1
|
Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y, Tang J. SKP1-CUL1-F-box: Key molecular targets affecting disease progression. FASEB J 2025; 39:e70326. [PMID: 39812503 PMCID: PMC11734646 DOI: 10.1096/fj.202402816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors. This paper provides a comprehensive overview of the functional characteristics of SCF complexes, encompassing their assembly, disassembly, and regulatory factors. Furthermore, we discuss the diverse effects of SCF on crucial cellular processes such as cell cycle progression, DNA replication, oxidative stress response, cell proliferation, apoptosis, cell differentiation, maintenance of stem cell characteristics, tissue development, circadian rhythm regulation, and immune response modulation. Additionally, we summarize the associations between SCF and the onset, progression, and prognosis of malignant tumors. By synthesizing current knowledge, this review aims to offer a novel perspective for a holistic and systematic understanding of SCF complexes and their multifaceted functions in cellular physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Xiangrong Zeng
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Juan Xu
- Department of Critical Care MedicinThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Hunan Cancer HospitalChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiChina
| | - Chen Long
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingqiong Tang
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Etingov I, Pintel DJ. Inactivation of checkpoint kinase 1 (Chk1) during parvovirus minute virus of mice (MVM) infection inhibits cellular homologous recombination repair and facilitates viral genome replication. J Virol 2024; 98:e0088924. [PMID: 39565136 DOI: 10.1128/jvi.00889-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
During infection, the autonomous parvovirus minute virus of mice (MVM) induces cellular DNA breaks and localizes to such sites, which presumably affords an environment beneficial for genome replication. MVM replication also benefits from the DNA damage response (DDR) mediated by the ataxia-telangiectasia mutated (ATM) kinase, while the ataxia telangiectasia and Rad-3 related (ATR) arm of the DDR is disabled, which prevents activation of its primary target, checkpoint kinase 1 (Chk1). We find here that Chk1 inactivation strongly correlates with dephosphorylation of one of its targets, RAD51, known to play a pivotal role in homologous recombination repair (HRR), thus leading to substantial inhibition of DNA repair in infected cells. We demonstrate colocalization of replicating MVM DNA with cellular double-strand breaks (DSBs) during infection, and show that an agent that exogenously induces cellular DSBs significantly increases viral DNA replication levels, establishing a role for cellular genome damage in facilitating virus DNA replication. Additionally, overexpression of active Chk1 during MVM infection was found to re-establish the activating phosphorylation of RAD51 Thr 309, significantly suppress infection-induced reduction of HRR efficiency with a concomitant increase in cellular genome DSBs, and reduce viral DNA replication levels. Thus, we conclude that during infection, MVM inhibition of Chk1 activation enhances viral replication, at least in part, by inhibiting cellular HRR.IMPORTANCEThe autonomous parvovirus minute virus of mice (MVM) has a compact DNA genome encoding a minimum number of proteins. During infection, it induces cellular DNA damage and both utilizes and modifies the subsequent cellular DNA damage response (DDR) in various ways to facilitate its replication. One of MVM's activities in this regard is to inhibit one of the primary arms of the DDR, the ataxia telangiectasia and Rad-3 related (ATR) pathway, which prevents activation of checkpoint kinase 1 (Chk1), a key protein involved in controlling the cellular DDR and preserving genome integrity. We show that prevention by MVM of Chk1 activation leads to inhibition of homologous recombination repair (HRR) of cellular DNA, which helps sustain viral replication. This work illuminates another way in which autonomous parvoviruses adjust the cellular environment for their replicative advantage.
Collapse
Affiliation(s)
- Igor Etingov
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA
| |
Collapse
|
3
|
Hernández-Carralero E, Quinet G, Freire R. ATXN3: a multifunctional protein involved in the polyglutamine disease spinocerebellar ataxia type 3. Expert Rev Mol Med 2024; 26:e19. [PMID: 39320846 PMCID: PMC11440613 DOI: 10.1017/erm.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 09/26/2024]
Abstract
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Grégoire Quinet
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Chen Y, Dai R, Cheng M, Wang W, Liu C, Cao Z, Ge Y, Wang Y, Zhang L. Status and role of the ubiquitin-proteasome system in renal fibrosis. Biomed Pharmacother 2024; 178:117210. [PMID: 39059348 DOI: 10.1016/j.biopha.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanjiao Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zeping Cao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yong Ge
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
Wang J, Liu Y, Wu D, Tian C, Gao J, Yang Q, Hong X, Gu F, Zhang K, Hu Y, Xu S, Liu L, Zeng Y. OTUB1 Targets CHK1 for Deubiquitination and Stabilization to Facilitate Lung Cancer Progression and Radioresistance. Int J Radiat Oncol Biol Phys 2024; 119:1222-1233. [PMID: 38266782 DOI: 10.1016/j.ijrobp.2024.01.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Radioresistance of lung cancer poses a significant challenge when it comes to the treatment of advanced, recurrent, and metastatic cases. Ovarian tumor domain ubiquitin aldehyde binding 1 (OTUB1) is a key member of the deubiquitinase OTU superfamily. This protein is involved in various cellular functions, including cell proliferation, iron death, lipid metabolism, and cytokine secretion as well as immune response processes. However, its specific role and molecular mechanism in lung cancer radioresistance remain to be clarified. METHODS AND MATERIALS The expression levels of OTUB1 in paired lung cancer tissues were determined by immunohistochemistry. In vitro and in vivo experiments were conducted to investigate the impact of OTUB1 on the growth and proliferation of lung cancer. Coimmunoprecipitation and Western blotting techniques were performed to examine the interaction between OTUB1 and CHK1. The DNA damage response was measured by comet tailing and immunofluorescence staining. KEGG pathways and Gene Ontology terms were analyzed based on RNA sequencing. RESULTS Our findings reveal a high frequency of OTUB1 overexpression, which is associated with an unfavorable prognosis in patients with lung cancer. Through comprehensive investigations, we demonstrate that OTUB1 depletion impairs the process of DNA damage repair and overcomes radioresistance. In terms of the underlying mechanism, our study uncovers that OTUB1 deubiquitinates and stabilizes CHK1, which enhances CHK1 stability, thereby regulating DNA damage and repair. Additionally, we identify CHK1 as the primary downstream effector responsible for mediating the functional effects exerted by OTUB1 specifically in lung cancer. Importantly, OTUB1 has the potential to be a valuable marker for improving the efficacy of radiation therapy for lung adenocarcinoma. CONCLUSIONS These findings unveil a novel role for OTUB1 in enhancing radioresistance by deubiquitination and stabilization of the expression of CHK1 in lung cancer and indicate that targeting OTUB1 holds great potential as an effective therapeutic approach for enhancing the efficacy of radiation therapy in lung cancer.
Collapse
Affiliation(s)
- Juanjuan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Di Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Jiaqi Gao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China.
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Michki SN, Singer BD, Perez JV, Thomas AJ, Natale V, Helmin KA, Wright J, Cheng L, Young LR, Lederman HM, McGrath-Morrow SA. Transcriptional profiling of peripheral blood mononuclear cells identifies inflammatory phenotypes in Ataxia Telangiectasia. Orphanet J Rare Dis 2024; 19:67. [PMID: 38360726 PMCID: PMC10870445 DOI: 10.1186/s13023-024-03073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.
Collapse
Affiliation(s)
- Sylvia N Michki
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier V Perez
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron J Thomas
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Natale
- Forgotten Diseases Research Foundation, Santa Clara, CA, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jennifer Wright
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leon Cheng
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard M Lederman
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon A McGrath-Morrow
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Erzurumlu Y, Dogan HK, Catakli D. New mode of action of curcumin on prostate cancer cells: Modulation of endoplasmic reticulum-associated degradation mechanism and estrogenic signaling. J Biochem Mol Toxicol 2024; 38:e23636. [PMID: 38229314 DOI: 10.1002/jbt.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Prostate cancer is leading to cancer-related mortality in numerous men each year worldwide. While there are several treatment options, acquired drug resistance mostly limits the success of treatments. Therefore, there is a need for the development of innovative treatments. Curcumin is one of the bioactive polyphenolic ingredients identified in turmeric and has numerous biological activities, such as anti-inflammatory and anticancer. In the present study, we investigated the effect of curcumin on the ER-associated degradation (ERAD) and estrogenic signaling in prostate cancer cells. The antiproliferative effect of curcumin on human androgen-dependent prostate cancer cell lines LNCaP and VCaP was estimated by WST-1 assay. Morphological alterations were investigated with an inverted microscope. We investigated the effect of curcumin on ERAD and estrogen signaling proteins by immunoblotting assay. To evaluate the impact of curcumin on endoplasmic reticulum (ER) protein quality-related, the expression level of 32 genes was analyzed by quantitative reverse transcription polymerase chain reaction. The nuclear translocation of estrogen receptor was examined by nuclear fractionation and immunofluorescence microscopy. We found that curcumin effectively reduced the proliferation rates of LNCaP and VCaP cells. ERAD proteins; Hrd1, gp78, p97/VCP, Ufd1 and Npl4 were strongly induced by curcumin. Also, the steady-state level of polyubiquitin was increased in a dose-dependent manner in both cell lines. Curcumin administration remarkably decreased the protein levels of estrogen receptor-alfa (Erα), whereas estrogen receptor-beta unaffected. Additionally, curcumin strongly restricted the nuclear translocation of Erα. Present data suggest that curcumin may be effectively used in therapeutic approaches associated with the targeting ER protein quality control mechanism and modulation of estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Chowdhury SR, Chuong P, Mgbemena VE, Statsyuk A. Development of a PROTAC Targeting Chk1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573733. [PMID: 38260247 PMCID: PMC10802242 DOI: 10.1101/2023.12.30.573733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A series of Chk1 degraders were designed and synthesized. The degraders were developed through the conjugation of a promiscuous kinase binder and thalidomide. One of the degraders PROTAC-2 was able to decrease Chk1 levels in a concentration-dependent manner in A375 cells. The developed probes can be useful for the development of selective and more potent Chk1 degraders.
Collapse
Affiliation(s)
- Sandipan Roy Chowdhury
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health 2, 4349 Martin Luther King Boulevard, Houston, Texas, 77204
| | - Patrick Chuong
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health 2, 4349 Martin Luther King Boulevard, Houston, Texas, 77204
| | - Victoria E Mgbemena
- Department of Biology, MD and S Brailsford College of Arts and Sciences, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Alexander Statsyuk
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health 2, 4349 Martin Luther King Boulevard, Houston, Texas, 77204
| |
Collapse
|
9
|
Li L, Wang L, Liu D, Zhao Y. BRD7 suppresses tumor chemosensitivity to CHK1 inhibitors by inhibiting USP1-mediated deubiquitination of CHK1. Cell Death Discov 2023; 9:313. [PMID: 37626049 PMCID: PMC10457387 DOI: 10.1038/s41420-023-01611-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Checkpoint kinase 1 (CHK1), a key effector in the cellular response to DNA lesions, is a crucial component of all cell cycle checkpoints. Recent reports have revealed that CHK1 is highly expressed in numerous cancer types in the clinical settings. However, the mechanisms underlying the regulation of CHK1 expression in tumor cells remain unclear. Here, we report that CHK1 is negatively regulated by the bromodomain-containing protein 7 (BRD7). Specifically, BRD7 silencing increased CHK1 (but not CHK2) expression at both mRNA and protein levels, in a p53-independent manner in multiple tumor cell lines. Furthermore, BRD7 silencing stabilized CHK1 via reducing its ubiquitination. Mechanistically, BRD7 knockdown not only increased the levels of USP1, a deubiquitinase for CHK1, but also promoted the interaction between CHK1 and USP1, subsequently enhancing the de-ubiquitination of CHK1. USP1 knockdown abrogated BRD7 silencing-induced CHK1 induction. Biologically, the increased expression of CHK1 in tumor cells caused by BRD7 silencing significantly increased cell sensitivity to CHK1 inhibitors by enhancing tumor cell apoptosis, and this effect was reversed by the simultaneous knockdown of CHK1 or USP1. Taken together, our findings suggest that BRD7 is a potential genetic or drug target that may help to improve the efficacy of chemotherapeutic drugs targeting CHK1 in combinatorial therapy.
Collapse
Affiliation(s)
- Lemin Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Linchen Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Casimir L, Zimmer S, Racine-Brassard F, Goudreau F, Jacques PÉ, Maréchal A. Chronic treatment with ATR and CHK1 inhibitors does not substantially increase the mutational burden of human cells. Mutat Res 2023; 827:111834. [PMID: 37531716 DOI: 10.1016/j.mrfmmm.2023.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
DNA replication stress (RS) entails the frequent slow down and arrest of replication forks by a variety of conditions that hinder accurate and processive genome duplication. Elevated RS leads to genome instability, replication catastrophe and eventually cell death. RS is particularly prevalent in cancer cells and its exacerbation to unsustainable levels by chemotherapeutic agents remains a cornerstone of cancer treatments. The adverse consequences of RS are normally prevented by the ATR and CHK1 checkpoint kinases that stabilize stressed forks, suppress origin firing and promote cell cycle arrest when replication is perturbed. Specific inhibitors of these kinases have been developed and shown to potentiate RS and cell death in multiple in vitro cancer settings. Ongoing clinical trials are now probing their efficacy against various cancer types, either as single agents or in combination with mainstay chemotherapeutics. Despite their promise as valuable additions to the anti-cancer pharmacopoeia, we still lack a genome-wide view of the potential mutagenicity of these new drugs. To investigate this question, we performed chronic long-term treatments of TP53-depleted human cancer cells with ATR and CHK1 inhibitors (ATRi, AZD6738/ceralasertib and CHK1i, MK8776/SCH-900776). ATR or CHK1 inhibition did not significantly increase the mutational burden of cells, nor generate specific mutational signatures. Indeed, no notable changes in the numbers of base substitutions, short insertions/deletions and larger scale rearrangements were observed despite induction of replication-associated DNA breaks during treatments. Interestingly, ATR inhibition did induce a slight increase in closely-spaced mutations, a feature previously attributed to translesion synthesis DNA polymerases. The results suggest that ATRi and CHK1i do not have substantial mutagenic effects in vitro when used as standalone agents.
Collapse
Affiliation(s)
- Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Racine-Brassard
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Goudreau
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| |
Collapse
|
11
|
Peng Q, Shi X, Li D, Guo J, Zhang X, Zhang X, Chen Q. SCML2 contributes to tumor cell resistance to DNA damage through regulating p53 and CHK1 stability. Cell Death Differ 2023; 30:1849-1867. [PMID: 37353627 PMCID: PMC10307790 DOI: 10.1038/s41418-023-01184-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/20/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
SCML2 has been found to be highly expressed in various tumors. However, the extent to which SCML2 is involved in tumorigenesis and cancer therapy is yet to be fully understood. In this study, we aimed to investigate the relationship between SCML2 and DNA damage response (DDR). Firstly, DNA damage stabilizes SCML2 through CHK1-mediated phosphorylation at Ser570. Functionally, this increased stability of SCML2 enhances resistance to DNA damage agents in p53-positive, p53-mutant, and p53-negative cells. Notably, SCML2 promotes chemoresistance through distinct mechanisms in p53-positive and p53-negative cancer cells. SCML2 binds to the TRAF domain of USP7, and Ser441 is a critical residue for their interaction. In p53-positive cancer cells, SCML2 competes with p53 for USP7 binding and destabilizes p53, which prevents DNA damage-induced p53 overactivation and increases chemoresistance. In p53-mutant or p53-negative cancer cells, SCML2 promotes CHK1 and p21 stability by inhibiting their ubiquitination, thereby enhancing the resistance to DNA damage agents. Interestingly, we found that SCML2A primarily stabilizes CHK1, while SCML2B regulates the stability of p21. Therefore, we have identified SCML2 as a novel regulator of chemotherapy resistance and uncovered a positive feedback loop between SCML2 and CHK1 after DNA damage, which serves to promote the chemoresistance to DNA damage agents.
Collapse
Affiliation(s)
- Qianqian Peng
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Xin Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Dingwei Li
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Jing Guo
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Xiaqing Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China
| | - Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, PR China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Qiang Chen
- Department of Radiation and Medical Oncology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, PR China.
| |
Collapse
|
12
|
Guo L, Dong Z, Zhang X, Yang Y, Hu X, Ji Y, Li C, Wan S, Xu J, Liu C, Zhang Y, Liu L, Shi Y, Wu Z, Liu Y, Cui H. Morusinol extracted from Morus alba induces cell cycle arrest and apoptosis via inhibition of DNA damage response in melanoma by CHK1 degradation through the ubiquitin-proteasome pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154765. [PMID: 37004403 DOI: 10.1016/j.phymed.2023.154765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUD Flavonoids have a variety of biological activities, such as anti-inflammation, anti-tumor, anti-thrombosis and so on. Morusinol, as a novel isoprene flavonoid extracted from Morus alba root barks, has the effects of anti-arterial thrombosis and anti-inflammatory in previous studies. However, the anti-cancer mechanism of morusinol remains unclear. PURPOSE In present study, we mainly studied the anti-tumor effect of morusinol and its mode of action in melanoma. METHODS The anti-cancer effect of morusinol on melanoma were evaluated by using the MTT, EdU, plate clone formation and soft agar assay. Flow cytometry was used for detecting cell cycle and apoptosis. The ɣ-H2AX immunofluorescence and the alkaline comet assay were used to detect DNA damage and the Western blotting analysis was used to investigate the expressions of DNA-damage related proteins. Ubiquitination and turnover of CHK1 were also detected by using the immunoprecipitation assay. The cell line-derived xenograft (CDX) mouse models were used in vivo to evaluate the effect of morusinol on tumorigenicity. RESULTS We demonstrated that morusinol not only had the ability to inhibit cell proliferation, but also induced cell cycle arrest at G0/G1 phase, caspase-dependent apoptosis and DNA damage in human melanoma cells. In addition, morusinol effectively inhibited the growth of melanoma xenografts in vivo. More strikingly, CHK1, which played an important role in maintaining the integrity of cell cycle, genomic stability and cell viability, was down-regulated in a dose- and time-dependent manner after morusinol treatment. Further research showed that CHK1 was degraded by the ubiquitin-proteasome pathway. Whereafter, morusinol-induced cell cycle arrest, apoptosis and DNA damage were partially salvaged by overexpressing CHK1 in melanoma cell lines. Herein, further experiments demonstrated that morusinol increased the sensitivity of dacarbazine (DTIC) to chemotherapy for melanoma in vitro and in vivo. CONCLUSION Morusinol induces CHK1 degradation through the ubiquitin-proteasome pathway, thereby inducing cell cycle arrest, apoptosis and DNA damage response in melanoma. Our study firstly provided a theoretical basis for morusinol to be a candidate drug for clinical treatment of cancer, such as melanoma, alone or combinated with dacarbazine.
Collapse
Affiliation(s)
- Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China; State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Zhen Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China; Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Xiaolin Zhang
- Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yuanmiao Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Sicheng Wan
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Jie Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Yaqiong Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Zonghui Wu
- Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China; Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
13
|
Mayca Pozo F, Geng X, Miyagi M, Amin AL, Huang AY, Zhang Y. MYO10 regulates genome stability and cancer inflammation through mediating mitosis. Cell Rep 2023; 42:112531. [PMID: 37200188 PMCID: PMC10293887 DOI: 10.1016/j.celrep.2023.112531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
Genomic instability can promote inflammation and tumor development. Previous research revealed an unexpected layer of regulation of genomic instability by a cytoplasmic protein MYO10; however, the underlying mechanism remained unclear. Here, we report a protein stability-mediated mitotic regulation of MYO10 in controlling genome stability. We characterized a degron motif and phosphorylation residues in the degron that mediate β-TrCP1-dependent MYO10 degradation. The level of phosphorylated MYO10 protein transiently increases during mitosis, which is accompanied by a spatiotemporal cellular localization change first accumulating at the centrosome then at the midbody. Depletion of MYO10 or expression of MYO10 degron mutants, including those found in cancer patients, disrupts mitosis, increases genomic instability and inflammation, and promotes tumor growth; however, they also increase the sensitivity of cancer cells to Taxol. Our studies demonstrate a critical role of MYO10 in mitosis progression, through which it regulates genome stability, cancer growth, and cellular response to mitotic toxins.
Collapse
Affiliation(s)
- Franklin Mayca Pozo
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Xinran Geng
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Amanda L Amin
- Division of Surgical Oncology, Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alex Y Huang
- Center for Pediatric Immunotherapy at Rainbow, Angie Fowler AYA Cancer Institute, University Hospitals, Cleveland, OH 44106, USA; Division of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA; Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Pai CC, Durley SC, Cheng WC, Chiang NY, Peters J, Kasparek T, Blaikley E, Wee BY, Walker C, Kearsey SE, Buffa F, Murray JM, Humphrey TC. Homologous recombination suppresses transgenerational DNA end resection and chromosomal instability in fission yeast. Nucleic Acids Res 2023; 51:3205-3222. [PMID: 36951111 PMCID: PMC10123110 DOI: 10.1093/nar/gkad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
Chromosomal instability (CIN) drives cell-to-cell heterogeneity, and the development of genetic diseases, including cancer. Impaired homologous recombination (HR) has been implicated as a major driver of CIN, however, the underlying mechanism remains unclear. Using a fission yeast model system, we establish a common role for HR genes in suppressing DNA double-strand break (DSB)-induced CIN. Further, we show that an unrepaired single-ended DSB arising from failed HR repair or telomere loss is a potent driver of widespread CIN. Inherited chromosomes carrying a single-ended DSB are subject to cycles of DNA replication and extensive end-processing across successive cell divisions. These cycles are enabled by Cullin 3-mediated Chk1 loss and checkpoint adaptation. Subsequent propagation of unstable chromosomes carrying a single-ended DSB continues until transgenerational end-resection leads to fold-back inversion of single-stranded centromeric repeats and to stable chromosomal rearrangements, typically isochromosomes, or to chromosomal loss. These findings reveal a mechanism by which HR genes suppress CIN and how DNA breaks that persist through mitotic divisions propagate cell-to-cell heterogeneity in the resultant progeny.
Collapse
Affiliation(s)
- Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Samuel C Durley
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Wei-Chen Cheng
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Nien-Yi Chiang
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jennifer Peters
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Torben Kasparek
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Elizabeth Blaikley
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Boon-Yu Wee
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Carol Walker
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Biology, University of Oxford, Zoology Research and Administration Building, Mansfield Road, Oxford OX1 3SZ, UK
| | - Francesca Buffa
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, SussexBN1 9RQ, UK
| | - Timothy C Humphrey
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
15
|
Chen S, Lin J, Zhao J, Lin Q, Liu J, Wang Q, Mui R, Ma L. FBXW7 attenuates tumor drug resistance and enhances the efficacy of immunotherapy. Front Oncol 2023; 13:1147239. [PMID: 36998461 PMCID: PMC10043335 DOI: 10.3389/fonc.2023.1147239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
FBXW7 (F-box and WD repeat domain containing 7) is a critical subunit of the Skp1-Cullin1-F-box protein (SCF), acting as an E3 ubiquitin ligase by ubiquitinating targeted protein. Through degradation of its substrates, FBXW7 plays a pivotal role in drug resistance in tumor cells and shows the potential to rescue the sensitivity of cancer cells to drug treatment. This explains why patients with higher FBXW7 levels exhibit higher survival times and more favorable prognosis. Furthermore, FBXW7 has been demonstrated to enhance the efficacy of immunotherapy by targeting the degradation of specific proteins, as compared to the inactivated form of FBXW7. Additionally, other F-box proteins have also shown the ability to conquer drug resistance in certain cancers. Overall, this review aims to explore the function of FBXW7 and its specific effects on drug resistance in cancer cells.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jichun Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaojiao Zhao
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Ryan Mui
- Department of Gastroenterology, Sparrow Hospital, Lansing, MI, United States
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Leina Ma,
| |
Collapse
|
16
|
Adaptive exchange sustains cullin-RING ubiquitin ligase networks and proper licensing of DNA replication. Proc Natl Acad Sci U S A 2022; 119:e2205608119. [PMID: 36037385 PMCID: PMC9456757 DOI: 10.1073/pnas.2205608119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.
Collapse
|
17
|
Saeed N, Mahjabeen I, Hakim F, Hussain MZ, Mehmood A, Nisar A, Ahmed MW, Kayani MA. Role of Chk1 gene in molecular classification and prognosis of gastric cancer using immunohistochemistry and LORD-Q assay. Future Oncol 2022; 18:2827-2841. [PMID: 35762179 DOI: 10.2217/fon-2021-1546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: The aim of the current study was to assess the prognostic value of the Chk1 gene in the DNA damage response pathway in gastric cancer (GC). Methods: Expression levels of the Chk1 were measured in 220 GC tumor tissues and adjacent healthy/noncancerous tissues using real-time PCR and immunohistochemical staining. Genomic instability in GC patients was measured using the long-run real-time PCR technique for DNA-damage quantification assay and comet assay. Results: Significantly downregulated expression of Chk1 was observed at the mRNA level (p < 0.0001) and protein level (p < 0.0001). Significantly increased frequency of lesions/10 kb and comets was observed in tumor tissues compared with control tissues. Conclusion: The data suggest that downregulated expression of Chk1 and positive Heliobacter pylori infection status may have prognostic significance in GC.
Collapse
Affiliation(s)
- Nadia Saeed
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Farzana Hakim
- Department of Biochemistry, Foundation University Medical College, Islamabad, Pakistan
| | | | - Azhar Mehmood
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asif Nisar
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan.,Pakistan Institute of Rehabilitation Sciences (PIRS), Isra University Islamabad Campus, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| |
Collapse
|
18
|
Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022; 11:cells11050851. [PMID: 35269473 PMCID: PMC8909305 DOI: 10.3390/cells11050851] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
In response to environmental stimuli, cells make a series of adaptive changes to combat the injury, repair the damage, and increase the tolerance to the stress. However, once the damage is too serious to repair, the cells will undergo apoptosis to protect the overall cells through suicidal behavior. Upon external stimulation, some intracellular proteins turn into unfolded or misfolded protein, exposing their hydrophobic regions to form protein aggregation, which may ultimately produce serious damage to the cells. Ubiquitin plays an important role in the degradation of these unnatural proteins by tagging with ubiquitin chains in the ubiquitin-proteasome or autophagy system. If the two processes fail to eliminate the abnormal protein aggregates, the cells will move to apoptosis and death. Dysregulation of ubiquitin-proteasome system (UPS) and autophagy may result in the development of numerous diseases. This review focuses on the molecular mechanisms of UPS and autophagy in clearance of intracellular protein aggregates, and the relationship between dysregulation of ubiquitin network and diseases.
Collapse
|
19
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
20
|
Magraner-Pardo L, Gobelli D, de la Fuente MA, Pons T, Simarro M. Systematic Analysis of FASTK Gene Family Alterations in Cancer. Int J Mol Sci 2021; 22:11337. [PMID: 34768773 PMCID: PMC8583194 DOI: 10.3390/ijms222111337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022] Open
Abstract
The FASTK family of proteins have been recently reported to play a key role in the post-transcriptional regulation of mitochondrial gene expression, including mRNA stability and translation. Accumulated studies have provided evidence that the expression of some FASTK genes is altered in certain types of cancer, in agreement with the central role of mitochondria in cancer development. Here, we obtained a pan-cancer overview of the genomic and transcriptomic alterations of FASTK genes. FASTK, FASTKD1, FASTKD3 and FASTKD5 showed the highest rates of genetic alterations. FASTK and FASTKD3 alterations consisted mainly of amplifications that were seen in more than 8% of ovarian and lung cancers, respectively. FASTKD1 and FASTKD5 were the most frequently mutated FASTK genes, and the mutations were identified in 5-7% of uterine cancers, as well as in 4% of melanomas. Our results also showed that the mRNA levels of all FASTK members were strongly upregulated in esophageal, stomach, liver and lung cancers. Finally, the protein-protein interaction network for FASTK proteins uncovers the interaction of FASTK, FASTKD2, FASTKD4 and FASTKD5 with cancer signaling pathways. These results serve as a starting point for future research into the potential of the FASTK family members as diagnostic and therapeutic targets for certain types of cancer.
Collapse
Affiliation(s)
- Lorena Magraner-Pardo
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain;
| | - Dino Gobelli
- Department of Cell Biology, Histology and Pharmacology, University of Valladolid, 47005 Valladolid, Spain; (D.G.); (M.A.d.l.F.)
- Unit of Excellence, Institute of Biology and Molecular Genetics, University of Valladolid and CSIC, 47003 Valladolid, Spain
| | - Miguel A. de la Fuente
- Department of Cell Biology, Histology and Pharmacology, University of Valladolid, 47005 Valladolid, Spain; (D.G.); (M.A.d.l.F.)
- Unit of Excellence, Institute of Biology and Molecular Genetics, University of Valladolid and CSIC, 47003 Valladolid, Spain
| | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Spanish National Research Council, 28049 Madrid, Spain;
| | - María Simarro
- Unit of Excellence, Institute of Biology and Molecular Genetics, University of Valladolid and CSIC, 47003 Valladolid, Spain
- Department of Department of Nursing, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
21
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
22
|
A catalytic-independent function of human DNA polymerase Kappa controls the stability and abundance of the Checkpoint Kinase 1. Mol Cell Biol 2021; 41:e0009021. [PMID: 34398682 DOI: 10.1128/mcb.00090-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase kappa (Pol κ) has been well documented thus far for its specialized DNA synthesis activity during translesion replication, progression of replication forks through regions difficult to replicate, restart of stalled forks and replication checkpoint efficiency. Pol κ is also required for the stabilization of stalled forks although the mechanisms are poorly understood. Here we unveiled an unexpected role for Pol κ in controlling the stability and abundance of Chk1, an important actor for the replication checkpoint and fork stabilization. We found that loss of Pol κ decreased the Chk1 protein level in the nucleus of four human cell lines. Pol κ and not the other Y-family polymerase members is required to maintain the Chk1 protein pool all along the cell cycle. We showed that Pol κ depletion affected the protein stability of Chk1 and protected it from proteasome degradation. Importantly, we also observed that the fork restart defects observed in Pol κ-depleted cells could be overcome by the re-expression of Chk1. Strikingly, this new function of Pol κ does not require its catalytic activity. We propose that Pol κ could contribute to the protection of stalled forks through Chk1 stability.
Collapse
|
23
|
Chk1 and the Host Cell DNA Damage Response as a Potential Antiviral Target in BK Polyomavirus Infection. Viruses 2021; 13:v13071353. [PMID: 34372559 PMCID: PMC8310304 DOI: 10.3390/v13071353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
The human BK polyomavirus (BKPyV) is latent in the kidneys of most adults, but can be reactivated in immunosuppressed states, such as following renal transplantation. If left unchecked, BK polyomavirus nephropathy (PyVAN) and possible graft loss may result from viral destruction of tubular epithelial cells and interstitial fibrosis. When coupled with regular post-transplant screening, immunosuppression reduction has been effective in limiting BKPyV viremia and the development of PyVAN. Antiviral drugs that are safe and effective in combating BKPyV have not been identified but would be a benefit in complementing or replacing immunosuppression reduction. The present study explores inhibition of the host DNA damage response (DDR) as an antiviral strategy. Immunohistochemical and immunofluorescent analyses of PyVAN biopsies provide evidence for stimulation of a DDR in vivo. DDR pathways were also stimulated in vitro following BKPyV infection of low-passage human renal proximal tubule epithelial cells. The role of Chk1, a protein kinase known to be involved in the replication stress-induced DDR, was examined by inhibition with the small molecule LY2603618 and by siRNA-mediated knockdown. Inhibition of Chk1 resulted in decreased replication of BKPyV DNA and viral spread. Activation of mitotic pathways was associated with the reduction in BKPyV replication. Chk1 inhibitors that are found to be safe and effective in clinical trials for cancer should also be evaluated for antiviral activity against BKPyV.
Collapse
|
24
|
Fukumoto Y, Ikeuchi M, Qu L, Hoshino T, Yamaguchi N, Nakayama Y, Ogra Y. Nuclear translocation promotes proteasomal degradation of human Rad17 protein through the N-terminal destruction boxes. J Biol Chem 2021; 297:100831. [PMID: 34174284 PMCID: PMC8318897 DOI: 10.1016/j.jbc.2021.100831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
The ATR pathway is one of the major DNA damage checkpoints, and Rad17 is a DNA-binding protein that is phosphorylated upon DNA damage by ATR kinase. Rad17 recruits the 9-1-1 complex that mediates the checkpoint activation, and proteasomal degradation of Rad17 is important for recovery from the ATR pathway. Here, we identified several Rad17 mutants deficient in nuclear localization and resistant to proteasomal degradation. The nuclear localization signal was identified in the central basic domain of Rad17. Rad17 Δ230–270 and R240A/L243A mutants that were previously postulated to lack the destruction box, a sequence that is recognized by the ubiquitin ligase/anaphase-promoting complex that mediates degradation of Rad17, also showed cytoplasmic localization. Our data indicate that the nuclear translocation of Rad17 is functionally linked to the proteasomal degradation. The ATP-binding activity of Rad17, but not hydrolysis, is essential for the nuclear translocation, and the ATPase domain orchestrates the nuclear translocation, the proteasomal degradation, as well as the interaction with the 9-1-1 complex. The Rad17 mutant that lacked a nuclear localization signal was proficient in the interaction with the 9-1-1 complex, suggesting cytosolic association of Rad17 and the 9-1-1 complex. Finally, we identified two tandem canonical and noncanonical destruction boxes in the N-terminus of Rad17 as the bona fide destruction box, supporting the role of anaphase-promoting complex in the degradation of Rad17. We propose a model in which Rad17 is activated in the cytoplasm for translocation into the nucleus and continuously degraded in the nucleus even in the absence of exogenous DNA damage.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Liang Qu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoto Yamaguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Tsao WC, Buj R, Aird KM, Sidorova JM, Eckert KA. Overexpression of oncogenic H-Ras in hTERT-immortalized and SV40-transformed human cells targets replicative and specialized DNA polymerases for depletion. PLoS One 2021; 16:e0251188. [PMID: 33961649 PMCID: PMC8104423 DOI: 10.1371/journal.pone.0251188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
DNA polymerases play essential functions in replication fork progression and genome maintenance. DNA lesions and drug-induced replication stress result in up-regulation and re-localization of specialized DNA polymerases η and κ. Although oncogene activation significantly alters DNA replication dynamics, causing replication stress and genome instability, little is known about DNA polymerase expression and regulation in response to oncogene activation. Here, we investigated the consequences of mutant H-RASG12V overexpression on the regulation of DNA polymerases in h-TERT immortalized and SV40-transformed human cells. Focusing on DNA polymerases associated with the replication fork, we demonstrate that DNA polymerases are depleted in a temporal manner in response to H-RASG12V overexpression. The polymerases targeted for depletion, as cells display markers of senescence, include the Pol α catalytic subunit (POLA1), Pol δ catalytic and p68 subunits (POLD1 and POLD3), Pol η, and Pol κ. Both transcriptional and post-transcriptional mechanisms mediate this response. Pol η (POLH) depletion is sufficient to induce a senescence-like growth arrest in human foreskin fibroblast BJ5a cells, and is associated with decreased Pol α expression. Using an SV-40 transformed cell model, we observed cell cycle checkpoint signaling differences in cells with H-RasG12V-induced polymerase depletion, as compared to Pol η-deficient cells. Our findings contribute to our understanding of cellular events following oncogene activation and cellular transformation.
Collapse
Affiliation(s)
- Wei-chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Raquel Buj
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Julia M. Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kristin A. Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Peña-Garcia Y, Shinde S, Natarajan P, Lopez-Ortiz C, Balagurusamy N, Chavez ACD, Saminathan T, Nimmakayala P, Reddy UK. Arsenic Stress-Related F-Box (ASRF) gene regulates arsenic stress tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124831. [PMID: 33340971 DOI: 10.1016/j.jhazmat.2020.124831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As), a non-biodegradable contaminant, is extremely toxic to plants and animals in its inorganic form. As negatively affects plant growth and development, primarily by inducing oxidative stress through redox imbalance. Here we characterized the Arabidopsis F-box protein gene AT2G16220 (Arsenic Stress-Related F-box (ASRF)) that we identified in the genome-wide association study. The asrf mutant seedlings showed high sensitivity to arsenate (AsV) stress. AsV significantly affected asrf seedling growth when germinated on or exposed to AsV-supplemented growth regimes. AsV stress significantly induced production of reactive oxygen species and proline accumulation in asrf, so the asrf maintained high proline content, possibly for cellular protection and redox homeostasis. Heterozygous seedlings (Col-0 x asrf, F1 progeny) were relatively less affected by AsV stress than asrf mutant but showed slightly reduced growth compared with the Col-0 wild type, which suggests that the homozygous ASRF locus is important for AsV stress resistance. Transcriptome analysis involving the mutant and wild type revealed altered phosphate homeostasis in asrf seedlings, which implies that ASRF is required for maintaining phosphate and cellular- homeostasis under excess AsV. Our findings confirm the roles of ASRF in As stress tolerance in plants, for a novel way to mitigate arsenic stress.
Collapse
Affiliation(s)
- Yadira Peña-Garcia
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Suhas Shinde
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 603203, TN, India
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Coahuila 27000, Mexico
| | - Ana Cristina Delgado Chavez
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Coahuila 27000, Mexico
| | - Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
27
|
Determination of CHK1 Cellular Localization by Immunofluorescence Microscopy. Methods Mol Biol 2021. [PMID: 33786781 DOI: 10.1007/978-1-0716-1217-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Many proteins involved in the DNA damage pathway shuttle between the cytoplasm and nucleus, and their localizations are important for functions. In that regard, immunofluorescence microscopy has been widely used to delineate the temporal and spatial regulation of proteins. Here, we describe an unconventional method for studying the cellular localization of CHK1, a cell cycle checkpoint kinase that undergoes shuttling from the cytoplasm to the nucleus in response to genotoxic stress. In this study, we included an acid extraction step to better reveal the nuclear localization of CHK1.
Collapse
|
28
|
Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z, Wang K, Huang X, Liu B. FBXO6-mediated RNASET2 ubiquitination and degradation governs the development of ovarian cancer. Cell Death Dis 2021; 12:317. [PMID: 33767133 PMCID: PMC7994844 DOI: 10.1038/s41419-021-03580-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
RNASET2 (Ribonuclease T2) functions as a tumor suppressor in preventing ovarian tumorigenesis. However, the mechanisms underlying the regulation of RNASET2 protein are completely unknown. Here we identified the F-box protein FBXO6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin E3 ligase for RNASET2. We found that the interaction between FBXO6 and RNASET2 induced RNASET2 instability through the ubiquitin-mediated proteasome degradation pathway. FBXO6 promoted K48-dependent ubiquitination of RNASET2 via its FBA domain. Through analysis of the TCGA dataset, we found that FBXO6 was significantly increased in ovarian cancer tissues and the high expression of FBXO6 was related to the poor overall survival (OS) of ovarian cancer patients at advanced stages. An inverse correlation between the protein levels of FBXO6 and RNASET2 was observed in clinic ovarian cancer samples. Depletion of FBXO6 promoted ovarian cancer cells proliferation, migration, and invasion, which could be partially reversed by RNASET2 silencing. Thus, our data revealed a novel FBXO6-RNASET2 axis, which might contribute to the development of ovarian cancer. We propose that inhibition of FBXO6 might represent an effective therapeutic strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penglin Xu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Shi
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaige Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaotian Huang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
29
|
Liu Y, Pan B, Qu W, Cao Y, Li J, Zhao H. Systematic analysis of the expression and prognosis relevance of FBXO family reveals the significance of FBXO1 in human breast cancer. Cancer Cell Int 2021; 21:130. [PMID: 33622332 PMCID: PMC7903729 DOI: 10.1186/s12935-021-01833-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer (BC) remains a prevalent and common form of cancer with high heterogeneity. Making efforts to explore novel molecular biomarkers and serve as potential disease indicators, which is essential to effectively enhance the prognosis and individualized treatment of BC. FBXO proteins act as the core component of E3 ubiquitin ligase, which play essential regulators roles in multiple cellular processes. Recently, research has indicated that FBXOs also play significant roles in cancer development. However, the molecular functions of these family members in BC have not been fully elucidated. Methods In this research, we investigated the expression data, survival relevance and mutation situation of 10 FBXO members (FBXO1, 2, 5, 6, 16, 17, 22, 28, 31 and 45) in patients with BC from the Oncomine, GEPIA, HPA, Kaplan–Meier Plotter, UALCAN and cBioPortal databases. The high transcriptional levels of FBXO1 in different subtypes of BC were verified by immunohistochemical staining and the specific mutations of FBXO1 were obtained from COSMIC database. Top 10 genes with the highest correlation to FBXO1 were identified through cBioPortal and COXPRESdb tools. Additionally, functional enrichment analysis, PPI network and survival relevance of FBXO1 and co-expressed genes in BC were obtained from DAVID, STRING, UCSC Xena, GEPIA, bc-GenExMiner and Kaplan–Meier Plotter databases. FBXO1 siRNAs were transfected into MCF-7 and MDA-MB-231 cell lines. Expression of FBXO1 in BC cell lines was detected by western-blot and RT-qPCR. Cell proliferation was detected by using CCK-8 kit and colony formation assay. Cell migration was detected by wound‐healing and transwell migration assay. Results We found that FBXO2, FBXO6, FBXO16 and FBXO17 were potential favorable prognostic factors for BC. FBXO1, FBXO5, FBXO22, FBXO28, FBXO31 and FBXO45 may be the independent poor prognostic factors for BC. All of them were correlated to clinicopathological staging. Moreover, knockdown of FBXO1 in MCF7 and MDA-MB-231 cell lines resulted in decreased cell proliferation and migration in vitro. We identified that FBXO1 was an excellent molecular biomarker and therapeutic target for different molecular typing of BC. Conclusion This study implies that FBXO1, FBXO2, FBXO5, FBXO6, FBXO16, FBXO17, FBXO22, FBXO28, FBXO31 and FBXO45 genes are potential clinical targets and prognostic biomarkers for patients with different molecular typing of BC. In addition, the overexpression of FBXO1 is always found in breast cancer and predicts disadvantageous prognosis, implicating it could as an appealing therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Pan
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Weikun Qu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yilong Cao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jun Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Haidong Zhao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
30
|
Mirsanaye AS, Typas D, Mailand N. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions. Trends Cell Biol 2021; 31:584-597. [PMID: 33612353 DOI: 10.1016/j.tcb.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Accurate duplication of chromosomal DNA is vital for faithful transmission of the genome during cell division. However, DNA replication integrity is frequently challenged by genotoxic insults that compromise the progression and stability of replication forks, posing a threat to genome stability. It is becoming clear that the organization of the replisome displays remarkable flexibility in responding to and overcoming a wide spectrum of fork-stalling insults, and that these transactions are dynamically orchestrated and regulated by protein post-translational modifications (PTMs) including ubiquitylation. In this review, we highlight and discuss important recent advances on how ubiquitin-mediated signaling at the replication fork plays a crucial multifaceted role in regulating replisome composition and remodeling its configuration upon replication stress, thereby ensuring high-fidelity duplication of the genome.
Collapse
Affiliation(s)
- Ann Schirin Mirsanaye
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dimitris Typas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
31
|
Differential Expression of a Panel of Ten CNTN1-Associated Genes during Prostate Cancer Progression and the Predictive Properties of the Panel Towards Prostate Cancer Relapse. Genes (Basel) 2021; 12:genes12020257. [PMID: 33578925 PMCID: PMC7916715 DOI: 10.3390/genes12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Contactin 1 (CNTN1) is a new oncogenic protein of prostate cancer (PC); its impact on PC remains incompletely understood. We observed CNTN1 upregulation in LNCaP cell-derived castration-resistant PCs (CRPC) and CNTN1-mediated enhancement of LNCaP cell proliferation. CNTN1 overexpression in LNCaP cells resulted in enrichment of the CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_3 gene set that facilitates endocrine resistance in breast cancer. The leading-edge (LE) genes (n = 10) of this enrichment consist of four genes with limited knowledge on PC and six genes novel to PC. These LE genes display differential expression during PC initiation, metastatic progression, and CRPC development, and they predict PC relapse following curative therapies at hazard ratio (HR) 2.72, 95% confidence interval (CI) 1.96–3.77, and p = 1.77 × 10−9 in The Cancer Genome Atlas (TCGA) PanCancer cohort (n = 492) and HR 2.72, 95% CI 1.84–4.01, and p = 4.99 × 10−7 in Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 140). The LE gene panel classifies high-, moderate-, and low-risk of PC relapse in both cohorts. Additionally, the gene panel robustly predicts poor overall survival in clear cell renal cell carcinoma (ccRCC, p = 1.13 × 10−11), consistent with ccRCC and PC both being urogenital cancers. Collectively, we report multiple CNTN1-related genes relevant to PC and their biomarker values in predicting PC relapse.
Collapse
|
32
|
Panagopoulos A, Altmeyer M. The Hammer and the Dance of Cell Cycle Control. Trends Biochem Sci 2020; 46:301-314. [PMID: 33279370 DOI: 10.1016/j.tibs.2020.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Cell cycle checkpoints secure ordered progression from one cell cycle phase to the next. They are important to signal cell stress and DNA lesions and to stop cell cycle progression when severe problems occur. Recent work suggests, however, that the cell cycle control machinery responds in more subtle and sophisticated ways when cells are faced with naturally occurring challenges, such as replication impediments associated with endogenous replication stress. Instead of following a stop and go approach, cells use fine-tuned deceleration and brake release mechanisms under the control of ataxia telangiectasia and Rad3-related protein kinase (ATR) and checkpoint kinase 1 (CHK1) to more flexibly adapt their cell cycle program to changing conditions. We highlight emerging examples of such intrinsic cell cycle checkpoint regulation and discuss their physiological and clinical relevance.
Collapse
Affiliation(s)
- Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Hynes-Smith RW, Wittorf KJ, Buckley SM. Regulation of Normal and Malignant Hematopoiesis by FBOX Ubiquitin E3 Ligases. Trends Immunol 2020; 41:1128-1140. [PMID: 33160841 DOI: 10.1016/j.it.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for numerous functions, ranging from oxygen transportation to host defense, to injury repair. This process of hematopoiesis is maintained throughout life by hematopoietic stem cells and requires a controlled balance between self-renewal, differentiation, and quiescence. Disrupting this balance can result in hematopoietic malignancies, including anemia, immune deficiency, leukemia, and lymphoma. Recent work has shown that FBOX E3 ligases, a substrate recognition component of the ubiquitin proteasome system (UPS), have an integral role in maintaining this balance. In this review, we detail how FBOX proteins target specific proteins for degradation to regulate hematopoiesis through cell processes, such as cell cycle, development, and apoptosis.
Collapse
Affiliation(s)
- R Willow Hynes-Smith
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karli J Wittorf
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon M Buckley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
34
|
Sun J, Zhu Z, Li W, Shen M, Cao C, Sun Q, Guo Z, Liu L, Wu D. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:222. [PMID: 33087136 PMCID: PMC7576867 DOI: 10.1186/s13046-020-01734-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
Background Radioresistance is the major obstacle in radiation therapy (RT) for hepatocellular carcinoma (HCC). Dysregulation of DNA damage response (DDR), which includes DNA repair and cell cycle checkpoints activation, leads to radioresistance and limits radiotherapy efficacy in HCC patients. However, the underlying mechanism have not been clearly understood. Methods We obtained 7 pairs of HCC tissues and corresponding non-tumor tissues, and UBE2T was identified as one of the most upregulated genes. The radioresistant role of UBE2T was examined by colony formation assays in vitro and xenograft tumor models in vivo. Comet assay, cell cycle flow cytometry and γH2AX foci measurement were used to investigate the mechanism by which UBE2T mediating DDR. Chromatin fractionation and immunofluorescence staining were used to assess cell cycle checkpoint kinase 1(CHK1) activation. Finally, we analyzed clinical data from HCC patients to verify the function of UBE2T. Results Here, we found that ubiquitin-conjugating enzyme E2T (UBE2T) was upregulated in HCC tissues, and the HCC patients with higher UBE2T levels exhibited poorer outcomes. Functional studies indicated that UBE2T increased HCC radioresistance in vitro and in vivo. Mechanistically, UBE2T-RNF8, was identified as the E2-E3 pair, physically bonded with and monoubiquitinated histone variant H2AX/γH2AX upon radiation exposure. UBE2T-regulated H2AX/γH2AX monoubiquitination facilitated phosphorylation of CHK1 for activation and CHK1 release from the chromatin to cytosol for degradation. The interruption of UBE2T-mediated monoubiquitination on H2AX/γH2AX, including E2-enzyme-deficient mutation (C86A) of UBE2T and monoubiquitination-site-deficient mutation (K119/120R) of H2AX, cannot effectively activate CHK1. Moreover, genetical and pharmacological inhibition of CHK1 impaired the radioresistant role of UBE2T in HCC. Furthermore, clinical data suggested that the HCC patients with higher UBE2T levels exhibited worse response to radiotherapy. Conclusion Our results revealed a novel role of UBE2T-mediated H2AX/γH2AX monoubiquitination on facilitating cell cycle arrest activation to provide sufficient time for radiation-induced DNA repair, thus conferring HCC radioresistance. This study indicated that disrupting UBE2T-H2AX-CHK1 pathway maybe a promising potential strategy to overcome HCC radioresistance. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01734-4.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengying Shen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qingcan Sun
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zeqin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Moses N, Zhang M, Wu JY, Hu C, Xiang S, Geng X, Chen Y, Bai W, Zhang YW, Bepler G, Zhang XM. HDAC6 Regulates Radiosensitivity of Non-Small Cell Lung Cancer by Promoting Degradation of Chk1. Cells 2020; 9:cells9102237. [PMID: 33020410 PMCID: PMC7600810 DOI: 10.3390/cells9102237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
We have previously discovered that HDAC6 regulates the DNA damage response (DDR) via modulating the homeostasis of a DNA mismatch repair protein, MSH2, through HDAC6’s ubiquitin E3 ligase activity. Here, we have reported HDAC6’s second potential E3 ligase substrate, a critical cell cycle checkpoint protein, Chk1. We have found that HDAC6 and Chk1 directly interact, and that HDAC6 ubiquitinates Chk1 in vivo and in vitro. Specifically, HDAC6 interacts with Chk1 via the DAC1 domain, which contains its ubiquitin E3 ligase activity. During the cell cycle, Chk1 protein levels fluctuate, peaking at the G2 phase, subsequently resolving via the ubiquitin-proteasome pathway, and thereby allowing cells to progress to the M phase. However, in HDAC6 knockdown non-small cell lung cancer (NSCLC) cells, Chk1 is constitutively active and fails to resolve post-ionizing radiation (IR), and this enhanced Chk1 activity leads to preferential G2 arrest in HDAC6 knockdown cells accompanied by a reduction in colony formation capacity and viability. Depletion or pharmacological inhibition of Chk1 in HDAC6 knockdown cells reverses this radiosensitive phenotype, suggesting that the radiosensitivity of HDAC6 knockdown cells is dependent on increased Chk1 kinase activity. Overall, our results highlight a novel mechanism of Chk1 regulation at the post-translational level, and a possible strategy for sensitizing NSCLC to radiation via inhibiting HDAC6’s E3 ligase activity.
Collapse
Affiliation(s)
- Niko Moses
- Cancer Biology Graduate Program, Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA;
| | - Mu Zhang
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Jheng-Yu Wu
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Chen Hu
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Shengyan Xiang
- Department of Pathology & Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; (S.X.); (W.B.)
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University,2109 Adelbert Road, Wood Building W343A, Cleveland, OH 44106, USA; (X.G.); (Y.-W.Z.)
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA;
| | - Wenlong Bai
- Department of Pathology & Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; (S.X.); (W.B.)
| | - You-Wei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University,2109 Adelbert Road, Wood Building W343A, Cleveland, OH 44106, USA; (X.G.); (Y.-W.Z.)
| | - Gerold Bepler
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
| | - Xiaohong Mary Zhang
- Molecular Therapeutics Program, Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R. Street Detroit, MI 48201, USA; (M.Z.); (J.-Y.W.); (C.H.); (G.B.)
- Correspondence: ; Tel.: +1-313-576-8672; Fax: +1-313-576-8928
| |
Collapse
|
36
|
Neizer-Ashun F, Bhattacharya R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett 2020; 497:202-211. [PMID: 32991949 DOI: 10.1016/j.canlet.2020.09.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
The DNA damage response enables cells to cope with various stresses that threaten genomic integrity. A critical component of this response is the serine/threonine kinase CHK1 which is encoded by the CHEK1 gene. Originally identified as a regulator of the G2/M checkpoint, CHK1 has since been shown to play important roles in DNA replication, mitotic progression, DNA repair, and overall cell cycle regulation. However, the potential of CHK1 as a cancer therapy has not been realized clinically. Herein we expound our current understanding of the principal roles of CHK1 and highlight different avenues for CHK1 targeting in cancer therapy.
Collapse
Affiliation(s)
- Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States
| | - Resham Bhattacharya
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, United States; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
37
|
Zheng S, Fu Y. Age-related copy number variations and expression levels of F-box protein FBXL20 predict ovarian cancer prognosis. Transl Oncol 2020; 13:100863. [PMID: 32898767 PMCID: PMC7486480 DOI: 10.1016/j.tranon.2020.100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/04/2022] Open
Abstract
About 70% of ovarian cancer (OvCa) cases are diagnosed at advanced stages (stage III/IV) with only 20–40% of them survive over 5 years after diagnosis. A reliably screening marker could enable a paradigm shift in OvCa early diagnosis and risk stratification. Age is one of the most significant risk factors for OvCa. Older women have much higher rates of OvCa diagnosis and poorer clinical outcomes. In this article, we studied the correlation between aging and genetic alterations in The Cancer Genome Atlas Ovarian Cancer dataset. We demonstrated that copy number variations (CNVs) and expression levels of the F-Box and Leucine-Rich Repeat Protein 20 (FBXL20), a substrate recognizing protein in the SKP1-Cullin1-F-box-protein E3 ligase, can predict OvCa overall survival, disease-free survival and progression-free survival. More importantly, FBXL20 copy number loss predicts the diagnosis of OvCa at a younger age, with over 60% of patients in that subgroup have OvCa diagnosed at age less than 60 years. Clinicopathological studies further demonstrated malignant histological and radiographical features associated with elevated FBXL20 expression levels. This study has thus identified a potential biomarker for OvCa prognosis.
Collapse
Affiliation(s)
- Shuhua Zheng
- Nova Southeastern University, College of Osteopathic Medicine, Florida 33314, USA.
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
38
|
Zheng S, Tao W. Targeting Cullin-RING E3 Ligases for Radiosensitization: From NEDDylation Inhibition to PROTACs. Front Oncol 2020; 10:1517. [PMID: 32983997 PMCID: PMC7475704 DOI: 10.3389/fonc.2020.01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
As a dynamic regulator for short-lived protein degradation and turnover, the ubiquitin-proteasome system (UPS) plays important roles in various biological processes, including response to cellular stress, regulation of cell cycle progression, and carcinogenesis. Over the past decade, research on targeting the cullin-RING (really interesting new gene) E3 ligases (CRLs) in the UPS has gained great momentum with the entry of late-phase clinical trials of its novel inhibitors MLN4924 (pevonedistat) and TAS4464. Several preclinical studies have demonstrated the efficacy of MLN4924 as a radiosensitizer, mainly due to its unique cytotoxic properties, including induction of DNA damage response, cell cycle checkpoints dysregulation, and inhibition of NF-κB and mTOR pathways. Recently, the PROteolysis TArgeting Chimeras (PROTACs) technology was developed to recruit the target proteins for CRL-mediated polyubiquitination, overcoming the resistance that develops inevitably with traditional targeted therapies. First-in-class cell-permeable PROTACs against critical radioresistance conferring proteins, including the epidermal growth factor receptor (EGFR), androgen receptor (AR) and estrogen receptor (ER), cyclin-dependent kinases (CDKs), MAP kinase kinase 1 (MEK1), and MEK2, have emerged in the past 5 years. In this review article, we will summarize the most important research findings of targeting CRLs for radiosensitization.
Collapse
Affiliation(s)
- Shuhua Zheng
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Wensi Tao
- Department of Radiation Oncology, University of Miami-Miller School of Medicine, Coral Gables, FL, United States
| |
Collapse
|
39
|
Yu X, Li W, Liu H, Deng Q, Wang X, Hu H, Xu-Monette ZY, Xiong W, Lu Z, Young KH, Wang W, Li Y. Ubiquitination of the DNA-damage checkpoint kinase CHK1 by TRAF4 is required for CHK1 activation. J Hematol Oncol 2020; 13:40. [PMID: 32357935 PMCID: PMC7193419 DOI: 10.1186/s13045-020-00869-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aberrant activation of DNA damage response (DDR) is a major cause of chemoresistance in colorectal cancer (CRC). CHK1 is upregulated in CRC and contributes to therapeutic resistance. We investigated the upstream signaling pathways governing CHK1 activation in CRC. METHODS We identified CHK1-binding proteins by mass spectrometry analysis. We analyzed the biologic consequences of knockout or overexpression of TRAF4 using immunoblotting, immunoprecipitation, and immunofluorescence. CHK1 and TRAF4 ubiquitination was studied in vitro and in vivo. We tested the functions of TRAF4 in CHK1 phosphorylation and CRC chemoresistance by measuring cell viability and proliferation, anchorage-dependent and -independent cell growth, and mouse xenograft tumorigenesis. We analyzed human CRC specimens by immunohistochemistry. RESULTS TRAF4 catalyzed the ubiquitination of CHK1 in multiple CRC cell lines. Following DNA damage, ubiquitination of CHK1 at K132 by TRAF4 is required for CHK1 phosphorylation and activation mediated by ATR. Notably, TRAF4 was highly expressed in chemotherapy-resistant CRC specimens and positively correlated with phosphorylated CHK1. Furthermore, depletion of TRAF4 impaired CHK1 activity and sensitized CRC cells to fluorouracil and other chemotherapeutic agents in vitro and in vivo. CONCLUSIONS These data reveal two novel steps required for CHK1 activation in which TRAF4 serves as a critical intermediary and suggest that inhibition of the ATR-TRAF4-CHK1 signaling may overcome CRC chemoresistance.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qipan Deng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xu Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hui Hu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, Hubei, China
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Xiong
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, Hubei, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
40
|
Cassidy KB, Bang S, Kurokawa M, Gerber SA. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J 2020; 287:1985-1999. [PMID: 31713291 PMCID: PMC7226928 DOI: 10.1111/febs.15132] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/19/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
The HECT E3 ubiquitin ligase HUWE1 is required for a wide array of important functions in cell biology. Although HUWE1 is known to play a role in DNA damage signaling, the mechanism(s) that underlie this function remain elusive. HUWE1 regulates effectors of DNA replication and genotoxic stress tolerance. However, the loss of HUWE1 can also result in the accrual of significant endogenous DNA damage due to insufficient remediation of replication stress induced by an overabundance of key substrates. We discovered that HUWE1 depletion leads to a significant increase in levels of the single-strand break effector kinase Chk1, independent of the DNA damage response, activation of apical DNA damage repair (DDR) signaling kinases (ATM and ATR), and the tumor suppressor p53. We also identified multiple lysine residues on Chk1 that are polyubiquitinated by HUWE1 in vitro, many of which are within the kinase domain. HUWE1 knockdown also markedly prolonged the protein half-life of Chk1 in steady-state conditions and resulted in greater stabilization of Chk1 protein than depletion of Cul4A, an E3 ubiquitin ligase previously described to control Chk1 abundance. Moreover, prolonged replication stress induced by hydroxyurea or camptothecin resulted in a reduction of Chk1 protein levels, which was rescued by HUWE1 knockdown. Our study indicates that HUWE1 plays a significant role in the regulation of the DDR signaling pathway by directly modulating the abundance of Chk1 protein.
Collapse
Affiliation(s)
- Katelyn B. Cassidy
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
| | - Scott Bang
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Manabu Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Department of Biological Sciences, Kent State University, Kent, OH 44242
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| | - Scott A. Gerber
- Department of Molecular & Systems Biology, Geisel School of Medicine, Hanover, NH 03755
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH 03756
| |
Collapse
|
41
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Am J Cancer Res 2020; 10:4150-4167. [PMID: 32226545 PMCID: PMC7086354 DOI: 10.7150/thno.42735] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
E3 ubiquitin ligases play a critical role in cellular mechanisms and cancer progression. F-box protein is the core component of the SKP1-cullin 1-F-box (SCF)-type E3 ubiquitin ligase and directly binds to substrates by various specific domains. According to the specific domains, F-box proteins are further classified into three sub-families: 1) F-box with leucine rich amino acid repeats (FBXL); 2) F-box with WD 40 amino acid repeats (FBXW); 3) F-box only with uncharacterized domains (FBXO). Here, we summarize the substrates of F-box proteins, discuss the important molecular mechanism and emerging role of F-box proteins especially from the perspective of cancer development and progression. These findings will shed new light on malignant tumor progression mechanisms, and suggest the potential role of F-box proteins as cancer biomarkers and therapeutic targets for future cancer treatment.
Collapse
|
42
|
Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2020; 49:100673. [PMID: 31877405 DOI: 10.1016/j.drup.2019.100673] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy continues to be a major treatment strategy for various human malignancies. However, the frequent emergence of chemoresistance compromises chemotherapy efficacy leading to poor prognosis. Thus, overcoming drug resistance is pivotal to achieve enhanced therapy efficacy in various cancers. Although increased evidence has revealed that reduced drug uptake, increased drug efflux, drug target protein alterations, drug sequestration in organelles, enhanced drug metabolism, impaired DNA repair systems, and anti-apoptotic mechanisms, are critically involved in drug resistance, the detailed resistance mechanisms have not been fully elucidated in distinct cancers. Recently, F-box protein (FBPs), key subunits in Skp1-Cullin1-F-box protein (SCF) E3 ligase complexes, have been found to play critical roles in carcinogenesis, tumor progression, and drug resistance through degradation of their downstream substrates. Therefore, in this review, we describe the functions of FBPs that are involved in drug resistance and discuss how FBPs contribute to the development of cancer drug resistance. Furthermore, we propose that targeting FBPs might be a promising strategy to overcome drug resistance and achieve better treatment outcome in cancer patients. Lastly, we state the limitations and challenges of using FBPs to overcome chemotherapeutic drug resistance in various cancers.
Collapse
Affiliation(s)
- Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
43
|
Chu YY, Yam C, Chen MK, Chan LC, Xiao M, Wei YK, Yamaguchi H, Lee PC, Han Y, Nie L, Sun X, Moulder SL, Hess KR, Wang B, Hsu JL, Hortobagyi GN, Litton J, Chang JT, Hung MC. Blocking c-Met and EGFR reverses acquired resistance of PARP inhibitors in triple-negative breast cancer. Am J Cancer Res 2020; 10:648-661. [PMID: 32195033 PMCID: PMC7061756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023] Open
Abstract
The limited treatment options and therapeutic failure due to acquired resistance for patients with triple-negative breast cancer (TNBC) represent a significant challenge. Inhibitors against poly (ADP-ribose) polymerase (PARP), olaparib and talazoparib, were recently approved for the treatment of metastatic breast cancer (including TNBC) in patients with germline BRCA1/2 mutations. Despite impressive response rates of ~60%, the prolongation in median progression-free survival with a PARPi is modest, suggesting the emergence of resistance. Several studies have reported that receptor tyrosine kinases (RTKs), such as c-MET (also known as hepatocyte growth factor receptor), are involved in resistance to various anti-neoplastic agents, including PARPi. However, the mechanism by which c-MET contributes to acquired resistance to PARPi in TNBC is not fully understood. In this study, we show that hyperactivated c-Met is detected in TNBC cells with acquired resistance to PARPi, and the combination of talazoparib and crizotinib (a multi-kinase inhibitor that inhibits c-MET) synergistically inhibits proliferation in these cells. Unexpectedly, depleting c-MET had limited effect on talazoparib sensitivity in PARPi-resistant cells. Interestingly, we found evidence of epidermal growth factor receptor (EGFR) hyperactivation and interaction of EGFR/c-Met in these cells. Notably, combining EGFR and PARP inhibitors resulted in greater inhibition of proliferation in c-MET-depleted TNBC cells, and combined c-MET and EGFR inhibition increased sensitivity to talazoparib in TNBC cells with acquired resistance to PARPi. Our findings suggest that combined inhibition of c-MET and EGFR could potentially re-sensitize TNBC to the cytotoxic effects of PARPi.
Collapse
Affiliation(s)
- Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Clinton Yam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical SciencesHouston, TX 77030, USA
- This Research was Performed in Partial Fulfillment of The Requirements for The MS Degree From The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences; The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical SciencesHouston, TX 77030, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Min Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin 150081, Heilongjiang, P. R. China
| | - Yong-Kun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationPO Box 34110, Doha, Qatar
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
| | - Ye Han
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Second Breast Surgery, China Medical University Affiliated Shengjing HospitalShenyang, P. R. China
| | - Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Xian Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Thoracic Medical Oncology, Harbin Medical University Cancer HospitalHarbin 150086, Heilongjiang, P. R. China
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Jennifer Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Jeffrey T Chang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| |
Collapse
|
44
|
Cartel M, Didier C. Regulation of CHK1 by the Ubiquitin-Proteasome System. FEBS J 2020; 287:1982-1984. [PMID: 31904911 DOI: 10.1111/febs.15173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Abstract
The checkpoint kinase 1 (CHK1) is a master regulator of genome integrity in vertebrate cells. Despite its important cell cycle functions, its regulation is still incompletely understood. Cassidy et al. provide novel insights on the regulation of the CHK1 abundance by the HECT E3 ligase HUWE1 during unperturbed cell cycle as well as in response to replicative stress. These results may help us to apprehend the underlying mechanism of tumorigenesis.
Collapse
Affiliation(s)
- Maëlle Cartel
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL 5294, Université de Toulouse, France.,Équipe Labellisée 2016, Ligue Nationale Contre le Cancer, Toulouse, France
| | - Christine Didier
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL 5294, Université de Toulouse, France.,Équipe Labellisée 2016, Ligue Nationale Contre le Cancer, Toulouse, France
| |
Collapse
|
45
|
All-trans retinoic acid exerts selective anti-FLT3-ITD acute myeloid leukemia efficacy through downregulating Chk1 kinase. Cancer Lett 2020; 473:130-138. [PMID: 31904486 DOI: 10.1016/j.canlet.2019.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
All-trans retinoic acid (ATRA) is known to be a potent inhibitor of FLT3-ITD acute myeloid leukemia (AML) cells, although the exact mechanism remains unclear. In this work, we report that ATRA causes fatal mitotic catastrophe in FLT3-ITD AML cells by degrading Chk1 kinase, and therefore preventing DNA damage repair. In order to explore a further enhancement in the inhibitory effect of ATRA on FLT3-ITD AML cells, we investigated the suitability of a combination of ATRA and DNA damage drug SN38. In vitro experiments showed that this combinatorial approach effectively inhibited the proliferation of FLT3-ITD cells and induced cell apoptosis in AML. In vivo experiments confirmed that the combination could substantially improve the anti-tumor effect of SN38. Taken together, our results indicate that ATRA down-regulates Chk1 in FLT3-ITD AML cells, and the combination of ATRA and SN38 significantly improves the anti-tumor effect of either ATRA or SN38 when used alone.
Collapse
|
46
|
The Biology of F-box Proteins: The SCF Family of E3 Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:111-122. [PMID: 31898225 DOI: 10.1007/978-981-15-1025-0_8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
F-box proteins function as substrate adaptors for the S-phase kinase-associated protein 1 (SKP1)-cullin 1 (CUL1)-F-box protein (SCF) ubiquitin ligase complexes, which mediate the proteasomal degradation of a diverse range of regulatory proteins. 20 years since the F-box protein family has been discovered, our understanding of substrate-recognition regulation and the roles F-box proteins play in cellular processes has continued to expand. Here, we provide an introduction to the discovery and classification of F-box proteins, the overall structural assembly of SCF complexes, the varied mechanisms by which F-box proteins recognize their substrates, and the role F-box proteins play in diseases and their potentials in targeted therapies.
Collapse
|
47
|
An J, Li Q, Yang J, Zhang G, Zhao Z, Wu Y, Wang Y, Wang W. Wheat F-box Protein TaFBA1 Positively Regulates Plant Drought Tolerance but Negatively Regulates Stomatal Closure. FRONTIERS IN PLANT SCIENCE 2019; 10:1242. [PMID: 31649704 PMCID: PMC6795708 DOI: 10.3389/fpls.2019.01242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 09/06/2019] [Indexed: 05/24/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates plant growth and development, as well as responses to various stresses, such as salt and drought. The wheat TaFBA1 gene, which encodes an F-box protein, was previously identified in our laboratory by homologous cloning. We previously found that TaFBA1 expression was induced by ABA and drought stress. In this study, wild-type (WT), TaFBA1 over-expressing (OEs), TaFBA1 homologous gene mutants, and TaFBA1 recovery (Rs) Arabidopsis plants were used. We found that the germination rate, the cotyledon greening rate, the root length, and the photosynthetic performance of TaFBA1 OE plants were better than those of WT under drought and ABA conditions, but mutant plants showed the opposite trend, and overexpression of TaFBA1 in mutants can recover their phenotype. In addition, TaFBA1 was found to be a negative regulator of ABA-induced stoma movement; mRNA transcription of certain ABA signaling-related genes was lower in TaFBA1 OE plants than in WT plants following ABA treatment. Further, we found that TaFBA1 can interact with RCAR1 (an ABA receptor) and ABI5. BiFC assay showed that TaFBA1 may interact with RCAR1 in the plasma membrane. In addition, accumulation of ROS and MDA in TaFBA1 OE plants was lower than that in the WT plants after ABA and drought treatments. Based on these results, we suggest that TaFBA1-regulated ABA insensitivity may be dependent on regulating ABA-mediated gene expression through interacting with RCAR1 and ABI5. Increased antioxidant competence and decreased ROS accumulation may be an important mechanism that underlies improved drought tolerance in TaFBA1 OE plants.
Collapse
|
48
|
Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol 2019; 10:1144. [PMID: 31632280 PMCID: PMC6781834 DOI: 10.3389/fphys.2019.01144] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.
Collapse
Affiliation(s)
- Shahd Fouad
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen S Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mark A Hill
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Michelena J, Gatti M, Teloni F, Imhof R, Altmeyer M. Basal CHK1 activity safeguards its stability to maintain intrinsic S-phase checkpoint functions. J Cell Biol 2019; 218:2865-2875. [PMID: 31366665 PMCID: PMC6719454 DOI: 10.1083/jcb.201902085] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The essential kinase CHK1 controls cell cycle checkpoint signaling and S-phase progression. Michelena et al. reveal that steady-state activity of CHK1 is required to sustain its own stability and that failure to do so results in CHK1 degradation and sensitizes cells to replication stress. The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.
Collapse
Affiliation(s)
- Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Du X, Meng F, Peng D, Wang Z, Ouyang W, Han Y, Gu Y, Fan L, Wu F, Jiang X, Xu F, Qin FXF. Noncanonical Role of FBXO6 in Regulating Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:1012-1020. [PMID: 31308089 DOI: 10.4049/jimmunol.1801557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
The evolutionarily conserved F-box family of proteins are well known for their role as the key component of SKP1-Cullin1-F-box (SCF) E3 ligase in controlling cell cycle, cell proliferation and cell death, carcinogenesis, and cancer metastasis. However, thus far, there is only limited investigation on their involvement in antiviral immunity. In contrast to the canonical function of FBXO6 associated with SCF E3 ligase complex, we report, in this study, that FBXO6 can also potently regulate the activation of IFN-I signaling during host response to viral infection by targeting the key transcription factor IFN-regulatory factor 3 (IRF3) for accelerated degradation independent of SCF in human embryonic kidney cells (HEK293T) and human lung cancer epithelial cells (A549). Structure and function delineation has further revealed that FBXO6 interacts with IAD domain of IRF3 through its FBA region to induce ubiquitination and degradation of IRF3 without the involvement of SCF. Thus, our studies have identified a general but, to our knowledge, previously unrecognized role and a novel noncanonical mechanism of FBXO6 in modulating IFN-I-mediated antiviral immune responses, which may protect the host from immunopathology of overreactive and harmful IFN-I production.
Collapse
Affiliation(s)
- Xiaohong Du
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Fang Meng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Di Peng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Zining Wang
- Collaborative Innovation Center of Cancer Medicine, Department of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Ouyang
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Yu Han
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Yayun Gu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Lingbo Fan
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Fei Wu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Xiaodong Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - F Xiao-Feng Qin
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; .,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| |
Collapse
|