1
|
Kornakov N, Möllers B, Westermann S. The EB1-Kinesin-14 complex is required for efficient metaphase spindle assembly and kinetochore bi-orientation. J Cell Biol 2021; 219:211447. [PMID: 33044553 PMCID: PMC7545359 DOI: 10.1083/jcb.202003072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Kinesin-14s are conserved molecular motors required for high-fidelity chromosome segregation, but their specific contributions to spindle function have not been fully defined. Here, we show that key functions of budding yeast Kinesin-14 Cik1-Kar3 are accomplished in a complex with Bim1 (yeast EB1). Genetic complementation of mitotic phenotypes identifies a novel KLTF peptide motif in the Cik1 N-terminus. We show that this motif is one element of a tripartite binding interface required to form a high-affinity Bim1–Cik1-Kar3 complex. Lack of Bim1-binding by Cik1-Kar3 delays cells in mitosis and impairs microtubule bundle organization and dynamics. Conversely, constitutive targeting of Cik1-Kar3 to microtubule plus ends induces the formation of nuclear microtubule bundles. Cells lacking the Bim1–Cik1-Kar3 complex rely on the conserved microtubule bundler Ase1/PRC1 for metaphase spindle organization, and simultaneous loss of plus-end targeted Kar3 and Ase1 is lethal. Our results reveal the contributions of an EB1–Kinesin-14 complex for spindle formation as a prerequisite for efficient kinetochore clustering and bi-orientation.
Collapse
Affiliation(s)
- Nikolay Kornakov
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian Möllers
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Lu Z, Lin Z. Pervasive and dynamic transcription initiation in Saccharomyces cerevisiae. Genome Res 2019; 29:1198-1210. [PMID: 31076411 PMCID: PMC6633255 DOI: 10.1101/gr.245456.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Transcription initiation is finely regulated to ensure proper expression and function of genes. The regulated transcription initiation in response to various environmental stimuli in a classic model organism Saccharomyces cerevisiae has not been systematically investigated. In this study, we generated quantitative maps of transcription start sites (TSSs) at a single-nucleotide resolution for S. cerevisiae grown in nine different conditions using no-amplification nontagging Cap analysis of gene expression (nAnT-iCAGE) sequencing. We mapped ∼1 million well-supported TSSs, suggesting highly pervasive transcription initiation in the compact genome of the budding yeast. The comprehensive TSS maps allowed us to identify core promoters for ∼96% verified protein-coding genes. We corrected misannotation of translation start codon for 122 genes and suggested an alternative start codon for 57 genes. We found that 56% of yeast genes are controlled by multiple core promoters, and alternative core promoter usage by a gene is widespread in response to changing environments. Most core promoter shifts are coupled with altered gene expression, indicating that alternative core promoter usage might play an important role in controlling gene transcriptional activities. Based on their activities in responding to environmental cues, we divided core promoters into constitutive class (55%) and inducible class (45%). The two classes of core promoters display distinctive patterns in transcriptional abundance, chromatin structure, promoter shape, and sequence context. In summary, our study improved the annotation of the yeast genome and demonstrated a much more pervasive and dynamic nature of transcription initiation in yeast than previously recognized.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| |
Collapse
|
3
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
4
|
Bergman ZJ, Wong J, Drubin DG, Barnes G. Microtubule dynamics regulation reconstituted in budding yeast lysates. J Cell Sci 2018; 132:jcs.219386. [PMID: 30185524 DOI: 10.1242/jcs.219386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/23/2018] [Indexed: 01/14/2023] Open
Abstract
Microtubules (MTs) are important for cellular structure, transport of cargoes and segregation of chromosomes and organelles during mitosis. The stochastic growth and shrinkage of MTs, known as dynamic instability, is necessary for these functions. Previous studies to determine how individual MT-associated proteins (MAPs) affect MT dynamics have been performed either through in vivo studies, which provide limited opportunity for observation of individual MTs or manipulation of conditions, or in vitro studies, which focus either on purified proteins, and therefore lack cellular complexity, or on cell extracts made from genetically intractable organisms. In order to investigate the ensemble activities of all MAPs on MT dynamics using lysates made from a genetically tractable organism, we developed a cell-free assay for budding yeast lysates using total internal reflection fluorescence (TIRF) microscopy. Lysates were prepared from yeast strains expressing GFP-tubulin. MT polymerization from pre-assembled MT seeds adhered to a coverslip was observed in real time. Through use of cell division cycle (cdc) and MT depolymerase mutants, we found that MT polymerization and dynamic instability are dependent on the cell cycle state and the activities of specific MAPs.
Collapse
Affiliation(s)
- Zane J Bergman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Mekhail K. Defining the Damaged DNA Mobility Paradox as Revealed by the Study of Telomeres, DSBs, Microtubules and Motors. Front Genet 2018; 9:95. [PMID: 29616083 PMCID: PMC5869915 DOI: 10.3389/fgene.2018.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic genomes are non-randomly arranged inside the nucleus. Despite this ordered spatial genome organization, damaged DNA exhibits increased random mobility within nuclear space. This increased random movement is thought to promote DNA repair by facilitating homology search, allowing targeting to repair-conducive nuclear domains, or releasing damage from repair-repressive locations. Recent studies focusing on the relationship between telomeres, DNA repair processes, and nuclear organization have revealed that the disruption of motor proteins or microtubules, which typically mediate the directed motion of cargo, disrupts the random mobility of damaged DNA. These findings define a new biological paradox. Here, I define this as the damaged DNA mobility paradox, describe how it uncovers key gaps in knowledge, and highlight key questions to help guide us toward paradox resolution.
Collapse
Affiliation(s)
- Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, University of Toronto, MaRS Centre, Toronto, ON, Canada.,Canada Research Chairs Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Qin L, Guimarães DSPSF, Melesse M, Hall MC. Substrate Recognition by the Cdh1 Destruction Box Receptor Is a General Requirement for APC/CCdh1-mediated Proteolysis. J Biol Chem 2016; 291:15564-74. [PMID: 27226622 DOI: 10.1074/jbc.m116.731190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex, or cyclosome (APC/C), is a ubiquitin ligase that selectively targets proteins for degradation in mitosis and the G1 phase and is an important component of the eukaryotic cell cycle control system. How the APC/C specifically recognizes its substrates is not fully understood. Although well characterized degron motifs such as the destruction box (D-box) and KEN-box are commonly found in APC/C substrates, many substrates apparently lack these motifs. A variety of alternative APC/C degrons have been reported, suggesting either that multiple modes of substrate recognition are possible or that our definitions of degron structure are incomplete. We used an in vivo yeast assay to compare the G1 degradation rate of 15 known substrates of the APC/C co-activator Cdh1 under normal conditions and conditions that impair binding of D-box, KEN-box, and the recently identified ABBA motif degrons to Cdh1. The D-box receptor was required for efficient proteolysis of all Cdh1 substrates, despite the absence of canonical D-boxes in many. In contrast, the KEN-box receptor was only required for normal proteolysis of a subset of substrates and the ABBA motif receptor for a single substrate in our system. Our results suggest that binding to the D-box receptor may be a shared requirement for recognition and processing of all Cdh1 substrates.
Collapse
Affiliation(s)
- Liang Qin
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | | | - Michael Melesse
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Mark C Hall
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
7
|
Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation. EUKARYOTIC CELL 2015; 14:755-74. [PMID: 26024903 DOI: 10.1128/ec.00015-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 02/05/2023]
Abstract
Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development.
Collapse
|
8
|
Sajman J, Zenvirth D, Nitzan M, Margalit H, Simpson-Lavy KJ, Reiss Y, Cohen I, Ravid T, Brandeis M. Degradation of Ndd1 by APC/C(Cdh1) generates a feed forward loop that times mitotic protein accumulation. Nat Commun 2015; 6:7075. [PMID: 25959309 DOI: 10.1038/ncomms8075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 03/31/2015] [Indexed: 01/07/2023] Open
Abstract
Ndd1 activates the Mcm1-Fkh2 transcription factor to transcribe mitotic regulators. The anaphase-promoting complex/cyclosome activated by Cdh1 (APC/C(Cdh1)) mediates the degradation of proteins throughout G1. Here we show that the APC/C(Cdh1) ubiquitinates Ndd1 and mediates its degradation, and that APC/C(Cdh1) activity suppresses accumulation of Ndd1 targets. We confirm putative Ndd1 targets and identify novel ones, many of them APC/C(Cdh1) substrates. The APC/C(Cdh1) thus regulates these proteins in a dual manner—both pretranscriptionally and post-translationally, forming a multi-layered feedforward loop (FFL). We predict by mathematical modelling and verify experimentally that this FFL introduces a lag between APC/C(Cdh1) inactivation at the end of G1 and accumulation of genes transcribed by Ndd1 in G2. This regulation generates two classes of APC/C(Cdh1) substrates, early ones that accumulate in S and late ones that accumulate in G2. Our results show how the dual state APC/C(Cdh1) activity is converted into multiple outputs by interactions between its substrates.
Collapse
Affiliation(s)
- Julia Sajman
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Drora Zenvirth
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mor Nitzan
- 1] The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel [2] The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Hanah Margalit
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Kobi J Simpson-Lavy
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Reiss
- 1] The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel [2] The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,, Jerusalem 9190401, Israel
| | - Itamar Cohen
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,, Jerusalem 9190401, Israel
| | - Tommer Ravid
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,, Jerusalem 9190401, Israel
| | - Michael Brandeis
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
McKnight K, Liu H, Wang Y. Replicative stress induces intragenic transcription of the ASE1 gene that negatively regulates Ase1 activity. Curr Biol 2014; 24:1101-6. [PMID: 24768052 DOI: 10.1016/j.cub.2014.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 02/01/2023]
Abstract
Intragenic transcripts initiate within the coding region of a gene, thereby producing shorter mRNAs and proteins. Although intragenic transcripts are widely expressed [1], their role in the functional regulation of genes remains largely unknown. In budding yeast, DNA replication stress activates the S phase checkpoint that stabilizes replication forks and arrests cells in S phase with a short spindle [2-4]. When yeast cells were treated with hydroxyurea (HU) to block DNA synthesis and induce replication stress, we found that Ase1, a conserved spindle midzone protein [5], appeared as two short protein isoforms in addition to the full-length protein. We further demonstrated that the short isoforms result from intragenic transcription of ASE1, which depends on the S phase checkpoint. Blocking generation of the short isoforms leads to a destabilized S phase spindle, characterized by increased spindle dynamics and frequent spindle collapse. Because the short Ase1 isoforms localize at the spindle in HU-treated cells and overexpression of the short Ase1 isoforms impairs the spindle midzone localization of full-length Ase1, it is likely that the presence of short Ase1 isoforms stabilizes the spindle by antagonizing full-length Ase1. Together, our results reveal intragenic transcription as a unique mechanism to downregulate gene functions in response to DNA replication stress.
Collapse
Affiliation(s)
- Kelly McKnight
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Hong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
10
|
Zhang J, Wan L, Dai X, Sun Y, Wei W. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:277-93. [PMID: 24569229 DOI: 10.1016/j.bbcan.2014.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Baro B, Rodriguez-Rodriguez JA, Calabria I, Hernáez ML, Gil C, Queralt E. Dual Regulation of the mitotic exit network (MEN) by PP2A-Cdc55 phosphatase. PLoS Genet 2013; 9:e1003966. [PMID: 24339788 PMCID: PMC3854864 DOI: 10.1371/journal.pgen.1003966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022] Open
Abstract
Exit from mitosis in budding yeast is triggered by activation of the key mitotic phosphatase Cdc14. At anaphase onset, the protease separase and Zds1 promote the downregulation of PP2ACdc55 phosphatase, which facilitates Cdk1-dependent phosphorylation of Net1 and provides the first wave of Cdc14 activity. Once Cdk1 activity starts to decline, the mitotic exit network (MEN) is activated to achieve full Cdc14 activation. Here we describe how the PP2ACdc55 phosphatase could act as a functional link between FEAR and MEN due to its action on Bfa1 and Mob1. We demonstrate that PP2ACdc55 regulates MEN activation by facilitating Cdc5- and Cdk1-dependent phosphorylation of Bfa1 and Mob1, respectively. Downregulation of PP2ACdc55 initiates MEN activity up to Cdc15 by Bfa1 inactivation. Surprisingly, the premature Bfa1 inactivation observed does not entail premature MEN activation, since an additional Cdk1-Clb2 inhibitory signal acting towards Dbf2-Mob1 activity restrains MEN activity until anaphase. In conclusion, we propose a clear picture of how PP2ACdc55 functions affect the regulation of various MEN components, contributing to mitotic exit. Cell cycle studies over the years have tried to elucidate the molecular mechanisms behind cell division, one of the most highly regulated of all cell processes, which ensures life in all organisms. Protein phosphorylation emerged as a key regulatory mechanism in the cell cycle. The highly conserved family of cyclin-dependent kinases, the Cdks, are considered the main component of the cell cycle control system. However, it has become clear that opposing phosphatases also play a key role in determining the phosphorylation state of the proteins. Cells enter mitosis when mitotic Cdk activity increases, having its pick of activity during metaphase. To exit mitosis, cells must coordinate chromosome segregation with Cdk inactivation processes involving the activation of protein phosphatases. Here we show that the phosphatase PP2A regulates the mitotic exit network (MEN) by counteracting the phosphorylation of Bfa1 and Mob1. Our findings provide new insights into the mechanism by which PP2A-Cdc55 functions affect the regulation of various MEN components that contribute to mitotic exit. The core signalling elements of the MEN, SIN and Hippo pathways are highly conserved. Therefore, studies of MEN regulation will contribute to our understanding of MEN-related pathways in other organisms.
Collapse
Affiliation(s)
- Barbara Baro
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose-Antonio Rodriguez-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - María Luisa Hernáez
- Unidad de Proteómica, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Unidad de Proteómica, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Gibeaux R, Knop M. When yeast cells meet, karyogamy!: an example of nuclear migration slowly resolved. Nucleus 2013; 4:182-8. [PMID: 23715006 DOI: 10.4161/nucl.25021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cytoskeleton-mediated transport processes are central to the subcellular organization of cells. The nucleus constitutes the largest organelle of a cell, and studying how it is positioned and moved around during various types of cell morphogenetic processes has puzzled researchers for a long time. Now, the molecular architectures of the underlying dynamic processes start to reveal their secrets. In yeast, karyogamy denotes the migration of two nuclei toward each other-termed nuclear congression-upon partner cell mating and the subsequent fusion of these nuclei to form a diploid nucleus. It constitutes a well-studied case. Recent insights completed the picture about the molecular processes involved and provided us with a comprehensive model amenable to quantitative computational simulation of the process. This review discusses our understanding of yeast nuclear congression and karyogamy and seeks to explain how a detailed, quantitative and systemic understanding has emerged from this knowledge.
Collapse
Affiliation(s)
- Romain Gibeaux
- European Molecular Biology Laboratory EMBL, Heidelberg, Germany
| | | |
Collapse
|
13
|
Gibeaux R, Politi AZ, Nédélec F, Antony C, Knop M. Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy. Genes Dev 2013; 27:335-49. [PMID: 23388829 DOI: 10.1101/gad.206318.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nuclear migration during yeast karyogamy, termed nuclear congression, is required to initiate nuclear fusion. Congression involves a specific regulation of the microtubule minus end-directed kinesin-14 motor Kar3 and a rearrangement of the cytoplasmic microtubule attachment sites at the spindle pole bodies (SPBs). However, how these elements interact to produce the forces necessary for nuclear migration is less clear. We used electron tomography, molecular genetics, quantitative imaging, and first principles modeling to investigate how cytoplasmic microtubules are organized during nuclear congression. We found that Kar3, with the help of its light chain, Cik1, is anchored during mating to the SPB component Spc72 that also serves as a nucleator and anchor for microtubules via their minus ends. Moreover, we show that no direct microtubule-microtubule interactions are required for nuclear migration. Instead, SPB-anchored Kar3 exerts the necessary pulling forces laterally on microtubules emanating from the SPB of the mating partner nucleus. Therefore, a twofold symmetrical application of the core principle that drives nuclear migration in higher cells is used in yeast to drive nuclei toward each other before nuclear fusion.
Collapse
Affiliation(s)
- Romain Gibeaux
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
14
|
Ostapenko D, Burton JL, Solomon MJ. Identification of anaphase promoting complex substrates in S. cerevisiae. PLoS One 2012; 7:e45895. [PMID: 23049888 PMCID: PMC3458821 DOI: 10.1371/journal.pone.0045895] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/23/2012] [Indexed: 01/26/2023] Open
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is an essential ubiquitin ligase that targets numerous proteins for proteasome-mediated degradation in mitosis and G1. To gain further insight into cellular pathways controlled by APC/CCdh1, we developed two complementary approaches to identify additional APC/CCdh1 substrates in budding yeast. First, we analyzed the stabilities of proteins that were expressed at the same time in the cell cycle as known APC/C substrates. Second, we screened for proteins capable of interacting with the Cdh1 substrate-binding protein in a yeast two-hybrid system. Here we characterize five potential APC/C substrates identified using these approaches: the transcription factors Tos4 and Pdr3; the mRNA processing factor Fir1; the spindle checkpoint protein kinase Mps1; and a protein of unknown function, Ybr138C. Analysis of the degradation motifs within these proteins revealed that the carboxyl-terminal KEN box and D-boxes of Tos4 are important for its interaction with Cdh1, whereas the N-terminal domain of Ybr138C is required for its instability. Functionally, we found that a stabilized form of Mps1 delayed cell division upon mild spindle disruption, and that elevated levels of Ybr138C reduced cell fitness. Interestingly, both Tos4 and Pdr3 have been implicated in the DNA damage response, whereas Mps1 regulates the spindle assembly checkpoint. Thus, the APC/CCdh1-mediated degradation of these proteins may help to coordinate re-entry into the cell cycle following environmental stresses.
Collapse
Affiliation(s)
| | | | - Mark J. Solomon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kim Guisbert KS, Zhang Y, Flatow J, Hurtado S, Staley JP, Lin S, Sontheimer EJ. Meiosis-induced alterations in transcript architecture and noncoding RNA expression in S. cerevisiae. RNA (NEW YORK, N.Y.) 2012; 18:1142-53. [PMID: 22539527 PMCID: PMC3358637 DOI: 10.1261/rna.030510.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Changes in transcript architecture can have powerful effects on protein expression. Regulation of the transcriptome is often dramatically revealed during dynamic conditions such as development. To examine changes in transcript architecture we analyzed the expression and transcript boundaries of protein-coding and noncoding RNAs over the developmental process of meiosis in Saccharomyces cerevisiae. Custom-designed, high-resolution tiling arrays were used to define the time-resolved transcriptome of cells undergoing meiosis and sporulation. These arrays were specifically designed for the S. cerevisiae strain SK1 that sporulates with high efficiency and synchrony. In addition, new methods were created to define transcript boundaries and to identify dynamic changes in transcript expression and architecture over time. Of 8407 total segments, 699 (8.3%) were identified by our algorithm as regions containing potential transcript architecture changes. Our analyses reveal extensive changes to both the coding and noncoding transcriptome, including altered 5' ends, 3' ends, and splice sites. Additionally, 3910 (46.5%) unannotated expressed segments were identified. Interestingly, subsets of unannotated RNAs are located across from introns (anti-introns) or across from the junction between two genes (anti-intergenic junctions). Many of these unannotated RNAs are abundant and exhibit sporulation-specific changes in expression patterns. All work, including heat maps of the tiling array, annotation for the SK1 strain, and phastCONS conservation analysis, is available at http://groups.molbiosci.northwestern.edu/sontheimer/sk1meiosis.php. Our high-resolution transcriptome analyses reveal that coding and noncoding transcript architectures are exceptionally dynamic in S. cerevisiae and suggest a vast array of novel transcriptional and post-transcriptional control mechanisms that are activated upon meiosis and sporulation.
Collapse
Affiliation(s)
- Karen S. Kim Guisbert
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Yong Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Jared Flatow
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Sara Hurtado
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Jonathan P. Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Simon Lin
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Erik J. Sontheimer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding author.E-mail .
| |
Collapse
|
16
|
Barford D. Structural insights into anaphase-promoting complex function and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 366:3605-24. [PMID: 22084387 DOI: 10.1098/rstb.2011.0069] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.
Collapse
Affiliation(s)
- David Barford
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
17
|
Jin F, Liu H, Li P, Yu HG, Wang Y. Loss of function of the Cik1/Kar3 motor complex results in chromosomes with syntelic attachment that are sensed by the tension checkpoint. PLoS Genet 2012; 8:e1002492. [PMID: 22319456 PMCID: PMC3271067 DOI: 10.1371/journal.pgen.1002492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/06/2011] [Indexed: 11/24/2022] Open
Abstract
The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments. Chromosome bipolar attachment occurs when sister chromatids are attached by microtubules emanating from opposite spindle poles and is essential for faithful sister-chromatid segregation. Chromosomes are under tension once bipolar attachment is established. The absence of tension is sensed by the tension checkpoint that prevents chromosome segregation. The attachment of sister chromatids by microtubules from the same spindle pole generates syntelic attachment, which fails to generate tension on chromosomes. However, a reliable method to induce syntelic attachment is not available. Our findings indicate that the inactivation of the motor complex, Cik1/Kar3, results in chromosomes with syntelic attachment in budding yeast. In the absence of the tension checkpoint, yeast cells with dysfunctional Cik1/Kar3 enter anaphase, resulting in co-segregation of sister chromatids. Therefore, with this method we can experimentally induce syntelic attachment in yeast and investigate how cells respond to this incorrect attachment.
Collapse
Affiliation(s)
- Fengzhi Jin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Hong Liu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Ping Li
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Martinez JS, Hall H, Bartolowits MD, Hall MC. Acm1 contributes to nuclear positioning by inhibiting Cdh1-substrate interactions. Cell Cycle 2012; 11:384-94. [PMID: 22189709 DOI: 10.4161/cc.11.2.18944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The anaphase-promoting complex (APC) is tightly regulated during cell division, often by pseudosubstrate binding to its coactivators Cdh1 and Cdc20. Budding yeast Acm1 is a Cdh1 pseudosubstrate inhibitor whose biological function is unknown. We show here that cells lacking Acm1 have defects in nuclear positioning and spindle morphology during mitosis. However, Cdh1 substrates are not destabilized in the absence of Acm1 and expression of inactive Cdh1 mutants that retain substrate binding is sufficient for the acm1 phenotype. We conclude that Acm1 is not required to inhibit APC(Cdh1) activity but rather prevents untimely Cdh1-substrate interactions. We further provide evidence suggesting that the substrate primarily responsible for the acm1 phenotype is the bud neck-localized kinase, Hsl1. Our results imply that at least some coactivator-substrate interactions require regulation. Several unrelated APC pseudosubstrates have been identified in diverse eukaryotes and their ability to simultaneously inhibit enzymatic activity and substrate binding may partly explain why this regulatory mechanism has been selected repeatedly during evolution.
Collapse
Affiliation(s)
- Juan S Martinez
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
19
|
Meyer HJ, Rape M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol 2011; 22:544-50. [PMID: 21477659 PMCID: PMC3201729 DOI: 10.1016/j.semcdb.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Progression through mitosis requires the sequential ubiquitination of cell cycle regulators by the anaphase-promoting complex, resulting in their proteasomal degradation. Although several mechanisms contribute to APC/C regulation during mitosis, the APC/C is able to discriminate between its many substrates by exploiting differences in the processivity of ubiquitin chain assembly. Here, we discuss how the APC/C achieves processive ubiquitin chain formation to trigger the sequential degradation of cell cycle regulators during mitosis.
Collapse
Affiliation(s)
- Hermann-Josef Meyer
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
| | - Michael Rape
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
| |
Collapse
|
20
|
Chen CJ, Rayment I, Gilbert SP. Kinesin Kar3Cik1 ATPase pathway for microtubule cross-linking. J Biol Chem 2011; 286:29261-29272. [PMID: 21680740 DOI: 10.1074/jbc.m111.255554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kar3Cik1 is a Saccharomyces cerevisiae kinesin-14 that functions to shorten cytoplasmic microtubules (MTs) during yeast mating yet maintains mitotic spindle stability by cross-linking anti-parallel interpolar MTs. Kar3 contains both an ATP- and a MT-binding site, yet there is no evidence of a nucleotide-binding site in Cik1. Presteady-state and steady-state kinetic experiments were pursued to define the regulation of Kar3Cik1 interactions with the MT lattice expected during interpolar MT cross-linking. The results reveal that association of Kar3Cik1 with the MT occurs at 4.9 μM(-1) s(-1), followed by a 5-s(-1) structural transition that limits ADP release from the Kar3 head. Mant-ATP binding occurred at 2.1 μM(-1) s(-1), and the pulse-chase experiments revealed an ATP-promoted isomerization at 69 s(-1). ATP hydrolysis was observed as a rapid step at 26 s(-1) and was required for the Kar3Cik1 motor to detach from MT. The conformational change at 5 s(-1) that occurred after Kar3Cik1 MT association and prior to ADP release was hypothesized to be the rate-limiting step for steady-state ATP turnover. We propose a model in which Kar3Cik1 interacts with the MT lattice through an alternating cycle of Cik1 MT collision followed by Kar3 MT binding with head-head communication between Kar3 and Cik1 modulated by the Kar3 nucleotide state and intramolecular strain.
Collapse
Affiliation(s)
- Chun Ju Chen
- Department of Biology and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Susan P Gilbert
- Department of Biology and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and.
| |
Collapse
|
21
|
Ostapenko D, Solomon MJ. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. Mol Biol Cell 2011; 22:2175-84. [PMID: 21562221 PMCID: PMC3128521 DOI: 10.1091/mbc.e11-01-0031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The anaphase-promoting complex is a ubiquitin ligase that promotes the degradation of
numerous cell cycle regulators during mitosis and in G1. This report identifies two transcriptional repressors—Nrm1 and Yhp1—as novel APC substrates in budding yeast. In the absence of their degradation, target genes are misexpressed and cell fitness is reduced. The anaphase-promoting complex/cyclosome (APC/C) is an essential ubiquitin ligase that targets cell cycle proteins for proteasome-mediated degradation in mitosis and G1. The APC regulates a number of cell cycle processes, including spindle assembly, mitotic exit, and cytokinesis, but the full range of its functions is still unknown. To better understand cellular pathways controlled by the APC, we performed a proteomic screen to identify additional APC substrates. We analyzed cell cycle–regulated proteins whose expression peaked during the period when other APC substrates were expressed. Subsequent analysis identified several proteins, including the transcriptional repressors Nrm1 and Yhp1, as authentic APC substrates. We found that APCCdh1 targeted Nrm1 and Yhp1 for degradation in early G1 through Destruction-box motifs and that the degradation of these repressors coincided with transcriptional activation of MBF and Mcm1 target genes, respectively. In addition, Nrm1 was stabilized by phosphorylation, most likely by the budding yeast cyclin–dependent protein kinase, Cdc28. We found that expression of stabilized forms of Nrm1 and Yhp1 resulted in reduced cell fitness, due at least in part to incomplete activation of G1-specific genes. Therefore, in addition to its known functions, APC-mediated targeting of Nrm1 and Yhp1 coordinates transcription of multiple genes in G1 with other cell cycle events.
Collapse
Affiliation(s)
- Denis Ostapenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
22
|
Song L, Rape M. Substrate-specific regulation of ubiquitination by the anaphase-promoting complex. Cell Cycle 2011; 10:52-6. [PMID: 21191176 DOI: 10.4161/cc.10.1.14387] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
By orchestrating the sequential degradation of a large number of cell cycle regulators, the ubiquitin ligase anaphase-promoting complex (APC/C) is essential for proliferation in all eukaryotes. The correct timing of APC/C-dependent substrate degradation, a critical feature of progression through mitosis, was long known to be controlled by mechanisms targeting the core APC/C-machinery. Recent experiments, however, have revealed an important contribution of substrate-specific regulation of the APC/C to achieve accurate cell division. In this perspective, we describe different mechanisms of substrate-specific APC/C-regulation and discuss their importance for cell division.
Collapse
Affiliation(s)
- Ling Song
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
23
|
Abstract
AbstractThe complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.
Collapse
|
24
|
Matyskiela ME, Rodrigo-Brenni MC, Morgan DO. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. J Biol 2010; 8:92. [PMID: 19874575 PMCID: PMC2790831 DOI: 10.1186/jbiol184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The anaphase-promoting complex (APC) is a ubiquitin-protein ligase required for the completion of mitosis in all eukaryotes. Recent mechanistic studies reveal how this remarkable enzyme combines specificity in substrate binding with flexibility in ubiquitin transfer, thereby allowing the modification of multiple lysines on the substrate as well as specific lysines on ubiquitin itself.
Collapse
Affiliation(s)
- Mary E Matyskiela
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
25
|
Robbins JA, Cross FR. Requirements and reasons for effective inhibition of the anaphase promoting complex activator CDH1. Mol Biol Cell 2010; 21:914-25. [PMID: 20089834 PMCID: PMC2836972 DOI: 10.1091/mbc.e09-10-0901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inhibitory phosphorylation of Cdh1 by CDK and Polo kinase has been proposed to inactivate APC-Cdh1. Through an exact gene replacement approach, we find CDK, but not Polo, phosphorylation of Cdh1 to be a critical regulatory mechanism. APC-Cdh1 inhibits multiple aspects of spindle morphogenesis, and its activity is modulated by endogenous ACM1. Anaphase promoting complex (APC)-Cdh1 targets multiple mitotic proteins for degradation upon exit from mitosis into G1; inhibitory phosphorylation of Cdh1 by cyclin-dependent kinase (CDK) and Polo kinase has been proposed to prevent the premature degradation of substrates in the ensuing cell cycle. Here, we demonstrate essentiality of CDK phosphorylation of Cdh1 in Saccharomyces cerevisiae by exact endogenous gene replacement of CDH1 with CDK-unphosphorylatable CDH1-m11; in contrast, neither Cdh1 polo kinase sites nor polo interaction motifs are required. CDH1-m11 cells arrest in the first cycle with replicated DNA and sustained polarized growth; most cells have monopolar spindles. Blocking proteolysis of the Cin8 kinesin in CDH1-m11 cells does not promote spindle pole body (SPB) separation. In contrast, expression of undegradable mitotic cyclin results in both SPB separation and the restoration of isotropic growth. A minority of CDH1-m11 cells arrest with short bipolar spindles that fail to progress to anaphase; this can be accounted for by a failure to accumulate Cdc20 and consequent failure to cleave cohesin. Bipolar spindle assembly in CDH1-m11 cells is strikingly sensitive to gene dosage of the stoichiometric Cdh1 inhibitor ACM1. Thus, different spindle-regulatory pathways have distinct sensitivities to Cdh1, and ACM1 may buffer essential CDK phosphorylation of Cdh1.
Collapse
|
26
|
Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 2009; 10:765-77. [PMID: 19851335 DOI: 10.1038/nrm2782] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|