca Tuorto
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Mark Helm
- Johannes Gutenberg-University Mainz, Institute of Pharmacy and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany.
| | - Yuri Motorin
- Université de Lorraine, CNRS, IMoPA UMR7365, F-54000 Nancy, France; Université de Lorraine, SMP IBSLor, Epitranscriptomics and RNA Sequencing Core Facility, F-54000 Nancy, France.
| |
Collapse
|
3
|
Chavatte L, Lange L, Schweizer U, Ohlmann T. Understanding the role of tRNA modifications in UGA recoding as selenocysteine in eukaryotes. J Mol Biol 2025:169017. [PMID: 39988117 DOI: 10.1016/j.jmb.2025.169017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
Selenocysteine (Sec), the 21st proteogenic amino acid, is a key component of selenoproteins, where it performs critical roles in redox reactions. Sec incorporation during translation is unique and highly sensitive to selenium levels. Encoded by the UGA codon, typically a termination signal, its insertion necessitates the presence of a selenocysteine insertion sequence (SECIS) within the 3' untranslated region (UTR) of selenoprotein mRNAs. This SECIS element orchestrates the recruitment of specialized molecular factors, including SECISBP2, the unique tRNA[Ser]Sec, and its dedicated elongation factor, EEFSEC. The extended variable arm of tRNA[Ser]Sec permits its specific recognition by EEFSEC. While the structure of the ribosome-bound complex is known, the precise mechanism by which EEFSEC-tRNA[Ser]Sec recodes UGA in the presence of SECIS and SECISBP2 remains unclear. tRNA[Ser]Sec has relatively few epitranscriptomic modifications, but those at the anticodon loop are crucial. Key modifications include N6-isopentenyladenosine (i6A) at position 37 and two forms of 5-methoxycarbonylmethyluridine (mcm5U and mcm5Um) at position 34. The ratio of these isoforms varies with tissue type and selenium levels, influencing mRNA-specific Sec recoding. A C65G mutation in the acceptor stem, identified in patients, disrupts these modifications at position 34, impairing selenoprotein synthesis. This highlights the essential role of wobble position modifications in anticodon function. tRNA[Ser]Sec exemplifies the complex regulation of UGA codon recoding and underscores the interplay of structural and epitranscriptomic factors in selenoprotein translation.
Collapse
Affiliation(s)
- Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| | - Lukas Lange
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany.
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| |
Collapse
|
4
|
Berg M, Li C, Kaiser S. NAIL-MS reveals tRNA and rRNA hypomodification as a consequence of 5-fluorouracil treatment. Nucleic Acids Res 2025; 53:gkaf090. [PMID: 39997220 PMCID: PMC11851100 DOI: 10.1093/nar/gkaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Recent studies have investigated RNA modifications in response to stressors like chemical agents, including the anticancer drug 5-fluorouracil (5-FU). Traditionally, 5-FU's mechanism of action was believed to involve inhibition of thymidylate synthase, leading to thymidine depletion and cancer cell death. However, recent findings suggest that ribosome collisions and defects in ribosomal RNA (rRNA) processing drive 5-FU toxicity, potentially through RNA writer inhibition. To explore the effects of 5-FU on rRNA and transfer RNA (tRNA) modifications, we exposed HEK293T cells to 5-FU and quantified key RNA modifications. We found 55% and 40% reduction in 5-methyluridine and pseudouridine (Ψ), respectively, in tRNAs, but only minor changes in rRNA. Using nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), we identified that pre-existing tRNA and rRNA retained their modification profiles, while newly synthesized RNAs lost various modifications. In addition, new tRNAs exhibited modification reprogramming, particularly important for cell survival after 5-FU removal. In rRNA, we observed reduced levels of mature rRNA, with hypomodification in newly transcribed mature rRNA, particularly in Ψ and ribose methylations. In summary, we observe RNA hypomodification in both tRNA and rRNA due to 5-FU, which might be the molecular basis of 5-FU's mechanism of action.
Collapse
MESH Headings
- Fluorouracil/pharmacology
- Humans
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/drug effects
- RNA, Transfer/genetics
- HEK293 Cells
- RNA Processing, Post-Transcriptional/drug effects
- Uridine/analogs & derivatives
- Uridine/metabolism
- Mass Spectrometry/methods
- Pseudouridine/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Isotope Labeling
Collapse
Affiliation(s)
- Maximilian Berg
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt 60438, Germany
| | - Chengkang Li
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt 60438, Germany
| | - Stefanie Kaiser
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
5
|
Davis ET, Raman R, Byrne SR, Ghanegolmohammadi F, Mathur C, Begley U, Dedon PC, Begley TJ. Genes and Pathways Comprising the Human and Mouse ORFeomes Display Distinct Codon Bias Signatures that Can Regulate Protein Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636209. [PMID: 39974974 PMCID: PMC11838421 DOI: 10.1101/2025.02.03.636209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Arginine, glutamic acid and selenocysteine based codon bias has been shown to regulate the translation of specific mRNAs for proteins that participate in stress responses, cell cycle and transcriptional regulation. Defining codon-bias in gene networks has the potential to identify other pathways under translational control. Here we have used computational methods to analyze the ORFeome of all unique human (19,711) and mouse (22,138) open-reading frames (ORFs) to characterize codon-usage and codon-bias in genes and biological processes. We show that ORFeome-wide clustering of gene-specific codon frequency data can be used to identify ontology-enriched biological processes and gene networks, with developmental and immunological programs well represented for both humans and mice. We developed codon over-use ontology mapping and hierarchical clustering to identify multi-codon bias signatures in human and mouse genes linked to signaling, development, mitochondria and metabolism, among others. The most distinct multi-codon bias signatures were identified in human genes linked to skin development and RNA metabolism, and in mouse genes linked to olfactory transduction and ribosome, highlighting species-specific pathways potentially regulated by translation. Extreme codon bias was identified in genes that included transcription factors and histone variants. We show that re-engineering extreme usage of C- or U-ending codons for aspartic acid, asparagine, histidine and tyrosine in the transcription factors CEBPB and MIER1, respectively, significantly regulates protein levels. Our study highlights that multi-codon bias signatures can be linked to specific biological pathways and that extreme codon bias with regulatory potential exists in transcription factors for immune response and development.
Collapse
Affiliation(s)
| | - Rahul Raman
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shane R. Byrne
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chetna Mathur
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
| | - Ulrike Begley
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Thomas J. Begley
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY
| |
Collapse
|
6
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Klaus L, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2025; 34:65-80. [PMID: 39105593 PMCID: PMC11705514 DOI: 10.1111/imb.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Asif Rayhan
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Judd Joves
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Melissa Uhran
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Lucas Klaus
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Ronja Frigard
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Khwahish Singh
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Joshua B. Benoit
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
7
|
Zborowsky S, Tahan R, Lindell D. Adaptive loss of tRNA gene expression leads to phage resistance in a marine Synechococcus cyanobacterium. Nat Microbiol 2025; 10:66-76. [PMID: 39753669 PMCID: PMC11726456 DOI: 10.1038/s41564-024-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
Synechococcus is a significant primary producer in the oceans, coexisting with cyanophages, which are important agents of mortality. Bacterial resistance against phage infection is a topic of significant interest, yet little is known for ecologically relevant systems. Here we use exogenous gene expression and gene disruption to investigate mechanisms underlying intracellular resistance of marine Synechococcus WH5701 to the Syn9 cyanophage. The restriction-modification and Gabija defence systems possessed by Synechococcus WH5701 did not contribute to resistance. Instead, resistance was primarily driven by insufficient levels of LeuTAA tRNA, preventing translation of key phage genes in a passive, intracellular mode of resistance. Restoring cellular tRNA expression rendered the cyanobacterium sensitive to infection. We propose an evolutionary scenario whereby changes in cell codon usage, acquisition of tRNAs by the phage and loss of cell and phage tRNA expression resulted in an effective means of resistance, highlighting the dynamic interplay between bacteria and phages in shaping their co-evolutionary trajectories.
Collapse
Affiliation(s)
- Sophia Zborowsky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Ran Tahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Debbie Lindell
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. Proc Natl Acad Sci U S A 2024; 121:e2317864121. [PMID: 39495910 PMCID: PMC11572970 DOI: 10.1073/pnas.2317864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 11/06/2024] Open
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA-modifying enzyme that methylates wobble uridines in a subset of tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit reduced protein synthesis in the nervous system, including a specific decrease in selenoprotein levels. Either loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 null animals also exhibit associative memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA wobble uridine modification in redox homeostasis in the developing nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI02912
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI53706
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY14627
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen6525 AJ, The Netherlands
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY14627
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI02912
- Carney Institute for Brain Sciences, Brown University, Providence, RI02912
| |
Collapse
|
9
|
Maxwell PH, Mahmood M, Villanueva M, Devine K, Avery N. Lifespan Extension by Retrotransposons under Conditions of Mild Stress Requires Genes Involved in tRNA Modifications and Nucleotide Metabolism. Int J Mol Sci 2024; 25:10593. [PMID: 39408922 PMCID: PMC11477299 DOI: 10.3390/ijms251910593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Retrotransposons are mobile DNA elements that are more active with increasing age and exacerbate aging phenotypes in multiple species. We previously reported an unexpected extension of chronological lifespan in the yeast, Saccharomyces paradoxus, due to the presence of Ty1 retrotransposons when cells were aged under conditions of mild stress. In this study, we tested a subset of genes identified by RNA-seq to be differentially expressed in S. paradoxus strains with a high-copy number of Ty1 retrotransposons compared with a strain with no retrotransposons and additional candidate genes for their contribution to lifespan extension when cells were exposed to a moderate dose of hydroxyurea (HU). Deletion of ADE8, NCS2, or TRM9 prevented lifespan extension, while deletion of CDD1, HAC1, or IRE1 partially prevented lifespan extension. Genes overexpressed in high-copy Ty1 strains did not typically have Ty1 insertions in their promoter regions. We found that silencing genomic copies of Ty1 prevented lifespan extension, while expression of Ty1 from a high-copy plasmid extended lifespan in medium with HU or synthetic medium. These results indicate that cells adapt to expression of retrotransposons by changing gene expression in a manner that can better prepare them to remain healthy under mild stress.
Collapse
|
10
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
11
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
12
|
Gamage ST, Khoogar R, Manage SH, Crawford MC, Georgeson J, Polevoda BV, Sanders C, Lee KA, Nance KD, Iyer V, Kustanovich A, Perez M, Thu CT, Nance SR, Amin R, Miller CN, Holewinski RJ, Meyer T, Koparde V, Yang A, Jailwala P, Nguyen JT, Andresson T, Hunter K, Gu S, Mock BA, Edmondson EF, Difilippantonio S, Chari R, Schwartz S, O'Connell MR, Chih-Chien Wu C, Meier JL. Transfer RNA acetylation regulates in vivo mammalian stress signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605208. [PMID: 39091849 PMCID: PMC11291155 DOI: 10.1101/2024.07.25.605208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here we investigate the impact of N4-acetylcytidine (ac4C), a highly conserved tRNA modification, using a Thumpd1 knockout mouse model. We find that loss of Thumpd1-dependent tRNA acetylation leads to reduced levels of tRNALeu, increased ribosome stalling, and activation of eIF2α phosphorylation. Thumpd1 knockout mice exhibit growth defects and sterility. Remarkably, concurrent knockout of Thumpd1 and the stress-sensing kinase Gcn2 causes penetrant postnatal lethality, indicating a critical genetic interaction. Our findings demonstrate that a modification restricted to a single position within type II cytosolic tRNAs can regulate ribosome-mediated stress signaling in mammalian organisms, with implications for our understanding of translation control as well as therapeutic interventions.
Collapse
Affiliation(s)
- Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Roxane Khoogar
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shereen Howpay Manage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - McKenna C Crawford
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Joe Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Bogdan V Polevoda
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Chelsea Sanders
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kendall A Lee
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kellie D Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Vinithra Iyer
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Anatoly Kustanovich
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Minervo Perez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Chu T Thu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sam R Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ruhul Amin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine N Miller
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Ronald J Holewinski
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thomas Meyer
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Acong Yang
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Parthav Jailwala
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Joe T Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thorkell Andresson
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Mitchell R O'Connell
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Colin Chih-Chien Wu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
13
|
Ip JY, Wijaya I, Lee LT, Lim Y, Teoh DEJ, Chan CSC, Cui L, Begley TJ, Dedon PC, Guo H. ROS-induced translational regulation-through spatiotemporal differences in codon recognition-is a key driver of brown adipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572954. [PMID: 38463965 PMCID: PMC10925207 DOI: 10.1101/2023.12.22.572954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The role of translational regulation in brown adipogenesis is relatively unknown. Localized translation of mRNAs encoding mitochondrial components enables swift mitochondrial responses, but whether this occurs during brown adipogenesis, which involves massive mitochondrial biogenesis, has not been explored. Here, we used ribosome profiling and RNA-Seq, coupled with cellular fractionation, to obtain spatiotemporal insights into translational regulation. During brown adipogenesis, a translation bias towards G/C-ending codons is triggered first in the mitochondrial vicinity by reactive oxygen species (ROS), which later spreads to the rest of the cell. This translation bias is induced through ROS modulating the activity of the tRNA modification enzyme, ELP3. Intriguingly, functionally relevant mRNAs, including those encoding ROS scavengers, benefit from this bias; in so doing, ROS-induced translation bias both fuels differentiation and concurrently minimizes oxidative damage. These ROS-induced changes could enable sustained mitochondrial biogenesis during brown adipogenesis, and explain in part, the molecular basis for ROS hormesis.
Collapse
|
14
|
Sun Y, Liu Q, Zhong S, Wei R, Luo JL. Triple-Negative Breast Cancer Intrinsic FTSJ1 Favors Tumor Progression and Attenuates CD8+ T Cell Infiltration. Cancers (Basel) 2024; 16:597. [PMID: 38339348 PMCID: PMC10854779 DOI: 10.3390/cancers16030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
FtsJ RNA 2'-O-methyltransferase 1 (FTSJ1) is a member of the methyltransferase superfamily and is involved in the processing and modification of ribosomal RNA. We herein demonstrate that FTSJ1 favors TNBC progression. The knockdown of FTSJ1 inhibits TNBC cell proliferation and development, induces apoptosis of cancer cells, and increases the sensitivity of TNBC cells to T-cell-mediated cytotoxicity. Furthermore, the high expression of FTSJ1 in TNBC attenuates CD8+T cell infiltration in the tumor microenvironment (TME) correlated with poorer prognosis for clinical TNBC patients. In this study, we establish that FTSJ1 acts as a tumor promotor, is involved in cancer immune evasion, and may serve as a potential immunotherapy target in TNBC.
Collapse
Affiliation(s)
- Yangqing Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.S.); (Q.L.)
| | - Qingqing Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.S.); (Q.L.)
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China;
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.S.); (Q.L.)
| | - Jun-Li Luo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.S.); (Q.L.)
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China;
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| |
Collapse
|
15
|
Shi Y, Feng Y, Wang Q, Dong G, Xia W, Jiang F. The Role of tRNA-Centered Translational Regulatory Mechanisms in Cancer. Cancers (Basel) 2023; 16:77. [PMID: 38201505 PMCID: PMC10778012 DOI: 10.3390/cancers16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. While numerous factors have been identified as contributing to the development of malignancy, our understanding of the mechanisms involved remains limited. Early cancer detection and the development of effective treatments are therefore critical areas of research. One class of molecules that play a crucial role in the transmission of genetic information are transfer RNAs (tRNAs), which are the most abundant RNA molecules in the human transcriptome. Dysregulated synthesis of tRNAs directly results in translation disorders and diseases, including cancer. Moreover, various types of tRNA modifications and the enzymes responsible for these modifications have been implicated in tumor biology. Furthermore, alterations in tRNA modification can impact tRNA stability, and impaired stability can prompt the cleavage of tRNAs into smaller fragments known as tRNA fragments (tRFs). Initially believed to be random byproducts lacking any physiological function, tRFs have now been redefined as non-coding RNA molecules with distinct roles in regulating RNA stability, translation, target gene expression, and other biological processes. In this review, we present recent findings on translational regulatory models centered around tRNAs in tumors, providing a deeper understanding of tumorigenesis and suggesting new directions for cancer treatment.
Collapse
Affiliation(s)
- Yuanjian Shi
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Qinglin Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 211166, China; (Y.S.); (Y.F.); (Q.W.); (G.D.)
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
16
|
Mitchener M, Begley TJ, Dedon PC. Molecular Coping Mechanisms: Reprogramming tRNAs To Regulate Codon-Biased Translation of Stress Response Proteins. Acc Chem Res 2023; 56:3504-3514. [PMID: 37992267 PMCID: PMC10702489 DOI: 10.1021/acs.accounts.3c00572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
As part of the classic central dogma of molecular biology, transfer RNAs (tRNAs) are integral to protein translation as the adaptor molecules that link the genetic code in messenger RNA (mRNA) to the amino acids in the growing peptide chain. tRNA function is complicated by the existence of 61 codons to specify 20 amino acids, with most amino acids coded by two or more synonymous codons. Further, there are often fewer tRNAs with unique anticodons than there are synonymous codons for an amino acid, with a single anticodon able to decode several codons by "wobbling" of the base pairs arising between the third base of the codon and the first position on the anticodon. The complications introduced by synonymous codons and wobble base pairing began to resolve in the 1960s with the discovery of dozens of chemical modifications of the ribonucleotides in tRNA, which, by analogy to the epigenome, are now collectively referred to as the epitranscriptome for not changing the genetic code inherent to all RNA sequences. tRNA modifications were found to stabilize codon-anticodon interactions, prevent misinitiation of translation, and promote translational fidelity, among other functions, with modification deficiencies causing pathological phenotypes. This led to hypotheses that modification-dependent tRNA decoding efficiencies might play regulatory roles in cells. However, it was only with the advent of systems biology and convergent "omic" technologies that the higher level function of synonymous codons and tRNA modifications began to emerge.Here, we describe our laboratories' discovery of tRNA reprogramming and codon-biased translation as a mechanism linking tRNA modifications and synonymous codon usage to regulation of gene expression at the level of translation. Taking a historical approach, we recount how we discovered that the 8-10 modifications in each tRNA molecule undergo unique reprogramming in response to cellular stresses to promote translation of mRNA transcripts with unique codon usage patterns. These modification tunable transcripts (MoTTs) are enriched with specific codons that are differentially decoded by modified tRNAs and that fall into functional families of genes encoding proteins necessary to survive the specific stress. By developing and applying systems-level technologies, we showed that cells lacking specific tRNA modifications are sensitized to certain cellular stresses by mistranslation of proteins, disruption of mitochondrial function, and failure to translate critical stress response proteins. In essence, tRNA reprogramming serves as a cellular coping strategy, enabling rapid translation of proteins required for stress-specific cell response programs. Notably, this phenomenon has now been characterized in all organisms from viruses to humans and in response to all types of environmental changes. We also elaborate on recent findings that cancer cells hijack this mechanism to promote their own growth, metastasis, and chemotherapeutic resistance. We close by discussing how understanding of codon-biased translation in various systems can be exploited to develop new therapeutics and biomanufacturing processes.
Collapse
Affiliation(s)
- Michelle
M. Mitchener
- Antimicrobial
Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602, Singapore
| | - Thomas J. Begley
- Department
of Biological Sciences, University at Albany, Albany, New York 12222, United States
- RNA
Institute, University at Albany, Albany, New York 12222, United States
| | - Peter C. Dedon
- Antimicrobial
Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602, Singapore
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569187. [PMID: 38076852 PMCID: PMC10705485 DOI: 10.1101/2023.11.29.569187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codons' decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we identified that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Asif Rayhan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Judd Joves
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Ronja Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Khwahish Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| |
Collapse
|
18
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566895. [PMID: 38014328 PMCID: PMC10680711 DOI: 10.1101/2023.11.14.566895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA modifying enzyme that methylates wobble uridines in specific tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit a global reduction in protein synthesis, including a specific decrease in selenoprotein levels. Loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 animals also exhibit associative learning and memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA modification in redox homeostasis in the nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Chan C, Kwan Sze NS, Suzuki Y, Ohira T, Suzuki T, Begley TJ, Dedon PC. Dengue virus exploits the host tRNA epitranscriptome to promote viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565734. [PMID: 37986976 PMCID: PMC10659268 DOI: 10.1101/2023.11.05.565734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The 40-50 RNA modifications of the epitranscriptome regulate posttranscriptional gene expression. Here we show that flaviviruses hijack the host tRNA epitranscriptome to promote expression of pro-viral proteins, with tRNA-modifying ALKBH1 acting as a host restriction factor in dengue virus infection. Early in the infection of human Huh-7 cells, ALKBH1 and its tRNA products 5-formylcytidine (f5C) and 2'-O-methyl-5-formylcytidine (f5Cm) were reduced. ALKBH1 knockdown mimicked viral infection, but caused increased viral NS3 protein levels during infection, while ALKBH1 overexpression reduced NS3 levels and viral replication, and increased f5C and f5Cm. Viral NS5, but not host FTSJ1, increased f5Cm levels late in infection. Consistent with reports of impaired decoding of leucine UUA codon by f5Cm-modified tRNALeu(CAA), ALKBH1 knockdown induced translation of UUA-deficient transcripts, most having pro-viral functions. Our findings support a dynamic ALKBH1/f5Cm axis during dengue infection, with virally-induced remodeling of the proteome by tRNA reprogramming and codon-biased translation.
Collapse
Affiliation(s)
- Cheryl Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuka Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Thomas J. Begley
- Department of Biological Sciences and The RNA Institute, College of Arts and Science, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
Hogan CA, Gratz SJ, Dumouchel JL, Thakur RS, Delgado A, Lentini JM, Madhwani KR, Fu D, O'Connor‐Giles KM. Expanded tRNA methyltransferase family member TRMT9B regulates synaptic growth and function. EMBO Rep 2023; 24:e56808. [PMID: 37642556 PMCID: PMC10561368 DOI: 10.15252/embr.202356808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Nervous system function rests on the formation of functional synapses between neurons. We have identified TRMT9B as a new regulator of synapse formation and function in Drosophila. TRMT9B has been studied for its role as a tumor suppressor and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Whereas Trm9 homolog ALKBH8 is ubiquitously expressed, TRMT9B is enriched in the nervous system. However, in the absence of animal models, TRMT9B's role in the nervous system has remained unstudied. Here, we generate null alleles of TRMT9B and find it acts postsynaptically to regulate synaptogenesis and promote neurotransmission. Through liquid chromatography-mass spectrometry, we find that ALKBH8 catalyzes canonical tRNA wobble uridine methylation, raising the question of whether TRMT9B is a methyltransferase. Structural modeling studies suggest TRMT9B retains methyltransferase function and, in vivo, disruption of key methyltransferase residues blocks TRMT9B's ability to rescue synaptic overgrowth, but not neurotransmitter release. These findings reveal distinct roles for TRMT9B in the nervous system and highlight the significance of tRNA methyltransferase family diversification in metazoans.
Collapse
Affiliation(s)
- Caley A Hogan
- Genetics Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Scott J Gratz
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | | | - Rajan S Thakur
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Ambar Delgado
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Jenna M Lentini
- Department of Biology, Center for RNA BiologyUniversity of RochesterRochesterNYUSA
| | | | - Dragony Fu
- Department of Biology, Center for RNA BiologyUniversity of RochesterRochesterNYUSA
| | - Kate M O'Connor‐Giles
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
- Carney Institute for Brain ScienceProvidenceRIUSA
| |
Collapse
|
21
|
García-Vílchez R, Añazco-Guenkova AM, López J, Dietmann S, Tomé M, Jimeno S, Azkargorta M, Elortza F, Bárcena L, Gonzalez-Lopez M, Aransay AM, Sánchez-Martín MA, Huertas P, Durán RV, Blanco S. N7-methylguanosine methylation of tRNAs regulates survival to stress in cancer. Oncogene 2023; 42:3169-3181. [PMID: 37660182 PMCID: PMC10589097 DOI: 10.1038/s41388-023-02825-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Tumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that N7-guanosine methylation (m7G) of tRNAs, mediated by METTL1, regulates survival to stress conditions in cancer cells. Mechanistically, we find that m7G in tRNAs protects them from stress-induced cleavage and processing into 5' tRNA fragments. Our analyses reveal that the loss of tRNA m7G methylation activates stress response pathways, sensitising cancer cells to stress. Furthermore, we find that the loss of METTL1 reduces tumour growth and increases cytotoxic stress in vivo. Our study uncovers the role of m7G methylation of tRNAs in stress responses and highlights the potential of targeting METTL1 to sensitise cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Raquel García-Vílchez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Ana M Añazco-Guenkova
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Judith López
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
| | - Félix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laura Bárcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Manuel A Sánchez-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Sandra Blanco
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
22
|
Ye L, Yao X, Xu B, Chen W, Lou H, Tong X, Fang S, Zou R, Hu Y, Wang Z, Xiang D, Lin Q, Feng S, Xue X, Guo G. RNA epigenetic modifications in ovarian cancer: The changes, chances, and challenges. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1784. [PMID: 36811232 DOI: 10.1002/wrna.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
Ovarian cancer (OC) is the most common female cancer worldwide. Patients with OC have high mortality because of its complex and poorly understood pathogenesis. RNA epigenetic modifications, such as m6 A, m1 A, and m5 C, are closely associated with the occurrence and development of OC. RNA modifications can affect the stability of mRNA transcripts, nuclear export of RNAs, translation efficiency, and decoding accuracy. However, there are few overviews that summarize the link between m6 A RNA modification and OC. Here, we discuss the molecular and cellular functions of different RNA modifications and how their regulation contributes to the pathogenesis of OC. By improving our understanding of the role of RNA modifications in the etiology of OC, we provide new perspectives for their use in OC diagnosis and treatment. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruanmin Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Xiang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoai Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
Affiliation(s)
| | | | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC, USA
- Lead contact
| |
Collapse
|
24
|
Bimai O, Legrand P, Ravanat JL, Touati N, Zhou J, He N, Lénon M, Barras F, Fontecave M, Golinelli-Pimpaneau B. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis. Sci Rep 2023; 13:5351. [PMID: 37005440 PMCID: PMC10067955 DOI: 10.1038/s41598-023-32423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, 38000, Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Nisha He
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marine Lénon
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France.
| |
Collapse
|
25
|
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22:870-905. [PMID: 36648057 PMCID: PMC10054233 DOI: 10.1080/15384101.2023.2165632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
26
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
27
|
Veerabhadrappa B, Sj S, Rao NN, Dyavaiah M. Loss of tRNA methyltransferase 9 and DNA damage response genes in yeast confers sensitivity to aminoglycosides. FEBS Lett 2023; 597:1149-1163. [PMID: 36708127 DOI: 10.1002/1873-3468.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
tRNA methyltransferase 9 (Trm9)-catalysed tRNA modifications have been shown to translationally enhance the DNA damage response (DDR). Here, we show that Saccharomyces cerevisiae trm9Δ, distinct DNA repair and spindle assembly checkpoint (SAC) mutants are differentially sensitive to the aminoglycosides tobramycin, gentamicin and amikacin, indicating DDR and SAC activation might rely on translation fidelity, under aminoglycoside stress. Further, we report that the DNA damage induced by aminoglycosides in the base excision repair mutants ogg1Δ and apn1Δ is mediated by reactive oxygen species, which induce the DNA adduct 8-hydroxy deoxyguanosine. Finally, the synergistic effect of tobramycin and the DNA-damaging agent bleomycin to sensitize trm9Δ and the DDR mutants mlh1Δ, rad51Δ, mre11Δ and sgs1Δ at significantly lower concentrations compared with wild-type suggests that cells with tRNA modification dysregulation and DNA repair gene defects can be selectively sensitized using a combination of translation inhibitors and DNA-damaging agents.
Collapse
Affiliation(s)
- Bhavana Veerabhadrappa
- Department of Biotechnology, R V College of Engineering - Visvesvaraya Technological University, Bengaluru, Karnataka, India.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Sudharshan Sj
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Nagashree N Rao
- Department of Biotechnology, R V College of Engineering - Visvesvaraya Technological University, Bengaluru, Karnataka, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
28
|
Talló-Parra M, Muscolino E, Díez J. The host tRNA epitranscriptome: A new player in RNA virus infections. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses completely depend on the host translation machineries to express the viral proteins. Recent data reveal an unprecedented interaction of positive strand RNA ((+)RNA) viruses with the host tRNA epitranscriptome to favor viral protein expression via a specific reprogramming of codon optimality that ultimately favors decoding of the viral codons. We propose that this feature is shared by multiple RNA viruses and that the involved tRNA modifying enzymes represent promising novel targets for the development of broad-spectrum antivirals.
Collapse
|
29
|
Jiang H, Zhang Y, Liu B, Yang X, Wang Z, Han M, Li H, Luo J, Yao H. Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis. Biol Chem 2022; 404:585-599. [PMID: 36420535 DOI: 10.1515/hsz-2022-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Abstract
The dysregulation of the translation elongation factor families which are responsible for reprogramming of mRNA translation has been shown to contribute to tumor progression. Here, we report that the acetylation of eukaryotic Elongation Factor 1 Alpha 1 (eEF1A1/EF1A1) is required for genotoxic stress response and maintaining the malignancy of colorectal cancer (CRC) cells. The evolutionarily conserved site K439 is identified as the key acetylation site. Tissue expression analysis demonstrates that the acetylation level of eEF1A1 K439 is higher than paired normal tissues. Most importantly, hyperacetylation of eEF1A1 at K439 negatively correlates with CRC patient survival. Mechanistically, CBP and SIRT1 are the major acetyltransferase and deacetylase of eEF1A1. Hyperacetylation of eEF1A1 at K439 shows a significant tumor-promoting effect by increasing the capacity of proliferation, migration, and invasion of CRC cells. Our findings identify the altered post-translational modification at the translation machines as a critical factor in stress response and susceptibility to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Hongpeng Jiang
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Boya Liu
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , P.R. China
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Huiying Li
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| |
Collapse
|
30
|
Lei HT, Wang ZH, Li B, Sun Y, Mei SQ, Yang JH, Qu LH, Zheng LL. tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data. Nucleic Acids Res 2022; 51:D315-D327. [PMID: 36408909 PMCID: PMC9825477 DOI: 10.1093/nar/gkac1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
tRNA molecules contain dense, abundant modifications that affect tRNA structure, stability, mRNA decoding and tsRNA formation. tRNA modifications and related enzymes are responsive to environmental cues and are associated with a range of physiological and pathological processes. However, there is a lack of resources that can be used to mine and analyse these dynamically changing tRNA modifications. In this study, we established tModBase (https://www.tmodbase.com/) for deciphering the landscape of tRNA modification profiles from epitranscriptome data. We analysed 103 datasets generated with second- and third-generation sequencing technologies and illustrated the misincorporation and termination signals of tRNA modification sites in ten species. We thus systematically demonstrate the modification profiles across different tissues/cell lines and summarize the characteristics of tRNA-associated human diseases. By integrating transcriptome data from 32 cancers, we developed novel tools for analysing the relationships between tRNA modifications and RNA modification enzymes, the expression of 1442 tRNA-derived small RNAs (tsRNAs), and 654 DNA variations. Our database will provide new insights into the features of tRNA modifications and the biological pathways in which they participate.
Collapse
Affiliation(s)
- Hao-Tian Lei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhang-Hao Wang
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yang Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi-Qiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian-Hua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ling-Ling Zheng
- To whom correspondence should be addressed. Tel: +86 20 84112399; Fax: +86 20 84036551;
| |
Collapse
|
31
|
Dysfunctional tRNA reprogramming and codon-biased translation in cancer. Trends Mol Med 2022; 28:964-978. [PMID: 36241532 PMCID: PMC10071289 DOI: 10.1016/j.molmed.2022.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 12/17/2022]
Abstract
Many cancers hijack translation to increase the synthesis of tumor-driving proteins, the messenger mRNAs of which have specific codon usage patterns. Termed 'codon-biased translation' and originally identified in stress response regulation, this mechanism is supported by diverse studies demonstrating how the 50 RNA modifications of the epitranscriptome, specific tRNAs, and codon-biased mRNAs are used by oncogenic programs to promote proliferation and chemoresistance. The epitranscriptome writers METTL1-WDR4, Elongator complex protein (ELP)1-6, CTU1-2, and ALKBH8-TRM112 illustrate the principal mechanism of codon-biased translation, with gene amplifications, increased RNA modifications, and enhanced tRNA stability promoting cancer proliferation. Furthermore, systems-level analyses of 34 tRNA writers and 493 tRNA genes highlight the theme of tRNA epitranscriptome dysregulation in many cancers and identify candidate tRNA writers, tRNA modifications, and tRNA molecules as drivers of pathological codon-biased translation.
Collapse
|
32
|
Katanski CD, Alshammary H, Watkins CP, Huang S, Gonzales-Reiche A, Sordillo EM, van Bakel H, Lolans K, Simon V, Pan T. tRNA abundance, modification and fragmentation in nasopharyngeal swabs as biomarkers for COVID-19 severity. Front Cell Dev Biol 2022; 10:999351. [PMID: 36393870 PMCID: PMC9664364 DOI: 10.3389/fcell.2022.999351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Emerging and re-emerging respiratory viruses can spread rapidly and cause pandemics as demonstrated by the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The early human immune responses to respiratory viruses are in the nasal cavity and nasopharyngeal regions. Defining biomarkers of disease trajectory at the time of a positive diagnostic test would be an important tool to facilitate decisions such as initiation of antiviral treatment. We hypothesize that nasopharyngeal tRNA profiles could be used to predict Coronavirus Disease 19 (COVID-19) severity. We carried out multiplex small RNA sequencing (MSR-seq) on residual nasopharyngeal swabs to measure simultaneously full-length tRNA abundance, tRNA modifications, and tRNA fragmentation for the human tRNA response to SARS-CoV-2 infection. We identified distinct tRNA signatures associated with mild symptoms versus severe COVID-19 manifestations requiring hospitalization. These results highlight the utility of host tRNA properties as biomarkers for the clinical outcome of SARS-CoV-2.
Collapse
Affiliation(s)
- Christopher D. Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher P. Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Sihao Huang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Ana Gonzales-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Abstract
tRNAs are key adaptor molecules that decipher the genetic code during translation of mRNAs in protein synthesis. In contrast to the traditional view of tRNAs as ubiquitously expressed housekeeping molecules, awareness is now growing that tRNA-encoding genes display tissue-specific and cell type-specific patterns of expression, and that tRNA gene expression and function are both dynamically regulated by post-transcriptional RNA modifications. Moreover, dysregulation of tRNAs, mediated by alterations in either their abundance or function, can have deleterious consequences that contribute to several distinct human diseases, including neurological disorders and cancer. Accumulating evidence shows that reprogramming of mRNA translation through altered tRNA activity can drive pathological processes in a codon-dependent manner. This Review considers the emerging evidence in support of the precise control of functional tRNA levels as an important regulatory mechanism that coordinates mRNA translation and protein expression in physiological cell homeostasis, and highlights key examples of human diseases that are linked directly to tRNA dysregulation.
Collapse
Affiliation(s)
- Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Siegal
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Initiative for RNA Medicine, Harvard University, Boston, MA, USA.
| |
Collapse
|
34
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
35
|
tRNA methylation resolves codon usage bias at the limit of cell viability. Cell Rep 2022; 41:111539. [PMID: 36288695 PMCID: PMC9643105 DOI: 10.1016/j.celrep.2022.111539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/31/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
Codon usage of each genome is closely correlated with the abundance of tRNA isoacceptors. How codon usage bias is resolved by tRNA post-transcriptional modifications is largely unknown. Here we demonstrate that the N1-methylation of guanosine at position 37 (m1G37) on the 3′-side of the anticodon, while not directly responsible for reading of codons, is a neutralizer that resolves differential decoding of proline codons. A genome-wide suppressor screen of a non-viable Escherichia coli strain, lacking m1G37, identifies proS suppressor mutations, indicating a coupling of methylation with tRNA prolyl-aminoacylation that sets the limit of cell viability. Using these suppressors, where prolyl-aminoacylation is decoupled from tRNA methylation, we show that m1G37 neutralizes differential translation of proline codons by the major isoacceptor. Lack of m1G37 inactivates this neutralization and exposes the need for a minor isoacceptor for cell viability. This work has medical implications for bacterial species that exclusively use the major isoacceptor for survival. Masuda et al. show that loss of m1G37 from the 3′ side of the tRNA anticodon renders a modified wobble nucleotide of the anticodon insufficient to decode a set of rare codons, providing a functional underpinning for the “modification circuit” between position 37 and the wobble position of the tRNA anticodon.
Collapse
|
36
|
Arsenite toxicity is regulated by queuine availability and oxidation-induced reprogramming of the human tRNA epitranscriptome. Proc Natl Acad Sci U S A 2022; 119:e2123529119. [PMID: 36095201 PMCID: PMC9499598 DOI: 10.1073/pnas.2123529119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells respond to environmental stress by regulating gene expression at the level of both transcription and translation. The ∼50 modified ribonucleotides of the human epitranscriptome contribute to the latter, with mounting evidence that dynamic regulation of transfer RNA (tRNA) wobble modifications leads to selective translation of stress response proteins from codon-biased genes. Here we show that the response of human hepatocellular carcinoma cells to arsenite exposure is regulated by the availability of queuine, a micronutrient and essential precursor to the wobble modification queuosine (Q) on tRNAs reading GUN codons. Among oxidizing and alkylating agents at equitoxic concentrations, arsenite exposure caused an oxidant-specific increase in Q that correlated with up-regulation of proteins from codon-biased genes involved in energy metabolism. Limiting queuine increased arsenite-induced cell death, altered translation, increased reactive oxygen species levels, and caused mitochondrial dysfunction. In addition to demonstrating an epitranscriptomic facet of arsenite toxicity and response, our results highlight the links between environmental exposures, stress tolerance, RNA modifications, and micronutrients.
Collapse
|
37
|
Jungfleisch J, Böttcher R, Talló-Parra M, Pérez-Vilaró G, Merits A, Novoa EM, Díez J. CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nat Commun 2022; 13:4725. [PMID: 35953468 PMCID: PMC9366759 DOI: 10.1038/s41467-022-31835-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Ample evidence indicates that codon usage bias regulates gene expression. How viruses, such as the emerging mosquito-borne Chikungunya virus (CHIKV), express their genomes at high levels despite an enrichment in rare codons remains a puzzling question. Using ribosome footprinting, we analyze translational changes that occur upon CHIKV infection. We show that CHIKV infection induces codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs with an otherwise optimal codon usage. This reprogramming was mostly apparent at the endoplasmic reticulum, where CHIKV RNAs show high ribosome occupancy. Mechanistically, it involves CHIKV-induced overexpression of KIAA1456, an enzyme that modifies the wobble U34 position in the anticodon of tRNAs, which is required for proper decoding of codons that are highly enriched in CHIKV RNAs. Our findings demonstrate an unprecedented interplay of viruses with the host tRNA epitranscriptome to adapt the host translation machinery to viral production. Viruses completely depend on the host translational machinery, but their genomes are often enriched in rare codons and therefore should be translated with poor efficiency. Here, Jungfleisch et al. apply Ribo-Seq and RNASeq to provide a global view on the translational changes occurring during Chikungunya virus (CHIKV) infection. CHIKV infection induces a codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs via tRNA modification.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - René Böttcher
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Marc Talló-Parra
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Gemma Pérez-Vilaró
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Juana Díez
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
38
|
Watkins CP, Zhang W, Wylder AC, Katanski CD, Pan T. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun 2022; 13:2491. [PMID: 35513407 PMCID: PMC9072684 DOI: 10.1038/s41467-022-30261-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Small RNAs include tRNA, snRNA, micro-RNA, tRNA fragments and others that constitute > 90% of RNA copy numbers in a human cell and perform many essential functions. Popular small RNA-seq strategies limit the insights into coordinated small RNA response to cellular stress. Small RNA-seq also lacks multiplexing capabilities. Here, we report a multiplex small RNA-seq library preparation method (MSR-seq) to investigate cellular small RNA and mRNA response to heat shock, hydrogen peroxide, and arsenite stress. Comparing stress-induced changes of total cellular RNA and polysome-associated RNA, we identify a coordinated tRNA response that involves polysome-specific tRNA abundance and synergistic N3-methylcytosine (m3C) tRNA modification. Combining tRNA and mRNA response to stress we reveal a mechanism of stress-induced down-regulation in translational elongation. We also find that native tRNA molecules lacking several modifications are biased reservoirs for the biogenesis of tRNA fragments. Our results demonstrate the importance of simultaneous investigation of small RNAs and their modifications in response to varying biological conditions.
Collapse
Affiliation(s)
- Christopher P. Watkins
- grid.170205.10000 0004 1936 7822Department of Biochemistry and Molecular Biology, Chicago, IL 60637 USA
| | - Wen Zhang
- grid.170205.10000 0004 1936 7822Department of Chemistry, University of Chicago, Chicago, IL 60637 USA
| | - Adam C. Wylder
- grid.170205.10000 0004 1936 7822Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 USA
| | - Christopher D. Katanski
- grid.170205.10000 0004 1936 7822Department of Biochemistry and Molecular Biology, Chicago, IL 60637 USA
| | - Tao Pan
- grid.170205.10000 0004 1936 7822Department of Biochemistry and Molecular Biology, Chicago, IL 60637 USA
| |
Collapse
|
39
|
Jeong H, Lee Y, Kim J. Structural and functional characterization of TrmM in m 6 A modification of bacterial tRNA. Protein Sci 2022; 31:e4319. [PMID: 35481631 PMCID: PMC9045083 DOI: 10.1002/pro.4319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/14/2023]
Abstract
N6 -methyladenosine (m6 A), widely distributed in both coding and noncoding RNAs, regulates the epigenetic signals and RNA metabolism in eukaryotes. Although this posttranscriptional modification is frequently observed in messenger and ribosomal RNA, it is relatively rare in transfer RNA. In Escherichia coli, TrmM encoded by yfiC is the tRNA-specific N6 methyltransferase, which modifies the A37 residue of tRNAVal (cmo5 UAC) using S-adenosyl-l-methionine as a methyl donor. However, the structure-function relationship of this enzyme is not completely understood. In this report, we determined two x-ray crystal structures of Mycoplasma capricolum TrmM with and without S-adenosyl-l-homocysteine, which is a reaction product. We also demonstrated the cellular and in vitro activities of this enzyme in the m6 A modification of tRNA and the requirement of a divalent metal ion for its function, which is unprecedented in other RNA N6 methyltransferases, including the E. coli TrmM. Our results reveal that the dimeric form of M. capricolum TrmM is important for efficient tRNA binding and catalysis, thereby offering insights into the distinct substrate specificity of the monomeric E. coli homolog.
Collapse
Affiliation(s)
- Hyeonju Jeong
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuKorea
| | - Yeji Lee
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuKorea
| | - Jungwook Kim
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuKorea
| |
Collapse
|
40
|
Kelley M, Paulines MJ, Yoshida G, Myers R, Jora M, Levoy JP, Addepalli B, Benoit JB, Limbach PA. Ionizing radiation and chemical oxidant exposure impacts on Cryptococcus neoformans transfer RNAs. PLoS One 2022; 17:e0266239. [PMID: 35349591 PMCID: PMC8963569 DOI: 10.1371/journal.pone.0266239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mellie June Paulines
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ryan Myers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joel P. Levoy
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Sarid L, Ankri S. Are Metabolites From the Gut Microbiota Capable of Regulating Epigenetic Mechanisms in the Human Parasite Entamoeba histolytica? Front Cell Dev Biol 2022; 10:841586. [PMID: 35300430 PMCID: PMC8921869 DOI: 10.3389/fcell.2022.841586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica inhabits the human gut. It has to adapt to a complex environment that consists of the host microbiota, nutritional stress, oxidative stress, and nitrosative stress. Adaptation to this complex environment is vital for the survival of this parasite. Studies have shown that the host microbiota shapes virulence and stress adaptation in E. histolytica. Increasing evidence suggests that metabolites from the microbiota mediate communication between the parasite and microbiota. In this review, we discuss the bacterial metabolites that regulate epigenetic processes in E. histolytica and the implications that this knowledge may have for the development of new anti-amebic strategies.
Collapse
Affiliation(s)
- Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
42
|
Evke S, Lin Q, Melendez JA, Begley TJ. Epitranscriptomic Reprogramming Is Required to Prevent Stress and Damage from Acetaminophen. Genes (Basel) 2022; 13:genes13030421. [PMID: 35327975 PMCID: PMC8955276 DOI: 10.3390/genes13030421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Epitranscriptomic marks, in the form of enzyme catalyzed RNA modifications, play important gene regulatory roles in response to environmental and physiological conditions. However, little is known with respect to how acute toxic doses of pharmaceuticals influence the epitranscriptome. Here we define how acetaminophen (APAP) induces epitranscriptomic reprogramming and how the writer Alkylation Repair Homolog 8 (Alkbh8) plays a key gene regulatory role in the response. Alkbh8 modifies tRNA selenocysteine (tRNASec) to translationally regulate the production of glutathione peroxidases (Gpx’s) and other selenoproteins, with Gpx enzymes known to play protective roles during APAP toxicity. We demonstrate that APAP increases toxicity and markers of damage, and decreases selenoprotein levels in Alkbh8 deficient mouse livers, when compared to wildtype. APAP also promotes large scale reprogramming of many RNA marks comprising the liver tRNA epitranscriptome including: 5-methoxycarbonylmethyluridine (mcm5U), isopentenyladenosine (i6A), pseudouridine (Ψ), and 1-methyladenosine (m1A) modifications linked to tRNASec and many other tRNA’s. Alkbh8 deficiency also leads to wide-spread epitranscriptomic dysregulation in response to APAP, demonstrating that a single writer defect can promote downstream changes to a large spectrum of RNA modifications. Our study highlights the importance of RNA modifications and translational responses to APAP, identifies writers as key modulators of stress responses in vivo and supports the idea that the epitranscriptome may play important roles in responses to pharmaceuticals.
Collapse
Affiliation(s)
- Sara Evke
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Qishan Lin
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Juan Andres Melendez
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Thomas John Begley
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
- Correspondence:
| |
Collapse
|
43
|
Tyagi W, Pandey V, Pokharel YR. Membrane linked RNA glycosylation as new trend to envision epi-transcriptome epoch. Cancer Gene Ther 2022; 30:641-646. [PMID: 35136215 DOI: 10.1038/s41417-022-00430-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
RNAs play several prominent roles in the cellular environment ranging from structural, messengers, translators, and effector molecules. RNA molecules while performing these roles are associated with several chemical modifications occurring post-transcriptionally, responsible for these supporting vital functions. The recent documentation of surface RNA modification with sialic acid residues has sparked advancement to the framework of RNA modifications. Glycan modification of surface RNA which was previously known to modify only proteins and lipids has opened new vistas to explore how these surface RNA modifications affect the cellular responses and phenotype. This paradigm shift in RNA biology with a vision of "glycans being all over the cells" has posed the field with a repertoire of questions and has given headway to the RNA world hypothesis. The review provides a comprehensive overview of glycoRNA discovery with a conceptual understanding of its previous underlying discoveries and their biological consequences with possible insights into the dynamic influence of this modification on their molecular versatility deciding cancer-immunology fate with potential implications of these glycosylation in cellular interaction, signaling, immune regulation, cancer evasion and proliferation.
Collapse
Affiliation(s)
- Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vivek Pandey
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India.
| |
Collapse
|
44
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
45
|
Zhou JB, Wang ED, Zhou XL. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell Mol Life Sci 2021; 78:7087-7105. [PMID: 34605973 PMCID: PMC11071707 DOI: 10.1007/s00018-021-03948-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Transfer RNAs (tRNAs) harbor the most diverse posttranscriptional modifications. Among such modifications, those in the anticodon loop, either on nucleosides or base groups, compose over half of the identified posttranscriptional modifications. The derivatives of modified nucleotides and the crosstalk of different chemical modifications further add to the structural and functional complexity of tRNAs. These modifications play critical roles in maintaining anticodon loop conformation, wobble base pairing, efficient aminoacylation, and translation speed and fidelity as well as mediating various responses to different stress conditions. Posttranscriptional modifications of tRNA are catalyzed mainly by enzymes and/or cofactors encoded by nuclear genes, whose mutations are firmly connected with diverse human diseases involving genetic nervous system disorders and/or the onset of multisystem failure. In this review, we summarize recent studies about the mechanisms of tRNA modifications occurring at tRNA anticodon loops. In addition, the pathogenesis of related disease-causing mutations at these genes is briefly described.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 93 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
46
|
Cayir A. RNA modifications as emerging therapeutic targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1702. [PMID: 34816607 DOI: 10.1002/wrna.1702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
The field of epitranscriptome, posttranscriptional modifications to RNAs, is still growing up and has presented substantial evidences for the role of RNA modifications in diseases. In terms of new drug development, RNA modifications have a great promise for therapy. For example, more than 170 type of modifications exist in various types of RNAs. Regulatory genes and their roles in critical biological process have been identified and they are associated with several diseases. Current data, for example, identification of inhibitors targeting RNA modifications regulatory genes, strongly support the idea that RNA modifications have potential as emerging therapeutic targets. Therefore, in this review, RNA modifications and regulatory genes were comprehensively documented in terms of drug development by summarizing the findings from previous studies. It was discussed how RNA modifications or regulatory genes can be targeted by altering molecular mechanisms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.,Akershus Universitetssykehus, Medical Department, Lørenskog, Norway
| |
Collapse
|
47
|
Beenstock J, Sicheri F. The structural and functional workings of KEOPS. Nucleic Acids Res 2021; 49:10818-10834. [PMID: 34614169 PMCID: PMC8565320 DOI: 10.1093/nar/gkab865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.
Collapse
Affiliation(s)
- Jonah Beenstock
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
48
|
Jeong H, Kim J. Unique anticodon loop conformation with the flipped-out wobble nucleotide in the crystal structure of unbound tRNA Val. RNA (NEW YORK, N.Y.) 2021; 27:1330-1338. [PMID: 34315814 PMCID: PMC8522699 DOI: 10.1261/rna.078863.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Metals/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Hyeonju Jeong
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
49
|
Kusnadi EP, Timpone C, Topisirovic I, Larsson O, Furic L. Regulation of gene expression via translational buffering. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119140. [PMID: 34599983 DOI: 10.1016/j.bbamcr.2021.119140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022]
Abstract
Translation of an mRNA represents a critical step during the expression of protein-coding genes. As mechanisms governing post-transcriptional regulation of gene expression are progressively unveiled, it is becoming apparent that transcriptional programs are not fully reflected in the proteome. Herein, we highlight a previously underappreciated post-transcriptional mode of regulation of gene expression termed translational buffering. In principle, translational buffering opposes the impact of alterations in mRNA levels on the proteome. We further describe three types of translational buffering: compensation, which maintains protein levels e.g. across species or individuals; equilibration, which retains pathway stoichiometry; and offsetting, which acts as a reversible mechanism that maintains the levels of selected subsets of proteins constant despite genetic alteration and/or stress-induced changes in corresponding mRNA levels. While mechanisms underlying compensation and equilibration have been reviewed elsewhere, the principal focus of this review is on the less-well understood mechanism of translational offsetting. Finally, we discuss potential roles of translational buffering in homeostasis and disease.
Collapse
Affiliation(s)
- Eric P Kusnadi
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Clelia Timpone
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Luc Furic
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
50
|
Fabbri L, Chakraborty A, Robert C, Vagner S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer 2021; 21:558-577. [PMID: 34341537 DOI: 10.1038/s41568-021-00380-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.
Collapse
Affiliation(s)
- Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|