1
|
Converso C, Pierrakeas L, Chan L, Chowdhury S, de Onis E, Kuznetsov VI, Denu JM, Luk E. H2A.Z deposition by the SWR complex is stimulated by polyadenine DNA sequences in nucleosomes. PLoS Biol 2025; 23:e3003059. [PMID: 40354500 PMCID: PMC12068740 DOI: 10.1371/journal.pbio.3003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/07/2025] [Indexed: 05/14/2025] Open
Abstract
The variant histone H2A.Z is deposited into nucleosomes immediately downstream of promoters, where it plays a critical role in transcription. The site-specific deposition of H2A.Z is catalyzed by the SWR complex, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome-depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR to a library of canonical nucleosomes isolated from yeast and analyzed the preferred substrates. Our results revealed that SWR preferentially deposited H2A.Z into a subset of endogenous H2A.Z sites, which are overrepresented by polyadenine tracts on the top strands of the DNA duplex at the nucleosomal entry-exit sites. Insertion of polyadenine sequences into recombinant nucleosomes near the outgoing H2A-H2B dimer enhanced SWR's affinity for the nucleosomal substrate and increased its H2A.Z insertion activity. These findings suggest that the genome encodes sequence-based information that facilitates remodeler-mediated targeting of H2A.Z.
Collapse
Affiliation(s)
- Cynthia Converso
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Leonidas Pierrakeas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lirong Chan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Shalvi Chowdhury
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Emily de Onis
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Vyacheslav I. Kuznetsov
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - John M. Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
2
|
Wei K, Arlotto M, Overhulse JM, Dinh T, Zhou Y, Dupper NJ, Yang J, Kashemirov BA, Dawi H, Garnaud C, Bourgine G, Mietton F, Champleboux M, Larabi A, Hayat Y, Indorato R, Noirclerc‐Savoye M, Skoufias D, Cornet M, Rabut G, McKenna CE, Petosa C, Govin J. Humanized Candida and NanoBiT Assays Expedite Discovery of Bdf1 Bromodomain Inhibitors With Antifungal Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404260. [PMID: 39821709 PMCID: PMC11904993 DOI: 10.1002/advs.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Indexed: 01/19/2025]
Abstract
The fungal Bromodomain and Extra-Terminal (BET) protein Bdf1 is a potential antifungal target against invasive fungal infections. However, the need to selectively inhibit both Bdf1 bromodomains (BDs) over human orthologs and the lack of molecular tools to assess on-target antifungal efficacy hamper efforts to develop Bdf1 BD inhibitors as antifungal therapeutics. This study reports a phenyltriazine compound that inhibits both Bdf1 BDs from the human fungal pathogen Candida glabrata with selectivity over the orthologous BDs from the human BET protein Brd4. On-target antifungal activity is established by devising two yeast-based inhibition assays: a growth assay using humanized Candida strains in which the Bdf1 BDs are replaced by their Brd4 counterparts, and a NanoBiT assay that evaluates the BD-mediated association of Bdf1 with chromatin. These assays additionally enable the discovery that BET inhibitor I-BET726 targets both Bdf1 BDs, inhibits the growth of a broad spectrum of Candida species, including antifungal-resistant clinical isolates, and displays efficacy in an invertebrate animal model of infection. These collective findings highlight the promising potential of Bdf1 BD inhibitors as an innovative class of antifungal therapeutics and the pivotal role of yeast-based assay development toward achieving this end.
Collapse
Affiliation(s)
- Kaiyao Wei
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Marie Arlotto
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Justin M. Overhulse
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Tuan‐Anh Dinh
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Yingsheng Zhou
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Nathan J. Dupper
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Jiayi Yang
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Boris A. Kashemirov
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Hasan Dawi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Cécile Garnaud
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gaëlle Bourgine
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Flore Mietton
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Morgane Champleboux
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Amédé Larabi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Yordan Hayat
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Rose‐Laure Indorato
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | | | - Dimitrios Skoufias
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Muriel Cornet
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gwenaël Rabut
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Charles E. McKenna
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Carlo Petosa
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Jérôme Govin
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| |
Collapse
|
3
|
Chen RW, Stoeber SD, Nodelman IM, Chen H, Yang L, Bowman GD, Bai L, Poirier MG. Native nucleosome-positioning elements for the investigation of nucleosome repositioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633597. [PMID: 39868261 PMCID: PMC11760725 DOI: 10.1101/2025.01.17.633597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer. Due to the artificial nature of 601, native NPEs are needed to explore the role of DNA sequence in nucleosome repositioning. Here, we characterize the position distributions and nucleosome formation free energy for a set of yeast native nucleosomes (YNNs) from Saccharomyces cerevisiae. We show these native NPEs can be used in biochemical studies of nucleosome repositioning by transcription factors (TFs) and the chromatin remodeler Chd1. TFs could directly reposition a fraction of nucleosomes containing native NPEs, but not 601-containing nucleosomes. In contrast, partial unwrapping was similar for 601 and native NPE sequences, and the rate of ATP-dependent remodeling by Chd1 was within the range of the fast and slow directions of the 601 nucleosomes. This set of native NPEs provides an alternative to the 601 NPE that can be used for probing the repositioning of nucleosomes that contain native DNA sequences.
Collapse
Affiliation(s)
- Ruo-Wen Chen
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shane D. Stoeber
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ilana M. Nodelman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lloyd Yang
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory D. Bowman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael G. Poirier
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Chesnutt K, Yayli G, Toelzer C, Damilot M, Cox K, Gautam G, Berger I, Tora L, Poirier M. ATAC and SAGA histone acetyltransferase modules facilitate transcription factor binding to nucleosomes independent of their acetylation activity. Nucleic Acids Res 2025; 53:gkae1120. [PMID: 39656677 PMCID: PMC11724297 DOI: 10.1093/nar/gkae1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Transcription initiation involves the coordination of multiple events, starting with activators binding specific DNA target sequences, which recruit transcription coactivators to open chromatin and enable binding of general transcription factors and RNA polymerase II to promoters. Two key human transcriptional coactivator complexes, ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5 acetyltransferase), containing histone acetyltransferase (HAT) activity, target genomic loci to increase promoter accessibility. To better understand the function of ATAC and SAGA HAT complexes, we used in vitro biochemical and biophysical assays to characterize human ATAC and SAGA HAT module interactions with nucleosomes and how a transcription factor (TF) coordinates these interactions. We found that ATAC and SAGA HAT modules bind nucleosomes with high affinity, independent of their HAT activity and the tested TF. ATAC and SAGA HAT modules directly interact with the VP16 activator domain and this domain enhances acetylation activity of both HAT modules. Surprisingly, ATAC and SAGA HAT modules increase TF binding to its DNA target site within the nucleosome by an order of magnitude independent of histone acetylation. Altogether, our results reveal synergistic coordination between HAT modules and a TF, where ATAC and SAGA HAT modules (i) acetylate histones to open chromatin and (ii) facilitate TF targeting within nucleosomes independently of their acetylation activity.
Collapse
Affiliation(s)
- Kristin V Chesnutt
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
| | - Gizem Yayli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Khan Cox
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Michael G Poirier
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, Ohio State University, Columbus, OH43210, USA
| |
Collapse
|
5
|
Stoeber S, Godin H, Xu C, Bai L. Pioneer factors: nature or nurture? Crit Rev Biochem Mol Biol 2024; 59:139-153. [PMID: 38778580 PMCID: PMC11444900 DOI: 10.1080/10409238.2024.2355885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Chromatin is densely packed with nucleosomes, which limits the accessibility of many chromatin-associated proteins. Pioneer factors (PFs) are usually viewed as a special group of sequence-specific transcription factors (TFs) that can recognize nucleosome-embedded motifs, invade compact chromatin, and generate open chromatin regions. Through this process, PFs initiate a cascade of events that play key roles in gene regulation and cell differentiation. A current debate in the field is if PFs belong to a unique subset of TFs with intrinsic "pioneering activity", or if all TFs have the potential to function as PFs within certain cellular contexts. There are also different views regarding the key feature(s) that define pioneering activity. In this review, we present evidence from the literature related to these alternative views and discuss how to potentially reconcile them. It is possible that both intrinsic properties, like tight nucleosome binding and structural compatibility, and cellular conditions, like concentration and co-factor availability, are important for PF function.
Collapse
Affiliation(s)
- Shane Stoeber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Godin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Segura J, Díaz-Ingelmo O, Martínez-García B, Ayats-Fraile A, Nikolaou C, Roca J. Nucleosomal DNA has topological memory. Nat Commun 2024; 15:4526. [PMID: 38806488 PMCID: PMC11133463 DOI: 10.1038/s41467-024-49023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
One elusive aspect of the chromosome architecture is how it constrains the DNA topology. Nucleosomes stabilise negative DNA supercoils by restraining a DNA linking number difference (∆Lk) of about -1.26. However, whether this capacity is uniform across the genome is unknown. Here, we calculate the ∆Lk restrained by over 4000 nucleosomes in yeast cells. To achieve this, we insert each nucleosome in a circular minichromosome and perform Topo-seq, a high-throughput procedure to inspect the topology of circular DNA libraries in one gel electrophoresis. We show that nucleosomes inherently restrain distinct ∆Lk values depending on their genomic origin. Nucleosome DNA topologies differ at gene bodies (∆Lk = -1.29), intergenic regions (∆Lk = -1.23), rDNA genes (∆Lk = -1.24) and telomeric regions (∆Lk = -1.07). Nucleosomes near the transcription start and termination sites also exhibit singular DNA topologies. Our findings demonstrate that nucleosome DNA topology is imprinted by its native chromatin context and persists when the nucleosome is relocated.
Collapse
Affiliation(s)
- Joana Segura
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Madrid, Spain
| | - Ofelia Díaz-Ingelmo
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Belén Martínez-García
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alba Ayats-Fraile
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Joaquim Roca
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
7
|
Zeitler L, André K, Alberti A, Denby Wilkes C, Soutourina J, Goldar A. A genome-wide comprehensive analysis of nucleosome positioning in yeast. PLoS Comput Biol 2024; 20:e1011799. [PMID: 38266035 PMCID: PMC10843174 DOI: 10.1371/journal.pcbi.1011799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/05/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
In eukaryotic cells, the one-dimensional DNA molecules need to be tightly packaged into the spatially constraining nucleus. Folding is achieved on its lowest level by wrapping the DNA around nucleosomes. Their arrangement regulates other nuclear processes, such as transcription and DNA repair. Despite strong efforts to study nucleosome positioning using Next Generation Sequencing (NGS) data, the mechanism of their collective arrangement along the gene body remains poorly understood. Here, we classify nucleosome distributions of protein-coding genes in Saccharomyces cerevisiae according to their profile similarity and analyse their differences using functional Principal Component Analysis. By decomposing the NGS signals into their main descriptive functions, we compared wild type and chromatin remodeler-deficient strains, keeping position-specific details preserved whilst considering the nucleosome arrangement as a whole. A correlation analysis with other genomic properties, such as gene size and length of the upstream Nucleosome Depleted Region (NDR), identified key factors that influence the nucleosome distribution. We reveal that the RSC chromatin remodeler-which is responsible for NDR maintenance-is indispensable for decoupling nucleosome arrangement within the gene from positioning outside, which interfere in rsc8-depleted conditions. Moreover, nucleosome profiles in chd1Δ strains displayed a clear correlation with RNA polymerase II presence, whereas wild type cells did not indicate a noticeable interdependence. We propose that RSC is pivotal for global nucleosome organisation, whilst Chd1 plays a key role for maintaining local arrangement.
Collapse
Affiliation(s)
- Leo Zeitler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Kévin André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Adriana Alberti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),Gif-sur-Yvette, France
| |
Collapse
|
8
|
Khamwachirapithak P, Guillaume-Schoepfer D, Chansongkrow P, Teichmann SA, Wigge PA, Charoensawan V. Characterizing Different Modes of Interplay Between Rap1 and H3 Using Inducible H3-depletion Yeast. J Mol Biol 2023; 435:168355. [PMID: 37935256 DOI: 10.1016/j.jmb.2023.168355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Histones and transcription factors (TFs) are two important DNA-binding proteins that interact, compete, and together regulate transcriptional processes in response to diverse internal and external stimuli. Condition-specific depletion of histones in Saccharomyces cerevisiae using a galactose-inducible H3 promoter provides a suitable framework for examining transcriptional alteration resulting from reduced nucleosome content. However, the effect on DNA binding activities of TFs is yet to be fully explored. In this work, we combine ChIP-seq of H3 with RNA-seq to elucidate the genome-scale relationships between H3 occupancy patterns and transcriptional dynamics before and after global H3 depletion. ChIP-seq of Rap1 is also conducted in the H3-depletion and control treatments, to investigate the interplay between this master regulator TF and nucleosomal H3, and to explore the impact on diverse transcriptional responses of different groups of target genes and functions. Ultimately, we propose a working model and testable hypotheses regarding the impact of global and local H3 depletion on transcriptional changes. We also demonstrate different potential modes of interaction between Rap1 and H3, which sheds light on the potential multifunctional regulatory capabilities of Rap1 and potentially other pioneer factors.
Collapse
Affiliation(s)
- Peerapat Khamwachirapithak
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pakkanan Chansongkrow
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom; University Potsdam, Institute for Biochemistry and Biology, Molecular Biology, Karl-Liebknecht-Str, Potsdam-Golm, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) center, Mahidol University, Nakhon Pathom, Thailand; School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
9
|
Converso C, Pierrakeas L, Chan L, Chowdhury S, Kuznetsov VI, Denu JM, Luk E. Nucleic acid sequence contributes to remodeler-mediated targeting of histone H2A.Z. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570360. [PMID: 38106078 PMCID: PMC10723385 DOI: 10.1101/2023.12.06.570360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The variant histone H2A.Z is inserted into nucleosomes immediately downstream of promoters and is important for transcription. The site-specific deposition of H2A.Z is catalyzed by SWR, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR with a library of nucleosomes isolated from yeast and characterized those preferred by SWR. We found that SWR prefers nucleosomes associated with intergenic over coding regions, especially when polyadenine tracks are present. Insertion of polyadenine sequences into recombinant nucleosomes near the H2A-H2B binding site stimulated the H2A.Z insertion activity of SWR. Therefore, the genome is encoded with information contributing to remodeler-mediated targeting of H2A.Z.
Collapse
|
10
|
Reb1, Cbf1, and Pho4 bias histone sliding and deposition away from their binding sites. Mol Cell Biol 2021; 42:e0047221. [PMID: 34898278 DOI: 10.1128/mcb.00472-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In transcriptionally active genes, nucleosome positions in promoters are regulated by nucleosome displacing factors (NDFs) and chromatin remodeling enzymes. Depletion of NDFs or the RSC chromatin remodeler shrinks or abolishes the nucleosome depleted regions (NDRs) in promoters, which can suppress gene activation and result in cryptic transcription. Despite their vital cellular functions, how the action of chromatin remodelers may be directly affected by site-specific binding factors like NDFs is poorly understood. Here we demonstrate that two NDFs, Reb1 and Cbf1, can direct both Chd1 and RSC chromatin remodeling enzymes in vitro, stimulating repositioning of the histone core away from their binding sites. Interestingly, although the Pho4 transcription factor had a much weaker effect on nucleosome positioning, both NDFs and Pho4 were able to similarly redirect positioning of hexasomes. In chaperone-mediated nucleosome assembly assays, Reb1 but not Pho4 showed an ability to block deposition of the histone H3/H4 tetramer, but Reb1 did not block addition of the H2A/H2B dimer to hexasomes. Our in vitro results show that NDFs bias the action of remodelers to increase the length of the free DNA in the vicinity of their binding sites. These results suggest that NDFs could directly affect NDR architecture through chromatin remodelers.
Collapse
|
11
|
Gds1 interacts with NuA4 to promote H4 acetylation at ribosomal protein genes. Mol Cell Biol 2021; 42:e0037321. [PMID: 34694912 DOI: 10.1128/mcb.00373-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our previously published studies, RNA polymerase II transcription initiation complexes were assembled from yeast nuclear extracts onto immobilized transcription templates and analyzed by quantitative mass spectrometry. In addition to the expected basal factors and coactivators, we discovered that the uncharacterized protein Gds1/YOR355W showed activator-stimulated association with promoter DNA. Gds1 co-precipitated with the histone H4 acetyltransferase NuA4, and its levels often tracked with NuA4 in immobilized template experiments. GDS1 deletion led to reduction in H4 acetylation in vivo, and caused other phenotypes consistent with partial loss of NuA4 activity. Genome-wide chromatin immunoprecipitation revealed that the reduction in H4 acetylation was strongest at ribosomal protein gene promoters and other genes with high NuA4 occupancy. Therefore, while Gds1 is not a stoichiometric subunit of NuA4, we propose that it interacts with and modulates NuA4 in specific promoter contexts. Gds1 has no obvious metazoan homolog, but the Alphafold2 algorithm predicts that a section of Gds1 resembles the winged-helix/forkhead domain found in DNA-binding proteins such as the FOX transcription factors and histone H1.
Collapse
|
12
|
Abstract
Transcription factors (TFs) are essential mediators of epigenetic regulation and modifiers of penetrance. Studies from the past decades have revealed a sub-class of TF that is capable of remodeling closed chromatin states through targeting nucleosomal motifs. This pioneer factor (PF) class of chromatin remodeler is ATP independent in its roles in epigenetic initiation, with nucleosome-motif recognition and association with repressive chromatin regions. Increasing evidence suggests that the fundamental properties of PFs can be coopted in human cancers. We explore the role of PFs in the larger context of tissue-specific epigenetic regulation. Moreover, we highlight an emerging class of chimeric PF derived from translocation partners in human disease and PFs associated with rare tumors. In the age of site-directed genome editing and targeted protein degradation, increasing our understanding of PFs will provide access to next-generation therapy for human disease driven from altered transcriptional circuitry.
Collapse
|
13
|
Kumar A, Zhong Y, Albrecht A, Sang PB, Maples A, Liu Z, Vinayachandran V, Reja R, Lee CF, Kumar A, Chen J, Xiao J, Park B, Shen J, Liu B, Person MD, Trybus KM, Zhang KYJ, Pugh BF, Kamm KE, Milewicz DM, Shen X, Kapoor P. Actin R256 Mono-methylation Is a Conserved Post-translational Modification Involved in Transcription. Cell Rep 2021; 32:108172. [PMID: 32997990 PMCID: PMC8860185 DOI: 10.1016/j.celrep.2020.108172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/11/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear actin has been elusive due to the lack of knowledge about molecular mechanisms. From actin-containing chromatin remodeling complexes, we discovered an arginine mono-methylation mark on an evolutionarily conserved R256 residue of actin (R256me1). Actin R256 mutations in yeast affect nuclear functions and cause diseases in human. Interestingly, we show that an antibody specific for actin R256me1 preferentially stains nuclear actin over cytoplasmic actin in yeast, mouse, and human cells. We also show that actin R256me1 is regulated by protein arginine methyl transferase-5 (PRMT5) in HEK293 cells. A genome-wide survey of actin R256me1 mark provides a landscape for nuclear actin correlated with transcription. Further, gene expression and protein interaction studies uncover extensive correlations between actin R256me1 and active transcription. The discovery of actin R256me1 mark suggests a fundamental mechanism to distinguish nuclear actin from cytoplasmic actin through post-translational modification (PTM) and potentially implicates an actin PTM mark in transcription and human diseases. Nuclear actin and actin PTMs are poorly understood. Kumar et al. discover a system of actin PTMs similar to histone PTMs, including a conserved mark on nuclear actin (R256me1) with potential implications for transcription and human diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Yuan Zhong
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Amelie Albrecht
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Pau Biak Sang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Adrian Maples
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Zhenan Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rohit Reja
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chia-Fang Lee
- ICMB Proteomics Facility, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jiyuan Chen
- Department of Internal Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jing Xiao
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Bongsoo Park
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Maria D Person
- ICMB Proteomics Facility, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristine E Kamm
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Xuetong Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| | - Prabodh Kapoor
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| |
Collapse
|
14
|
Structure and Function of Chromatin Remodelers. J Mol Biol 2021; 433:166929. [PMID: 33711345 PMCID: PMC8184634 DOI: 10.1016/j.jmb.2021.166929] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Chromatin remodelers act to regulate multiple cellular processes, such as transcription and DNA repair, by controlling access to genomic DNA. Four families of chromatin remodelers have been identified in yeast, each with non-redundant roles within the cell. There has been a recent surge in structural models of chromatin remodelers in complex with their nucleosomal substrate. These structural studies provide new insight into the mechanism of action for individual chromatin remodelers. In this review, we summarize available data for the structure and mechanism of action of the four chromatin remodeling complex families.
Collapse
|
15
|
Donczew R, Hahn S. BET family members Bdf1/2 modulate global transcription initiation and elongation in Saccharomyces cerevisiae. eLife 2021; 10:e69619. [PMID: 34137374 PMCID: PMC8266393 DOI: 10.7554/elife.69619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Human bromodomain and extra-terminal domain (BET) family members are promising targets for therapy of cancer and immunoinflammatory diseases, but their mechanisms of action and functional redundancies are poorly understood. Bdf1/2, yeast homologues of the human BET factors, were previously proposed to target transcription factor TFIID to acetylated histone H4, analogous to bromodomains that are present within the largest subunit of metazoan TFIID. We investigated the genome-wide roles of Bdf1/2 and found that their important contributions to transcription extend beyond TFIID function as transcription of many genes is more sensitive to Bdf1/2 than to TFIID depletion. Bdf1/2 co-occupy the majority of yeast promoters and affect preinitiation complex formation through recruitment of TFIID, Mediator, and basal transcription factors to chromatin. Surprisingly, we discovered that hypersensitivity of genes to Bdf1/2 depletion results from combined defects in transcription initiation and early elongation, a striking functional similarity to human BET proteins, most notably Brd4. Our results establish Bdf1/2 as critical for yeast transcription and provide important mechanistic insights into the function of BET proteins in all eukaryotes.
Collapse
Affiliation(s)
- Rafal Donczew
- Fred Hutchinson Cancer Research Center, Division of Basic SciencesSeattleUnited States
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Division of Basic SciencesSeattleUnited States
| |
Collapse
|
16
|
Biernat E, Kinney J, Dunlap K, Rizza C, Govind CK. The RSC complex remodels nucleosomes in transcribed coding sequences and promotes transcription in Saccharomyces cerevisiae. Genetics 2021; 217:6133232. [PMID: 33857307 PMCID: PMC8049546 DOI: 10.1093/genetics/iyab021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
RSC (Remodels the Structure of Chromatin) is a conserved ATP-dependent chromatin remodeling complex that regulates many biological processes, including transcription by RNA polymerase II (Pol II). We report that RSC contributes in generating accessible nucleosomes in transcribed coding sequences (CDSs). RSC MNase ChIP-seq data revealed that RSC-bound nucleosome fragments were very heterogenous (∼80 bp to 180 bp) compared to a sharper profile displayed by the MNase inputs (140 bp to 160 bp), supporting the idea that RSC promotes accessibility of nucleosomal DNA. Notably, RSC binding to +1 nucleosomes and CDSs, but not with -1 nucleosomes, strongly correlated with Pol II occupancies, suggesting that RSC enrichment in CDSs is linked to transcription. We also observed that Pol II associates with nucleosomes throughout transcribed CDSs, and similar to RSC, Pol II-protected fragments were highly heterogenous, consistent with the idea that Pol II interacts with remodeled nucleosomes in CDSs. This idea is supported by the observation that the genes harboring high-levels of Pol II in their CDSs were the most strongly affected by ablating RSC function. Additionally, rapid nuclear depletion of Sth1 decreases nucleosome accessibility and results in accumulation of Pol II in highly transcribed CDSs. This is consistent with a slower clearance of elongating Pol II in cells with reduced RSC function, and is distinct from the effect of RSC depletion on PIC assembly. Altogether, our data provide evidence in support of the role of RSC in promoting Pol II elongation, in addition to its role in regulating transcription initiation.
Collapse
Affiliation(s)
- Emily Biernat
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jeena Kinney
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Kyle Dunlap
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Christian Rizza
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
17
|
Abstract
Pioneer transcription factors have the intrinsic biochemical ability to scan partial DNA sequence motifs that are exposed on the surface of a nucleosome and thus access silent genes that are inaccessible to other transcription factors. Pioneer factors subsequently enable other transcription factors, nucleosome remodeling complexes, and histone modifiers to engage chromatin, thereby initiating the formation of an activating or repressive regulatory sequence. Thus, pioneer factors endow the competence for fate changes in embryonic development, are essential for cellular reprogramming, and rewire gene networks in cancer cells. Recent studies with reconstituted nucleosomes in vitro and chromatin binding in vivo reveal that pioneer factors can directly perturb nucleosome structure and chromatin accessibility in different ways. This review focuses on our current understanding of the mechanisms by which pioneer factors initiate gene network changes and will ultimately contribute to our ability to control cell fates at will.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA;
| |
Collapse
|
18
|
Hainer SJ, Kaplan CD. Specialized RSC: Substrate Specificities for a Conserved Chromatin Remodeler. Bioessays 2020; 42:e2000002. [PMID: 32490565 PMCID: PMC7329613 DOI: 10.1002/bies.202000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Indexed: 01/16/2023]
Abstract
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
19
|
The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription. Curr Genet 2020; 66:939-944. [DOI: 10.1007/s00294-020-01087-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
|
20
|
Poramba-Liyanage DW, Korthout T, Cucinotta CE, van Kruijsbergen I, van Welsem T, El Atmioui D, Ovaa H, Tsukiyama T, van Leeuwen F. Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes. Genome Res 2020; 30:635-646. [PMID: 32188699 PMCID: PMC7197482 DOI: 10.1101/gr.256255.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein–protein relationships and protein functions at the chromatin template.
Collapse
Affiliation(s)
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Christine E Cucinotta
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Dris El Atmioui
- Leiden Institute for Chemical Immunology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands.,Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Huib Ovaa
- Leiden Institute for Chemical Immunology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands.,Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Song S, Perez JV, Svitko W, Ricketts MD, Dean E, Schultz D, Marmorstein R, Johnson FB. Rap1-mediated nucleosome displacement can regulate gene expression in senescent cells without impacting the pace of senescence. Aging Cell 2020; 19:e13061. [PMID: 31742863 PMCID: PMC6974733 DOI: 10.1111/acel.13061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/19/2019] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
Cell senescence is accompanied, and in part mediated, by changes in chromatin, including histone losses, but underlying mechanisms are not well understood. We reported previously that during yeast cell senescence driven by telomere shortening, the telomeric protein Rap1 plays a major role in reprogramming gene expression by relocalizing hundreds of new target genes (called NRTS, for new Rap1 targets at senescence) to the promoters. This leads to two types of histone loss: Rap1 lowers histone level globally by repressing histone gene expression, and it also causes local nucleosome displacement at the promoters of upregulated NRTS. Here, we present evidence of direct binding between Rap1 and histone H3/H4 heterotetramers, and map amino acids involved in the interaction within the Rap1 SANT domain to amino acids 392-394 (SHY). Introduction of a point mutation within the native RAP1 locus that converts these residues to alanines (RAP1SHY ), and thus disrupts Rap1-H3/H4 interaction, does not interfere with Rap1 relocalization to NRTS at senescence, but prevents full nucleosome displacement and gene upregulation, indicating direct Rap1-H3/H4 contacts are involved in nucleosome displacement. Consistent with this, the histone H3/H4 chaperone Asf1 is similarly unnecessary for Rap1 localization to NRTS but is required for full Rap1-mediated nucleosome displacement and gene activation. Remarkably, RAP1SHY does not affect the pace of senescence-related cell cycle arrest, indicating that some changes in gene expression at senescence are not coupled to this arrest.
Collapse
Affiliation(s)
- Shufei Song
- Department of Biochemistry and Molecular Biophysics University of Pennsylvania Philadelphia PA USA
- Graduate Group in Biochemistry and Molecular Biophysics University of Pennsylvania Philadelphia PA USA
- Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia PA USA
| | - Javier V. Perez
- Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia PA USA
| | - William Svitko
- Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia PA USA
| | - M. Daniel Ricketts
- Department of Biochemistry and Molecular Biophysics University of Pennsylvania Philadelphia PA USA
- Abramson Family Cancer Research Institute University of Pennsylvania Philadelphia PA USA
| | - Elliot Dean
- High‐Throughput Screening Core University of Pennsylvania Philadelphia PA USA
| | - David Schultz
- High‐Throughput Screening Core University of Pennsylvania Philadelphia PA USA
| | - Ronen Marmorstein
- Department of Biochemistry and Molecular Biophysics University of Pennsylvania Philadelphia PA USA
- Abramson Family Cancer Research Institute University of Pennsylvania Philadelphia PA USA
| | - F. Brad Johnson
- Department of Biochemistry and Molecular Biophysics University of Pennsylvania Philadelphia PA USA
- Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia PA USA
- Institute on Aging University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
22
|
Mivelaz M, Cao AM, Kubik S, Zencir S, Hovius R, Boichenko I, Stachowicz AM, Kurat CF, Shore D, Fierz B. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor. Mol Cell 2019; 77:488-500.e9. [PMID: 31761495 PMCID: PMC7005674 DOI: 10.1016/j.molcel.2019.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 02/03/2023]
Abstract
Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression. The yeast transcription factor Rap1 can invade compact chromatin Rap1 directly opens chromatin structure by preventing nucleosome stacking Stable Rap1 binding requires collaboration with RSC to shift promoter nucleosomes
Collapse
Affiliation(s)
- Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anne-Marinette Cao
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Ruud Hovius
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Iuliia Boichenko
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anna Maria Stachowicz
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland.
| |
Collapse
|
23
|
INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division. Cell Rep 2019; 22:611-623. [PMID: 29346761 PMCID: PMC5949282 DOI: 10.1016/j.celrep.2017.12.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC). Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.
Collapse
|
24
|
Abstract
Transcription factor (TF) binding to DNA is crucial for transcriptional regulation. There are multiple methods for mapping such binding. These methods balance between input requirements, spatial resolution, and compatibility with high-throughput automation. Here, we describe SLIM-ChIP (short-fragment-enriched, low-input, indexed MNase ChIP), which combines enzymatic fragmentation of chromatin and on-bead indexing to address these desiderata. SLIM-ChIP reproduces a high-resolution binding map of yeast Reb1 comparable with existing methods, yet with less input material and full compatibility with high-throughput procedures. We demonstrate the robustness and flexibility of SLIM-ChIP by probing additional factors in yeast and mouse. Finally, we show that SLIM-ChIP provides information on the chromatin landscape surrounding the bound transcription factor. We identify a class of Reb1 sites where the proximal −1 nucleosome tightly interacts with Reb1 and maintains unidirectional transcription. SLIM-ChIP is an attractive solution for mapping DNA binding proteins and charting the surrounding chromatin occupancy landscape at a single-cell level. SLIM-ChIP is a low-input, robust, high-resolution, automatable TF mapping protocol SLIM-ChIP is applicable to a range of TFs from yeast to mammals DNA fragments from SLIM-ChIP provide targeted footprinting at the bound site RSC-mediated Reb1-nucleosome interactions affect promoter directionality
Collapse
|
25
|
Kurup JT, Campeanu IJ, Kidder BL. Contribution of H3K4 demethylase KDM5B to nucleosome organization in embryonic stem cells revealed by micrococcal nuclease sequencing. Epigenetics Chromatin 2019; 12:20. [PMID: 30940185 PMCID: PMC6444878 DOI: 10.1186/s13072-019-0266-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Positioning of nucleosomes along DNA is an integral regulator of chromatin accessibility and gene expression in diverse cell types. However, the precise nature of how histone demethylases including the histone 3 lysine 4 (H3K4) demethylase, KDM5B, impacts nucleosome positioning around transcriptional start sites (TSS) of active genes is poorly understood. RESULTS Here, we report that KDM5B is a critical regulator of nucleosome positioning in embryonic stem (ES) cells. Micrococcal nuclease sequencing (MNase-Seq) revealed increased enrichment of nucleosomes around TSS regions and DNase I hypersensitive sites in KDM5B-depleted ES cells. Moreover, depletion of KDM5B resulted in a widespread redistribution and disorganization of nucleosomes in a sequence-dependent manner. Dysregulated nucleosome phasing was also evident in KDM5B-depleted ES cells, including asynchronous nucleosome spacing surrounding TSS regions, where nucleosome variance was positively correlated with the degree of asynchronous phasing. The redistribution of nucleosomes around TSS regions in KDM5B-depleted ES cells is correlated with dysregulated gene expression, and altered H3K4me3 and RNA polymerase II occupancy. In addition, we found that DNA shape features varied significantly at regions with shifted nucleosomes. CONCLUSION Altogether, our data support a role for KDM5B in regulating nucleosome positioning in ES cells.
Collapse
Affiliation(s)
- Jiji T. Kurup
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| | - Ion J. Campeanu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| | - Benjamin L. Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
26
|
Donovan BT, Chen H, Jipa C, Bai L, Poirier MG. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors. eLife 2019; 8:43008. [PMID: 30888317 PMCID: PMC6449090 DOI: 10.7554/elife.43008] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/14/2019] [Indexed: 01/06/2023] Open
Abstract
Nucleosomes restrict the occupancy of most transcription factors (TF) by reducing binding and accelerating dissociation, while a small group of TFs have high affinities to nucleosome-embedded sites and facilitate nucleosome displacement. To understand this process mechanistically, we investigated two Saccharomyces cerevisiae TFs, Reb1 and Cbf1. We show that these factors bind to their sites within nucleosomes with similar binding affinities as to naked DNA, trapping a partially unwrapped nucleosome without histone eviction. Both the binding and dissociation rates of Reb1 and Cbf1 are significantly slower at the nucleosomal sites relative to those for naked DNA, demonstrating that the high affinities are achieved by increasing the dwell time on nucleosomes in order to compensate for reduced binding. Reb1 also shows slow migration rate in the yeast nuclei. These properties are similar to those of human pioneer factors (PFs), suggesting that the mechanism of nucleosome targeting is conserved from yeast to humans.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, United States
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, State College, United States
| | - Caroline Jipa
- Department of Physics, The Ohio State University, Columbus, United States
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, United States.,Department of Physics, The Pennsylvania State University, State College, United States
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, United States.,Department of Physics, The Ohio State University, Columbus, United States.,Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, United States.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
| |
Collapse
|
27
|
Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife 2018; 7:37563. [PMID: 30198843 PMCID: PMC6173580 DOI: 10.7554/elife.37563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Amanda N Johnson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conor J Howard
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Candace S Britton
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Kyle R Fowler
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Jordan T Feigerle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander D Johnson
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
28
|
Song S, Johnson FB. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres. Genes (Basel) 2018; 9:genes9040201. [PMID: 29642537 PMCID: PMC5924543 DOI: 10.3390/genes9040201] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres.
Collapse
Affiliation(s)
- Shufei Song
- Biochemistry and Molecular Biophysics Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Vinayachandran V, Reja R, Rossi MJ, Park B, Rieber L, Mittal C, Mahony S, Pugh BF. Widespread and precise reprogramming of yeast protein-genome interactions in response to heat shock. Genome Res 2018; 28:357-366. [PMID: 29444801 PMCID: PMC5848614 DOI: 10.1101/gr.226761.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/25/2018] [Indexed: 11/24/2022]
Abstract
Gene expression is controlled by a variety of proteins that interact with the genome. Their precise organization and mechanism of action at every promoter remains to be worked out. To better understand the physical interplay among genome-interacting proteins, we examined the temporal binding of a functionally diverse subset of these proteins: nucleosomes (H3), H2AZ (Htz1), SWR (Swr1), RSC (Rsc1, Rsc3, Rsc58, Rsc6, Rsc9, Sth1), SAGA (Spt3, Spt7, Ubp8, Sgf11), Hsf1, TFIID (Spt15/TBP and Taf1), TFIIB (Sua7), TFIIH (Ssl2), FACT (Spt16), Pol II (Rpb3), and Pol II carboxyl-terminal domain (CTD) phosphorylation at serines 2, 5, and 7. They were examined under normal and acute heat shock conditions, using the ultrahigh resolution genome-wide ChIP-exo assay in Saccharomyces cerevisiae Our findings reveal a precise positional organization of proteins bound at most genes, some of which rapidly reorganize within minutes of heat shock. This includes more precise positional transitions of Pol II CTD phosphorylation along the 5' ends of genes than previously seen. Reorganization upon heat shock includes colocalization of SAGA with promoter-bound Hsf1, a change in RSC subunit enrichment from gene bodies to promoters, and Pol II accumulation within promoter/+1 nucleosome regions. Most of these events are widespread and not necessarily coupled to changes in gene expression. Together, these findings reveal protein-genome interactions that are robustly reprogrammed in precise and uniform ways far beyond what is elicited by changes in gene expression.
Collapse
Affiliation(s)
- Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rohit Reja
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bongsoo Park
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lila Rieber
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chitvan Mittal
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
30
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
31
|
Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 2017; 30:1327-38. [PMID: 27298336 PMCID: PMC4911931 DOI: 10.1101/gad.280834.116] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
In this study, Wahba et al. investigate how and where DNA–RNA hybrids, which form when an RNA molecule hybridizes to the complementary genomic locus, appear throughout the genome. They present a novel whole-genome method, S1-DRIP-seq, for mapping hybrid-prone regions in S. cerevisiae and identify the first global genomic features that play a causal role in R-loop formation in yeast. R loops form when transcripts hybridize to homologous DNA on chromosomes, yielding a DNA:RNA hybrid and a displaced DNA single strand. R loops impact the genome of many organisms, regulating chromosome stability, gene expression, and DNA repair. Understanding the parameters dictating R-loop formation in vivo has been hampered by the limited quantitative and spatial resolution of current genomic strategies for mapping R loops. We report a novel whole-genome method, S1-DRIP-seq (S1 nuclease DNA:RNA immunoprecipitation with deep sequencing), for mapping hybrid-prone regions in budding yeast Saccharomyces cerevisiae. Using this methodology, we identified ∼800 hybrid-prone regions covering 8% of the genome. Given the pervasive transcription of the yeast genome, this result suggests that R-loop formation is dictated by characteristics of the DNA, RNA, and/or chromatin. We successfully identified two features highly predictive of hybrid formation: high transcription and long homopolymeric dA:dT tracts. These accounted for >60% of the hybrid regions found in the genome. We demonstrated that these two factors play a causal role in hybrid formation by genetic manipulation. Thus, the hybrid map generated by S1-DRIP-seq led to the identification of the first global genomic features causal for R-loop formation in yeast.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Lorenzo Costantino
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Frederick J Tan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Anjali Zimmer
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Douglas Koshland
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
32
|
Johnson AN, Weil PA. Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant. J Biol Chem 2017; 292:5705-5723. [PMID: 28196871 PMCID: PMC5392566 DOI: 10.1074/jbc.m117.779181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/13/2017] [Indexed: 01/06/2023] Open
Abstract
Repressor activator protein 1 (Rap1) performs multiple vital cellular functions in the budding yeast Saccharomyces cerevisiae These include regulation of telomere length, transcriptional repression of both telomere-proximal genes and the silent mating type loci, and transcriptional activation of hundreds of mRNA-encoding genes, including the highly transcribed ribosomal protein- and glycolytic enzyme-encoding genes. Studies of the contributions of Rap1 to telomere length regulation and transcriptional repression have yielded significant mechanistic insights. However, the mechanism of Rap1 transcriptional activation remains poorly understood because Rap1 is encoded by a single copy essential gene and is involved in many disparate and essential cellular functions, preventing easy interpretation of attempts to directly dissect Rap1 structure-function relationships. Moreover, conflicting reports on the ability of Rap1-heterologous DNA-binding domain fusion proteins to serve as chimeric transcriptional activators challenge use of this approach to study Rap1. Described here is the development of an altered DNA-binding specificity variant of Rap1 (Rap1AS). We used Rap1AS to map and characterize a 41-amino acid activation domain (AD) within the Rap1 C terminus. We found that this AD is required for transcription of both chimeric reporter genes and authentic chromosomal Rap1 enhancer-containing target genes. Finally, as predicted for a bona fide AD, mutation of this newly identified AD reduced the efficiency of Rap1 binding to a known transcriptional coactivator TFIID-binding target, Taf5. In summary, we show here that Rap1 contains an AD required for Rap1-dependent gene transcription. The Rap1AS variant will likely also be useful for studies of the functions of Rap1 in other biological pathways.
Collapse
Affiliation(s)
- Amanda N Johnson
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - P Anthony Weil
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
33
|
Histone H3K4 and H3K36 Methylation Independently Recruit the NuA3 Histone Acetyltransferase in Saccharomyces cerevisiae. Genetics 2017; 205:1113-1123. [PMID: 28108585 DOI: 10.1534/genetics.116.199422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/23/2016] [Indexed: 11/18/2022] Open
Abstract
Histone post-translational modifications (PTMs) alter chromatin structure by promoting the interaction of chromatin-modifying complexes with nucleosomes. The majority of chromatin-modifying complexes contain multiple domains that preferentially interact with modified histones, leading to speculation that these domains function in concert to target nucleosomes with distinct combinations of histone PTMs. In Saccharomyces cerevisiae, the NuA3 histone acetyltransferase complex contains three domains, the PHD finger in Yng1, the PWWP domain in Pdp3, and the YEATS domain in Taf14; which in vitro bind to H3K4 methylation, H3K36 methylation, and acetylated and crotonylated H3K9, respectively. While the in vitro binding has been well characterized, the relative in vivo contributions of these histone PTMs in targeting NuA3 is unknown. Here, through genome-wide colocalization and by mutational interrogation, we demonstrate that the PHD finger of Yng1, and the PWWP domain of Pdp3 independently target NuA3 to H3K4 and H3K36 methylated chromatin, respectively. In contrast, we find no evidence to support the YEATS domain of Taf14 functioning in NuA3 recruitment. Collectively our results suggest that the presence of multiple histone PTM binding domains within NuA3, rather than restricting it to nucleosomes containing distinct combinations of histone PTMs, can serve to increase the range of nucleosomes bound by the complex. Interestingly, however, the simple presence of NuA3 is insufficient to ensure acetylation of the associated nucleosomes, suggesting a secondary level of acetylation regulation that does not involve control of HAT-nucleosome interactions.
Collapse
|
34
|
Voong LN, Xi L, Sebeson AC, Xiong B, Wang JP, Wang X. Insights into Nucleosome Organization in Mouse Embryonic Stem Cells through Chemical Mapping. Cell 2016; 167:1555-1570.e15. [PMID: 27889238 DOI: 10.1016/j.cell.2016.10.049] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/05/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
Nucleosome organization influences gene activity by controlling DNA accessibility to transcription machinery. Here, we develop a chemical biology approach to determine mammalian nucleosome positions genome-wide. We uncovered surprising features of nucleosome organization in mouse embryonic stem cells. In contrast to the prevailing model, we observe that for nearly all mouse genes, a class of fragile nucleosomes occupies previously designated nucleosome-depleted regions around transcription start sites and transcription termination sites. We show that nucleosomes occupy DNA targets for a subset of DNA-binding proteins, including CCCTC-binding factor (CTCF) and pluripotency factors. Furthermore, we provide evidence that promoter-proximal nucleosomes, with the +1 nucleosome in particular, contribute to the pausing of RNA polymerase II. Lastly, we find a characteristic preference for nucleosomes at exon-intron junctions. Taken together, we establish an accurate method for defining the nucleosome landscape and provide a valuable resource for studying nucleosome-mediated gene regulation in mammalian cells.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Liqun Xi
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA
| | - Amy C Sebeson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA
| | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA.
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
35
|
Wang Q, Donze D. Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae. Gene 2016; 594:108-116. [PMID: 27601258 DOI: 10.1016/j.gene.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
Abstract
Eukaryotic promoters generally contain nucleosome depleted regions near their transcription start sites. In the model organism Saccharomyces cerevisiae, these regions are adjacent to binding sites for general regulatory transcription factors, and the Reb1 protein is commonly bound to promoter DNA near such regions. The yeast TFC6 promoter is a unique RNA polymerase II promoter in that it is autoregulated by its own gene product Tfc6p, which is part of the RNA polymerase III transcription factor complex TFIIIC. We previously demonstrated that mutation of a potential Reb1 binding site adjacent to the TFIIIC binding site in the TFC6 promoter modestly reduces transcript levels, but leads to a severe decrease in Tfc6 protein levels due to an upstream shift in the TFC6 transcription start site. Here we confirm that Reb1p indeed binds to the TFC6 promoter, and is important for proper transcription start site selection and protein expression. Interestingly, loss of Reb1p association at this site has a similar effect on the adjacent divergently transcribed ESC2 promoter, resulting in a significant increase of 5'-extended ESC2 transcripts and reduction of Esc2 protein levels. This altered divergent transcription may be the result of changes in nucleosome positioning at this locus in the absence of Reb1p binding. We speculate that an important function of general regulatory factors such as Reb1p is to establish and maintain proper transcription start sites at promoters, and that when binding of such factors is compromised, resulting effects on mRNA translation may be an underappreciated aspect of gene regulation studies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
36
|
Binkert M, Crocco CD, Ekundayo B, Lau K, Raffelberg S, Tilbrook K, Yin R, Chappuis R, Schalch T, Ulm R. Revisiting chromatin binding of the Arabidopsis UV-B photoreceptor UVR8. BMC PLANT BIOLOGY 2016; 16:42. [PMID: 26864020 PMCID: PMC4750278 DOI: 10.1186/s12870-016-0732-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/06/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants perceive UV-B through the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor and UVR8 activation leads to changes in gene expression such as those associated with UV-B acclimation and stress tolerance. Albeit functionally unrelated, UVR8 shows some homology with RCC1 (Regulator of Chromatin Condensation 1) proteins from non-plant organisms at the sequence level. These proteins act as guanine nucleotide exchange factors for Ran GTPases and bind chromatin via histones. Subsequent to the revelation of this sequence homology, evidence was presented showing that UVR8 activity involves interaction with chromatin at the loci of some target genes through histone binding. This suggested a UVR8 mode-of-action intimately and directly linked with gene transcription. However, several aspects of UVR8 chromatin association remained undefined, namely the impact of UV-B on the process and how UVR8 chromatin association related to the transcription factor ELONGATED HYPOCOTYL 5 (HY5), which is important for UV-B signalling and has overlapping chromatin targets. Therefore, we have investigated UVR8 chromatin association in further detail. RESULTS Unlike the claims of previous studies, our chromatin immunoprecipitation (ChIP) experiments do not confirm UVR8 chromatin association. In contrast to human RCC1, recombinant UVR8 also does not bind nucleosomes in vitro. Moreover, fusion of a VP16 activation domain to UVR8 did not alter expression of proposed UVR8 target genes in transient gene expression assays. Finally, comparison of the Drosophila DmRCC1 and the Arabidopsis UVR8 crystal structures revealed that critical histone- and DNA-interaction residues apparent in DmRCC1 are not conserved in UVR8. CONCLUSION This has led us to conclude that the cellular activity of UVR8 likely does not involve its specific binding to chromatin at target genes.
Collapse
Affiliation(s)
- Melanie Binkert
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Carlos D Crocco
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Babatunde Ekundayo
- Department of Molecular Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Kelvin Lau
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Sarah Raffelberg
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Kimberley Tilbrook
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Present Address: CSIRO Agriculture, Canberra, Australia.
| | - Ruohe Yin
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Richard Chappuis
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Thomas Schalch
- Department of Molecular Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| | - Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, CH-1211, Geneva 4, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
37
|
Abstract
Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA—including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome—we develop a Bayes-factor–based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites.
Collapse
|
38
|
Abstract
Chromosomes are not only carriers of the genetic material, but also actively regulate the assembly of complex intracellular architectures. During mitosis, chromosome-induced microtubule polymerisation ensures spindle assembly in cells without centrosomes and plays a supportive role in centrosome-containing cells. Chromosomal signals also mediate post-mitotic nuclear envelope (NE) re-formation. Recent studies using novel approaches to manipulate histones in oocytes, where functions can be analysed in the absence of transcription, have established that nucleosomes, but not DNA alone, mediate the chromosomal regulation of spindle assembly and NE formation. Both processes require the generation of RanGTP by RCC1 recruited to nucleosomes but nucleosomes also acquire cell cycle stage specific regulators, Aurora B in mitosis and ELYS, the initiator of nuclear pore complex assembly, at mitotic exit. Here, we review the mechanisms by which nucleosomes control assembly and functions of the spindle and the NE, and discuss their implications for genome maintenance.
Collapse
Affiliation(s)
- Christian Zierhut
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, NY, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, NY, USA
| |
Collapse
|
39
|
Skene PJ, Henikoff S. A simple method for generating high-resolution maps of genome-wide protein binding. eLife 2015; 4:e09225. [PMID: 26079792 PMCID: PMC4480131 DOI: 10.7554/elife.09225] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 01/10/2023] Open
Abstract
Chromatin immunoprecipitation (ChIP) and its derivatives are the main techniques used to determine transcription factor binding sites. However, conventional ChIP with sequencing (ChIP-seq) has problems with poor resolution, and newer techniques require significant experimental alterations and complex bioinformatics. Previously, we have used a new crosslinking ChIP-seq protocol (X-ChIP-seq) to perform high-resolution mapping of RNA Polymerase II (Skene et al., 2014). Here, we build upon this work and compare X-ChIP-seq to existing methodologies. By using micrococcal nuclease, which has both endo- and exo-nuclease activity, to fragment the chromatin and thereby generate precise protein-DNA footprints, high-resolution X-ChIP-seq achieves single base-pair resolution of transcription factor binding. A significant advantage of this protocol is the minimal alteration to the conventional ChIP-seq workflow and simple bioinformatic processing.
Collapse
Affiliation(s)
- Peter J Skene
- Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Steven Henikoff
- Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
40
|
Tsatsarounos SP, Rodakis GC, Lecanidou R. Analysis of developmentally regulated chorion gene promoter architecture via electroporation of silk moth follicles. INSECT MOLECULAR BIOLOGY 2015; 24:71-81. [PMID: 25256090 DOI: 10.1111/imb.12136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the silk moth Bombyx mori, chorion genes of the same developmental specificity are organized in divergently transcribed α/β gene pairs, sharing a common 5' flanking promoter region. This bidirectional promoter contains a complete set of cis-elements responsible for developmentally accurate gene expression. In the present paper, based on the observation that Bombyx chorion gene promoters contain cis-elements for the same transcription factors without concrete evidence on which of them are essential, we address the question as to how promoter architecture (number, orientation and position of common factor binding sites) facilitates developmentally accurate chorion gene regulation. To this end, we constructed several mutated promoter regions of an early-middle gene pair and cloned them upstream of a reporter gene to introduce these plasmid constructs into silk moth follicle epithelial cells via electroporation as an efficient and quick method for transient expression. This is the first time that an ex vivo method had been applied to test the impact of systematic cis-element mutations on a chorion gene promoter. Our results confirmed the importance of the HMGA factor and the role of the GATA factor as an early repressor, and led to a more detailed understanding of which C/EBP sites participate in the regulation of early-middle chorion gene expression.
Collapse
Affiliation(s)
- S P Tsatsarounos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian, University of Athens, Athens, Greece
| | | | | |
Collapse
|
41
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
42
|
Wang L, Chen J, Wang C, Uusküla-Reimand L, Chen K, Medina-Rivera A, Young EJ, Zimmermann MT, Yan H, Sun Z, Zhang Y, Wu ST, Huang H, Wilson MD, Kocher JPA, Li W. MACE: model based analysis of ChIP-exo. Nucleic Acids Res 2014; 42:e156. [PMID: 25249628 PMCID: PMC4227761 DOI: 10.1093/nar/gku846] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/31/2014] [Accepted: 09/06/2014] [Indexed: 11/14/2022] Open
Abstract
Understanding the role of a given transcription factor (TF) in regulating gene expression requires precise mapping of its binding sites in the genome. Chromatin immunoprecipitation-exo, an emerging technique using λ exonuclease to digest TF unbound DNA after ChIP, is designed to reveal transcription factor binding site (TFBS) boundaries with near-single nucleotide resolution. Although ChIP-exo promises deeper insights into transcription regulation, no dedicated bioinformatics tool exists to leverage its advantages. Most ChIP-seq and ChIP-chip analytic methods are not tailored for ChIP-exo, and thus cannot take full advantage of high-resolution ChIP-exo data. Here we describe a novel analysis framework, termed MACE (model-based analysis of ChIP-exo) dedicated to ChIP-exo data analysis. The MACE workflow consists of four steps: (i) sequencing data normalization and bias correction; (ii) signal consolidation and noise reduction; (iii) single-nucleotide resolution border peak detection using the Chebyshev Inequality and (iv) border matching using the Gale-Shapley stable matching algorithm. When applied to published human CTCF, yeast Reb1 and our own mouse ONECUT1/HNF6 ChIP-exo data, MACE is able to define TFBSs with high sensitivity, specificity and spatial resolution, as evidenced by multiple criteria including motif enrichment, sequence conservation, direct sequence pileup, nucleosome positioning and open chromatin states. In addition, we show that the fundamental advance of MACE is the identification of two boundaries of a TFBS with high resolution, whereas other methods only report a single location of the same event. The two boundaries help elucidate the in vivo binding structure of a given TF, e.g. whether the TF may bind as dimers or in a complex with other co-factors.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsheng Chen
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Liis Uusküla-Reimand
- Genetics & Genome Biology Program, SickKids Research Institute, 686 Bay St. Toronto, ON, M5G 0A4, Canada
| | - Kaifu Chen
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alejandra Medina-Rivera
- Genetics & Genome Biology Program, SickKids Research Institute, 686 Bay St. Toronto, ON, M5G 0A4, Canada
| | - Edwin J Young
- Genetics & Genome Biology Program, SickKids Research Institute, 686 Bay St. Toronto, ON, M5G 0A4, Canada
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Zhang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen T Wu
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
43
|
Soriano I, Morafraile EC, Vázquez E, Antequera F, Segurado M. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae. BMC Genomics 2014; 15:791. [PMID: 25218085 PMCID: PMC4176565 DOI: 10.1186/1471-2164-15-791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. Results By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Conclusions Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-791) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Mónica Segurado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/ Universidad de Salamanca (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.
| |
Collapse
|
44
|
Yadav VK, Thakur RK, Eckloff B, Baral A, Singh A, Halder R, Kumar A, Alam MP, Kundu TK, Pandita R, Pandita TK, Wieben ED, Chowdhury S. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity. Nucleic Acids Res 2014; 42:9602-11. [PMID: 25081206 PMCID: PMC4150765 DOI: 10.1093/nar/gku596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/29/2014] [Accepted: 06/21/2014] [Indexed: 11/24/2022] Open
Abstract
Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ram Krishna Thakur
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Bruce Eckloff
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ankita Singh
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Rashi Halder
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Akinchan Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Parwez Alam
- Dr B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Raj Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Eric D Wieben
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Shantanu Chowdhury
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
45
|
West JA, Cook A, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, Park PJ, Tolstorukov MY, Kingston RE. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat Commun 2014; 5:4719. [PMID: 25158628 PMCID: PMC4217530 DOI: 10.1038/ncomms5719] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/16/2014] [Indexed: 01/23/2023] Open
Abstract
Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes. Changes in chromatin structure impact gene expression programs by modulating accessibility to the transcription machinery. Here, West et al. explore differences in nucleosome occupancy between mammalian pluripotent and somatic cells and uncover regulatory regions likely to play key roles in determining cell identity.
Collapse
Affiliation(s)
- Jason A West
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] [4]
| | - April Cook
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3]
| | - Burak H Alver
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, The Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Aimee M Deaton
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- 1] Howard Hughes Medical Institute and the Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] The Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter J Park
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Y Tolstorukov
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2]
| | - Robert E Kingston
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
46
|
Skene PJ, Hernandez AE, Groudine M, Henikoff S. The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. eLife 2014; 3:e02042. [PMID: 24737864 PMCID: PMC3983905 DOI: 10.7554/elife.02042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA polymerase II (PolII) transcribes RNA within a chromatin context, with nucleosomes acting as barriers to transcription. Despite these barriers, transcription through chromatin in vivo is highly efficient, suggesting the existence of factors that overcome this obstacle. To increase the resolution obtained by standard chromatin immunoprecipitation, we developed a novel strategy using micrococcal nuclease digestion of cross-linked chromatin. We find that the chromatin remodeler Chd1 is recruited to promoter proximal nucleosomes of genes undergoing active transcription, where Chd1 is responsible for the vast majority of PolII-directed nucleosome turnover. The expression of a dominant negative form of Chd1 results in increased stalling of PolII past the entry site of the promoter proximal nucleosomes. We find that Chd1 evicts nucleosomes downstream of the promoter in order to overcome the nucleosomal barrier and enable PolII promoter escape, thus providing mechanistic insight into the role of Chd1 in transcription and pluripotency. DOI:http://dx.doi.org/10.7554/eLife.02042.001 DNA is tightly packaged in a material called chromatin inside the cell nucleus. To produce proteins this DNA must first be transcribed to produce a molecule of messenger RNA, which is then translated to make a protein. To assist with this process cells ‘unpack’ certain regions of the DNA so that enzymes that catalyze the different steps in this process can have access to the DNA. A protein called Chd1 is involved in the unpacking process in yeast, but its role in more complex animals is not clear. Now, Skene et al. have shown that this protein is needed to allow the enzyme that catalyzes the transcription of DNA—an enzyme called RNA polymerase II—to do its job. Chd1 acts to unpack the tightly packaged DNA from chromatin, thus allowing the transcription of the DNA to proceed. In the absence of Chd1 activity, RNA polymerase II stalls at the gene promoter—the region of DNA that starts the transcription of a particular gene. This work highlights how the packaging of DNA in the cell is highly dynamic and controls fundamental biological processes. Skene et al. modified a well-known genetic technique called ChIP-seq. Previous ChIP-seq protocols typically provided a blurry, low-resolution map of where proteins bound to chromatin. Skene et al. used an enzyme to ‘chew back’ the DNA to reveal the exact ‘footprints’ of the Chd1 protein and the RNA polymerase II enzyme on the chromatin in mice. It will be possible to adapt this new protocol to map the positions of other proteins, which will help to improve our understanding of the ways in which chromatin regulates access to DNA. DOI:http://dx.doi.org/10.7554/eLife.02042.002
Collapse
Affiliation(s)
- Peter J Skene
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | | | | | | |
Collapse
|
47
|
Abstract
The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.
Collapse
|
48
|
Soriano I, Quintales L, Antequera F. Clustered regulatory elements at nucleosome-depleted regions punctuate a constant nucleosomal landscape in Schizosaccharomyces pombe. BMC Genomics 2013; 14:813. [PMID: 24256300 PMCID: PMC4046669 DOI: 10.1186/1471-2164-14-813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nucleosomes facilitate the packaging of the eukaryotic genome and modulate the access of regulators to DNA. A detailed description of the nucleosomal organization under different transcriptional programmes is essential to understand their contribution to genomic regulation. RESULTS To visualize the dynamics of individual nucleosomes under different transcriptional programmes we have generated high-resolution nucleosomal maps in Schizosaccharomyces pombe. We show that 98.5% of the genome remains almost invariable during mitosis and meiosis while remodelling is limited to approximately 1100 nucleosomes in the promoters of a subset of meiotic genes. These inducible nucleosome-depleted regions (NDR) and also those constitutively present in the genome overlap precisely with clusters of binding sites for transcription factors (TF) specific for meiosis and for different functional classes of genes, respectively. Deletion of two TFs affects only a small fraction of all the NDRs to which they bind in vivo, indicating that TFs collectively contribute to NDR maintenance. CONCLUSIONS Our results show that the nucleosomal profile in S. pombe is largely maintained under different physiological conditions and patterns of gene expression. This relatively constant landscape favours the concentration of regulators in constitutive and inducible NDRs. The combinatorial analysis of binding motifs in this discrete fraction of the genome will facilitate the definition of the transcriptional regulatory networks.
Collapse
Affiliation(s)
- Ignacio Soriano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | | | | |
Collapse
|
49
|
Wu X, Liu H, Liu H, Su J, Lv J, Cui Y, Wang F, Zhang Y. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae. Gene 2013; 530:8-18. [DOI: 10.1016/j.gene.2013.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 01/01/2023]
|
50
|
Parmar JJ, Marko JF, Padinhateeri R. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence. Nucleic Acids Res 2013; 42:128-36. [PMID: 24068556 PMCID: PMC3874171 DOI: 10.1093/nar/gkt854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted ‘barriers’ co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that ‘statistical’ positioning of nucleosomes against ‘barriers’, hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.
Collapse
Affiliation(s)
- Jyotsana J Parmar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA, Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|