1
|
Feigon J. A (Scientific) Lifetime Affair With Nucleic Acids. J Mol Biol 2025; 437:169088. [PMID: 40086689 DOI: 10.1016/j.jmb.2025.169088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
I am Distinguished Professor in the Chemistry and Biochemistry Department at University of California, Los Angeles, where I was hired in 1985 as the first female assistant professor in the department. I received my PhD from University of California, San Diego, under the guidance of Professor David Kearns, where I used NMR spectroscopy to study drug binding to random sequence DNA and published the first two-dimensional NMR spectra of short synthetic DNA duplexes. From 1982 to 1985 I was a Damon Runyon-Walter Winchell Postdoctoral fellow in the Professor Alexander Rich laboratory, where I investigated structures of Z-DNA by NMR. At UCLA, my lab pioneered the application of macromolecular NMR spectroscopy to the study of DNA and RNA structure, folding, and interactions with cations, drugs, and proteins. We published the first NMR structures of DNA triplexes, quadruplexes, and aptamers, and our work has provided fundamental insights into DNA A-tract bending, cation interactions with DNA, Hoogsteen base pairs, and drug binding to DNA. My lab has made major contributions to understanding RNA folding, dynamics, and function, including pseudoknots, aptamers, ribozymes, and riboswitches, and recognition of RNA by proteins. Over the past 2 decades, the Feigon laboratory pioneered structure-function studies of telomerase, from solution NMR and X-ray crystal structures and dynamics studies of RNA and RNA-protein domains of human and Tetrahymena telomerase, to the first structure of a telomerase holoenzyme, by negative stain EM in 2013, and subsequent cryo-EM structures of telomerase and associated proteins. Recent work also includes structural biology of 7SK RNP.
Collapse
Affiliation(s)
- Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, United States.
| |
Collapse
|
2
|
Davis JA, Chakrabarti K. Molecular and Evolutionary Analysis of RNA-Protein Interactions in Telomerase Regulation. Noncoding RNA 2024; 10:36. [PMID: 38921833 PMCID: PMC11206666 DOI: 10.3390/ncrna10030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Telomerase is an enzyme involved in the maintenance of telomeres. Telomere shortening due to the end-replication problem is a threat to the genome integrity of all eukaryotes. Telomerase inside cells depends on a myriad of protein-protein and RNA-protein interactions to properly assemble and regulate the function of the telomerase holoenzyme. These interactions are well studied in model eukaryotes, like humans, yeast, and the ciliated protozoan known as Tetrahymena thermophila. Emerging evidence also suggests that deep-branching eukaryotes, such as the parasitic protist Trypanosoma brucei require conserved and novel RNA-binding proteins for the assembly and function of their telomerase. In this review, we will discuss telomerase regulatory pathways in the context of telomerase-interacting proteins, with special attention paid to RNA-binding proteins. We will discuss these interactors on an evolutionary scale, from parasitic protists to humans, to provide a broader perspective on the extensive role that protein-protein and RNA-protein interactions play in regulating telomerase activity in eukaryotes.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| |
Collapse
|
3
|
Barbour AT, Wuttke DS. RPA-like single-stranded DNA-binding protein complexes including CST serve as specialized processivity factors for polymerases. Curr Opin Struct Biol 2023; 81:102611. [PMID: 37245465 PMCID: PMC10524659 DOI: 10.1016/j.sbi.2023.102611] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Telomeres and other single-stranded regions of the genome require specialized management to maintain stability and for proper progression of DNA metabolism pathways. Human Replication Protein A and CTC1-STN1-TEN1 are structurally similar heterotrimeric protein complexes that have essential ssDNA-binding roles in DNA replication, repair, and telomeres. Yeast and ciliates have related ssDNA-binding proteins with strikingly conserved structural features to these human heterotrimeric protein complexes. Recent breakthrough structures have extended our understanding of these commonalities by illuminating a common mechanism used by these proteins to act as processivity factors for their partner polymerases through their ability to manage ssDNA.
Collapse
Affiliation(s)
- Alexandra T Barbour
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Bouder, Boulder, CO 80309, USA.
| |
Collapse
|
4
|
Lue NF, Autexier C. Orchestrating nucleic acid-protein interactions at chromosome ends: telomerase mechanisms come into focus. Nat Struct Mol Biol 2023; 30:878-890. [PMID: 37400652 PMCID: PMC10539978 DOI: 10.1038/s41594-023-01022-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
Telomerase is a special reverse transcriptase ribonucleoprotein dedicated to the synthesis of telomere repeats that protect chromosome ends. Among reverse transcriptases, telomerase is unique in using a stably associated RNA with an embedded template to synthesize a specified sequence. Moreover, it is capable of iteratively copying the same template region (repeat addition processivity) through multiple rounds of RNA-DNA unpairing and reannealing, that is, the translocation reaction. Biochemical analyses of telomerase over the past 3 decades in protozoa, fungi and mammals have identified structural elements that underpin telomerase mechanisms and have led to models that account for the special attributes of telomerase. Notably, these findings and models can now be interpreted and adjudicated through recent cryo-EM structures of Tetrahymena and human telomerase holoenzyme complexes in association with substrates and regulatory proteins. Collectively, these structures reveal the intricate protein-nucleic acid interactions that potentiate telomerase's unique translocation reaction and clarify how this enzyme reconfigures the basic reverse transcriptase scaffold to craft a polymerase dedicated to the synthesis of telomere DNA. Among the many new insights is the resolution of the telomerase 'anchor site' proposed more than 3 decades ago. The structures also highlight the nearly universal conservation of a protein-protein interface between an oligonucleotide/oligosaccharide-binding (OB)-fold regulatory protein and the telomerase catalytic subunit, which enables spatial and temporal regulation of telomerase function in vivo. In this Review, we discuss key features of the structures in combination with relevant functional analyses. We also examine conserved and divergent aspects of telomerase mechanisms as gleaned from studies in different model organisms.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| | - Chantal Autexier
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Anatomy and Cell Biology and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Padmanaban S, Tesmer VM, Nandakumar J. Interaction hub critical for telomerase recruitment and primer-template handling for catalysis. Life Sci Alliance 2023; 6:e202201727. [PMID: 36963832 PMCID: PMC10055720 DOI: 10.26508/lsa.202201727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Telomerase processively adds telomeric DNA repeats to chromosome ends using catalytic protein subunit TERT and a template on its RNA subunit TR. Mammalian telomerase is recruited to telomeres by the TEL patch and NOB regions of shelterin component TPP1. Recent cryo-EM structures of human telomerase reveal that a composite TERT TEN-(IFD-TRAP) domain interacts with TPP1. Here, we generate TERT mutants to demonstrate that a three-way TEN-(IFD-TRAP)-TPP1 interaction is critical for telomerase recruitment to telomeres and processive telomere repeat addition. Single mutations of IFD-TRAP at its interface with TR or the DNA primer impair telomerase catalysis. We further reveal the importance of TERT motif 3N and TEN domain loop 99FGF101 in telomerase action. Finally, we demonstrate that TPP1 TEL patch loop residue F172, which undergoes a structural rearrangement to bind telomerase, contributes to the human-mouse species specificity of the telomerase-TPP1 interaction. Our study provides insights into the multiple functions of TERT IFD-TRAP, reveals novel TERT and TPP1 elements critical for function, and helps explain how TPP1 binding licenses robust telomerase action at natural chromosome ends.
Collapse
Affiliation(s)
- Shilpa Padmanaban
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Valerie M Tesmer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Structural and functional insights into CST tethering in Tetrahymena thermophila telomerase. Structure 2022; 30:1565-1572.e4. [DOI: 10.1016/j.str.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/11/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
|
7
|
Logeswaran D, Li Y, Akhter K, Podlevsky JD, Olson TL, Forsberg K, Chen JJL. Biogenesis of telomerase RNA from a protein-coding mRNA precursor. Proc Natl Acad Sci U S A 2022; 119:e2204636119. [PMID: 36197996 PMCID: PMC9564094 DOI: 10.1073/pnas.2204636119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Telomerase is a eukaryotic ribonucleoprotein (RNP) enzyme that adds DNA repeats onto chromosome ends to maintain genomic stability and confer cellular immortality in cancer and stem cells. The telomerase RNA (TER) component is essential for telomerase catalytic activity and provides the template for telomeric DNA synthesis. The biogenesis of TERs is extremely divergent across eukaryotic kingdoms, employing distinct types of transcription machinery and processing pathways. In ciliates and plants, TERs are transcribed by RNA polymerase III (Pol III), while animal and ascomycete fungal TERs are transcribed by RNA Pol II and share biogenesis pathways with small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA), respectively. Here, we report an unprecedented messenger RNA (mRNA)-derived biogenesis pathway for the 1,291 nucleotide TER from the basidiomycete fungus Ustilago maydis. The U. maydis TER (UmTER) contains a 5'-monophosphate, distinct from the 5' 2,2,7-trimethylguanosine (TMG) cap common to animal and ascomycete fungal TERs. The mature UmTER is processed from the 3'-untranslated region (3'-UTR) of a larger RNA precursor that possesses characteristics of mRNA including a 5' 7-methyl-guanosine (m7G) cap, alternative splicing of introns, and a poly(A) tail. Moreover, this mRNA transcript encodes a protein called Early meiotic induction protein 1 (Emi1) that is conserved across dikaryotic fungi. A recombinant UmTER precursor expressed from an mRNA promoter is processed correctly to yield mature UmTER, confirming an mRNA-processing pathway for producing TER. Our findings expand the plethora of TER biogenesis mechanisms and demonstrate a pathway for producing a functional long noncoding RNA from a protein-coding mRNA precursor.
Collapse
Affiliation(s)
| | - Yang Li
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Khadiza Akhter
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | | | - Tamara L. Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | | | - Julian J.-L. Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| |
Collapse
|
8
|
Flexibility of telomerase in binding the RNA template and DNA telomeric repeat. Proc Natl Acad Sci U S A 2022; 119:2116159118. [PMID: 34969861 PMCID: PMC8740718 DOI: 10.1073/pnas.2116159118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) has a conserved central cavity near the active site. Using enzymatic and mutagenesis analyses, we provide experimental evidence that an artificially looped-out telomeric repeat in the DNA primer can be transiently accommodated in the cavity of Tribolium castaneum (tcTERT). Kinetically, tcTERT requires a minimum of 4 bp between the RNA template and DNA primer for efficient DNA synthesis. An RNA duplex downstream of the RNA-template region after a flexible linker enhances the efficiency of primer extension by tcTERT. In addition to the peripheral cavities that accommodate looped-out RNA during each telomeric repeat synthesis, the central cavity that can accommodate the looped-out DNA may aid RNA-template translocation between cycles of telomeric repeat synthesis. Telomerase synthesizes telomeres at the ends of linear chromosomes by repeated reverse transcription from a short RNA template. Crystal structures of Tribolium castaneum telomerase reverse transcriptase (tcTERT) and cryoelectron microscopy (cryo-EM) structures of human and Tetrahymena telomerase have revealed conserved features in the reverse-transcriptase domain, including a cavity near the DNA 3′ end and snug interactions with the RNA template. For the RNA template to translocate, it needs to be unpaired and separated from the DNA product. Here we investigate the potential of the structural cavity to accommodate a looped-out DNA bulge and enable the separation of the RNA/DNA hybrid. Using tcTERT as a model system, we show that a looped-out telomeric repeat in the DNA primer can be accommodated and extended by tcTERT but not by retroviral reverse transcriptase. Mutations that reduce the cavity size reduce the ability of tcTERT to extend the looped-out DNA substrate. In agreement with cryo-EM structures of telomerases, we find that tcTERT requires a minimum of 4 bp between the RNA template and DNA primer for efficient DNA synthesis. We also have determined the ternary-complex structure of tcTERT including a downstream RNA/DNA hybrid at 2.0-Å resolution and shown that a downstream RNA duplex, equivalent to the 5′ template-boundary element in telomerase RNA, enhances the efficiency of telomere synthesis by tcTERT. Although TERT has a preformed active site without the open-and-closed conformational changes, it contains cavities to accommodate looped-out RNA and DNA. The flexible RNA–DNA binding likely underlies the processivity of telomeric repeat addition.
Collapse
|
9
|
Song J, Castillo-González C, Ma Z, Shippen DE. Arabidopsis retains vertebrate-type telomerase accessory proteins via a plant-specific assembly. Nucleic Acids Res 2021; 49:9496-9507. [PMID: 34403479 PMCID: PMC8450087 DOI: 10.1093/nar/gkab699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
The recent discovery of the bona-fide telomerase RNA (TR) from plants reveals conserved and unique secondary structure elements and the opportunity for new insight into the telomerase RNP. Here we examine how two highly conserved proteins previously implicated in Arabidopsis telomere maintenance, AtPOT1a and AtNAP57 (dyskerin), engage plant telomerase. We report that AtPOT1a associates with Arabidopsis telomerase via interaction with TERT. While loss of AtPOT1a does not impact AtTR stability, the templating domain is more accessible in pot1a mutants, supporting the conclusion that AtPOT1a stimulates telomerase activity but does not facilitate telomerase RNP assembly. We also show, that despite the absence of a canonical H/ACA binding motif within AtTR, dyskerin binds AtTR with high affinity and specificity in vitro via a plant specific three-way junction (TWJ). A core element of the TWJ is the P1a stem, which unites the 5′ and 3′ ends of AtTR. P1a is required for dyskerin-mediated stimulation of telomerase repeat addition processivity in vitro, and for AtTR accumulation and telomerase activity in vivo. The deployment of vertebrate-like accessory proteins and unique RNA structural elements by Arabidopsis telomerase provides a new platform for exploring telomerase biogenesis and evolution.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Zeyang Ma
- National Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Dorothy E Shippen
- To whom correspondence should be addressed. Tel: +1 979 862 2342; Fax: +1 979 862 7638;
| |
Collapse
|
10
|
Structures of telomerase at several steps of telomere repeat synthesis. Nature 2021; 593:454-459. [PMID: 33981033 DOI: 10.1038/s41586-021-03529-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
Telomerase is unique among the reverse transcriptases in containing a noncoding RNA (known as telomerase RNA (TER)) that includes a short template that is used for the processive synthesis of G-rich telomeric DNA repeats at the 3' ends of most eukaryotic chromosomes1. Telomerase maintains genomic integrity, and its activity or dysregulation are critical determinants of human longevity, stem cell renewal and cancer progression2,3. Previous cryo-electron microscopy structures have established the general architecture, protein components and stoichiometries of Tetrahymena and human telomerase, but our understandings of the details of DNA-protein and RNA-protein interactions and of the mechanisms and recruitment involved remain limited4-6. Here we report cryo-electron microscopy structures of active Tetrahymena telomerase with telomeric DNA at different steps of nucleotide addition. Interactions between telomerase reverse transcriptase (TERT), TER and DNA reveal the structural basis of the determination of the 5' and 3' template boundaries, handling of the template-DNA duplex and separation of the product strand during nucleotide addition. The structure and binding interface between TERT and telomerase protein p50 (a homologue of human TPP17,8) define conserved interactions that are required for telomerase activation and recruitment to telomeres. Telomerase La-related protein p65 remodels several regions of TER, bridging the 5' and 3' ends and the conserved pseudoknot to facilitate assembly of the TERT-TER catalytic core.
Collapse
|
11
|
Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032383. [PMID: 31451513 DOI: 10.1101/cshperspect.a032383] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomerase is a DNA polymerase that extends the 3' ends of chromosomes by processively synthesizing multiple telomeric repeats. It is a unique ribonucleoprotein (RNP) containing a specialized telomerase reverse transcriptase (TERT) and telomerase RNA (TER) with its own template and other elements required with TERT for activity (catalytic core), as well as species-specific TER-binding proteins important for biogenesis and assembly (core RNP); other proteins bind telomerase transiently or constitutively to allow association of telomerase and other proteins with telomere ends for regulation of DNA synthesis. Here we describe how nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography of TER and protein domains helped define the structure and function of the core RNP, laying the groundwork for interpreting negative-stain and cryo electron microscopy (cryo-EM) density maps of Tetrahymena thermophila and human telomerase holoenzymes. As the resolution has improved from ∼30 Å to ∼5 Å, these studies have provided increasingly detailed information on telomerase architecture and mechanism.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| |
Collapse
|
12
|
Nguyen THD, Collins K, Nogales E. Telomerase structures and regulation: shedding light on the chromosome end. Curr Opin Struct Biol 2019; 55:185-193. [PMID: 31202023 DOI: 10.1016/j.sbi.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
During genome replication, telomerase adds repeats to the ends of chromosomes to balance the loss of telomeric DNA. The regulation of telomerase activity is of medical relevance, as it has been implicated in human diseases such as cancer, as well as in aging. Until recently, structural information on this enzyme that would facilitate its clinical manipulation had been lacking due to telomerase very low abundance in cells. Recent cryo-EM structures of both the human and Tetrahymena thermophila telomerases have provided a picture of both the shared catalytic core of telomerase and its interaction with species-specific factors that play different roles in telomerase RNP assembly and function. We discuss also progress toward an understanding of telomerase RNP biogenesis and telomere recruitment from recent studies.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA.
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Laudadio I, Carissimi C, Fulci V. How RNAi machinery enters the world of telomerase. Cell Cycle 2019; 18:1056-1067. [PMID: 31014212 PMCID: PMC6592256 DOI: 10.1080/15384101.2019.1609834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/27/2022] Open
Abstract
Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
14
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
15
|
Pontremoli C, Forni D, Cagliani R, Pozzoli U, Clerici M, Sironi M. Evolutionary rates of mammalian telomere-stability genes correlate with karyotype features and female germline expression. Nucleic Acids Res 2018; 46:7153-7168. [PMID: 29893967 PMCID: PMC6101625 DOI: 10.1093/nar/gky494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Telomeres protect the ends of eukaryotic chromosomes and are essential for cell viability. In mammals, telomere dynamics vary with life history traits (e.g. body mass and longevity), suggesting differential selection depending on physiological characteristics. Telomeres, in analogy to centromeric regions, also represent candidate meiotic drivers and subtelomeric DNA evolves rapidly. We analyzed the evolutionary history of mammalian genes implicated in telomere homeostasis (TEL genes). We detected widespread positive selection and we tested two alternative hypotheses: (i) fast evolution is driven by changes in life history traits; (ii) a conflict with selfish DNA elements at the female meiosis represents the underlying selective pressure. By accounting for the phylogenetic relationships among mammalian species, we show that life history traits do not contribute to shape diversity of TEL genes. Conversely, the evolutionary rate of TEL genes correlates with expression levels during meiosis and episodes of positive selection across mammalian species are associated with karyotype features (number of chromosome arms). We thus propose a telomere drive hypothesis, whereby (sub)telomeres and telomere-binding proteins are engaged in an intra-genomic conflict similar to the one described for centromeres.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| |
Collapse
|
16
|
Jiang J, Wang Y, Sušac L, Chan H, Basu R, Zhou ZH, Feigon J. Structure of Telomerase with Telomeric DNA. Cell 2018; 173:1179-1190.e13. [PMID: 29775593 PMCID: PMC5995583 DOI: 10.1016/j.cell.2018.04.038] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
Telomerase is an RNA-protein complex (RNP) that extends telomeric DNA at the 3' ends of chromosomes using its telomerase reverse transcriptase (TERT) and integral template-containing telomerase RNA (TER). Its activity is a critical determinant of human health, affecting aging, cancer, and stem cell renewal. Lack of atomic models of telomerase, particularly one with DNA bound, has limited our mechanistic understanding of telomeric DNA repeat synthesis. We report the 4.8 Å resolution cryoelectron microscopy structure of active Tetrahymena telomerase bound to telomeric DNA. The catalytic core is an intricately interlocked structure of TERT and TER, including a previously structurally uncharacterized TERT domain that interacts with the TEN domain to physically enclose TER and regulate activity. This complete structure of a telomerase catalytic core and its interactions with telomeric DNA from the template to telomere-interacting p50-TEB complex provides unanticipated insights into telomerase assembly and catalytic cycle and a new paradigm for a reverse transcriptase RNP.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ritwika Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Saettone A, Garg J, Lambert JP, Nabeel-Shah S, Ponce M, Burtch A, Thuppu Mudalige C, Gingras AC, Pearlman RE, Fillingham J. The bromodomain-containing protein Ibd1 links multiple chromatin-related protein complexes to highly expressed genes in Tetrahymena thermophila. Epigenetics Chromatin 2018. [PMID: 29523178 PMCID: PMC5844071 DOI: 10.1186/s13072-018-0180-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The chromatin remodelers of the SWI/SNF family are critical transcriptional regulators. Recognition of lysine acetylation through a bromodomain (BRD) component is key to SWI/SNF function; in most eukaryotes, this function is attributed to SNF2/Brg1. Results Using affinity purification coupled to mass spectrometry (AP–MS) we identified members of a SWI/SNF complex (SWI/SNFTt) in Tetrahymena thermophila. SWI/SNFTt is composed of 11 proteins, Snf5Tt, Swi1Tt, Swi3Tt, Snf12Tt, Brg1Tt, two proteins with potential chromatin-interacting domains and four proteins without orthologs to SWI/SNF proteins in yeast or mammals. SWI/SNFTt subunits localize exclusively to the transcriptionally active macronucleus during growth and development, consistent with a role in transcription. While Tetrahymena Brg1 does not contain a BRD, our AP–MS results identified a BRD-containing SWI/SNFTt component, Ibd1 that associates with SWI/SNFTt during growth but not development. AP–MS analysis of epitope-tagged Ibd1 revealed it to be a subunit of several additional protein complexes, including putative SWRTt, and SAGATt complexes as well as a putative H3K4-specific histone methyl transferase complex. Recombinant Ibd1 recognizes acetyl-lysine marks on histones correlated with active transcription. Consistent with our AP–MS and histone array data suggesting a role in regulation of gene expression, ChIP-Seq analysis of Ibd1 indicated that it primarily binds near promoters and within gene bodies of highly expressed genes during growth. Conclusions Our results suggest that through recognizing specific histones marks, Ibd1 targets active chromatin regions of highly expressed genes in Tetrahymena where it subsequently might coordinate the recruitment of several chromatin-remodeling complexes to regulate the transcriptional landscape of vegetatively growing Tetrahymena cells. Electronic supplementary material The online version of this article (10.1186/s13072-018-0180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Medicine, Université Laval, Quebec, Canada.,Centre Hospitalier Universitaire de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Ave, Suite 1140, Toronto, M5G 1M1, Canada
| | - Alyson Burtch
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Cristina Thuppu Mudalige
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.
| |
Collapse
|
18
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
19
|
Wang Y, Feigon J. Structural biology of telomerase and its interaction at telomeres. Curr Opin Struct Biol 2017; 47:77-87. [PMID: 28732250 PMCID: PMC5564310 DOI: 10.1016/j.sbi.2017.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Telomerase is an RNP that synthesizes the 3' ends of linear chromosomes and is an important regulator of telomere length. It contains a single long non-coding telomerase RNA (TER), telomerase reverse transcriptase (TERT), and other proteins that vary among organisms. Recent progress in structural biology of telomerase includes reports of the first cryo-electron microscopy structure of telomerase, from Tetrahymena, new crystal structures of TERT domains, telomerase RNA structures and models, and identification in Tetrahymena telomerase holoenzyme of human homologues of telomere-associated proteins that have provided a more unified view of telomerase interaction at telomeres as well as insights into the role of telomerase RNA in activity and assembly.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
20
|
Pavani RS, Vitarelli MO, Fernandes CAH, Mattioli FF, Morone M, Menezes MC, Fontes MRM, Cano MIN, Elias MC. Replication Protein A-1 Has a Preference for the Telomeric G-rich Sequence in Trypanosoma cruzi. J Eukaryot Microbiol 2017; 65:345-356. [PMID: 29044824 DOI: 10.1111/jeu.12478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 01/20/2023]
Abstract
Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruziRPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruziRPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.
Collapse
Affiliation(s)
- Raphael Souza Pavani
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Marcela O Vitarelli
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Carlos A H Fernandes
- Biophysics and Physics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Fabio F Mattioli
- Biophysics and Physics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Mariana Morone
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Milene C Menezes
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Marcos R M Fontes
- Biophysics and Physics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Maria Isabel N Cano
- Genetics Department, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, 18618970, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| |
Collapse
|
21
|
Majerská J, Schrumpfová PP, Dokládal L, Schořová Š, Stejskal K, Obořil M, Honys D, Kozáková L, Polanská PS, Sýkorová E. Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. PROTOPLASMA 2017; 254:1547-1562. [PMID: 27853871 DOI: 10.1007/s00709-016-1042-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/04/2016] [Indexed: 05/15/2023]
Abstract
The life cycle of telomerase involves dynamic and complex interactions between proteins within multiple macromolecular networks. Elucidation of these associations is a key to understanding the regulation of telomerase under diverse physiological and pathological conditions from telomerase biogenesis, through telomere recruitment and elongation, to its non-canonical activities outside of telomeres. We used tandem affinity purification coupled to mass spectrometry to build an interactome of the telomerase catalytic subunit AtTERT, using Arabidopsis thaliana suspension cultures. We then examined interactions occurring at the AtTERT N-terminus, which is thought to fold into a discrete domain connected to the rest of the molecule via a flexible linker. Bioinformatic analyses revealed that interaction partners of AtTERT have a range of molecular functions, a subset of which is specific to the network around its N-terminus. A significant number of proteins co-purifying with the N-terminal constructs have been implicated in cell cycle and developmental processes, as would be expected of bona fide regulatory interactions and we have confirmed experimentally the direct nature of selected interactions. To examine AtTERT protein-protein interactions from another perspective, we also analysed AtTERT interdomain contacts to test potential dimerization of AtTERT. In total, our results provide an insight into the composition and architecture of the plant telomerase complex and this will aid in delineating molecular mechanisms of telomerase functions.
Collapse
Affiliation(s)
- Jana Majerská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Petra Procházková Schrumpfová
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ladislav Dokládal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Šárka Schořová
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Karel Stejskal
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Michal Obořil
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - David Honys
- Institute of Experimental Biology, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 263, CZ-165 02, Prague, Czech Republic
| | - Lucie Kozáková
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Pavla Sováková Polanská
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic.
| |
Collapse
|
22
|
Abstract
Telomerase is an RNA-protein complex that extends the 3' ends of linear chromosomes, using a unique telomerase reverse transcriptase (TERT) and template in the telomerase RNA (TR), thereby helping to maintain genome integrity. TR assembles with TERT and species-specific proteins, and telomerase function in vivo requires interaction with telomere-associated proteins. Over the past two decades, structures of domains of TR and TERT as well as other telomerase- and telomere-interacting proteins have provided insights into telomerase function. A recently reported 9-Å cryo-electron microscopy map of the Tetrahymena telomerase holoenzyme has provided a framework for understanding how TR, TERT, and other proteins from ciliate as well as vertebrate telomerase fit and function together as well as unexpected insight into telomerase interaction at telomeres. Here we review progress in understanding the structural basis of human and Tetrahymena telomerase activity, assembly, and interactions.
Collapse
Affiliation(s)
- Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| |
Collapse
|
23
|
Abstract
Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Jacob M Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| |
Collapse
|
24
|
Upton HE, Chan H, Feigon J, Collins K. Shared Subunits of Tetrahymena Telomerase Holoenzyme and Replication Protein A Have Different Functions in Different Cellular Complexes. J Biol Chem 2016; 292:217-228. [PMID: 27895115 DOI: 10.1074/jbc.m116.763664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
In most eukaryotes, telomere maintenance relies on telomeric repeat synthesis by a reverse transcriptase named telomerase. To synthesize telomeric repeats, the catalytic subunit telomerase reverse transcriptase (TERT) uses the RNA subunit (TER) as a template. In the ciliate Tetrahymena thermophila, the telomerase holoenzyme consists of TER, TERT, and eight additional proteins, including the telomeric repeat single-stranded DNA-binding protein Teb1 and its heterotrimer partners Teb2 and Teb3. Teb1 is paralogous to the large subunit of the general single-stranded DNA binding heterotrimer replication protein A (RPA). Little is known about the function of Teb2 and Teb3, which are structurally homologous to the RPA middle and small subunits, respectively. Here, epitope-tagging Teb2 and Teb3 expressed at their endogenous gene loci enabled affinity purifications that revealed that, unlike other Tetrahymena telomerase holoenzyme subunits, Teb2 and Teb3 are not telomerase-specific. Teb2 and Teb3 assembled into other heterotrimer complexes, which when recombinantly expressed had the general single-stranded DNA binding activity of RPA complexes, unlike the telomere-specific DNA binding of Teb1 or the TEB heterotrimer of Teb1, Teb2, and Teb3. TEB had no more DNA binding affinity than Teb1 alone. In contrast, heterotrimers reconstituted with Teb2 and Teb3 and two other Tetrahymena RPA large subunit paralogs had higher DNA binding affinity than their large subunit alone. Teb1 and TEB, but not RPA, increased telomerase processivity. We conclude that in the telomerase holoenzyme, instead of binding DNA, Teb2 and Teb3 are Teb1 assembly factors. These findings demonstrate that Tetrahymena telomerase holoenzyme and RPA complexes share subunits and that RPA subunits have distinct functions in different heterotrimer assemblies.
Collapse
Affiliation(s)
- Heather E Upton
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202 and
| | - Henry Chan
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Juli Feigon
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Kathleen Collins
- From the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202 and
| |
Collapse
|
25
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
26
|
Lin KW, Zakian VA. 21st Century Genetics: Mass Spectrometry of Yeast Telomerase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:111-6. [PMID: 26763982 PMCID: PMC5441543 DOI: 10.1101/sqb.2015.80.027656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Telomerase is a specialized reverse transcriptase that maintains the ends of chromosomes in almost all eukaryotes. The core of telomerase consists of telomerase RNA and the reverse transcriptase that uses a short segment without the RNA to template the addition of telomeric repeats. In addition, one or more accessory proteins are required for telomerase action in vivo. The best-studied accessory protein is Est1, which is conserved from yeasts to humans. In budding yeast, Est1 has two critical in vivo functions: By interaction with Cdc13, a telomere-binding protein, it recruits telomerase to telomeres, and it also increases telomerase activity. Although budding yeast telomerase is highly regulated by the cell cycle, Est1 is the only telomerase subunit whose abundance is cell cycle-regulated. Close to 400 yeast genes are reported to affect telomere length, although the specific function of most of them is unknown. With the goal of identifying novel telomerase regulators by mass spectrometry, we developed methods for purifying yeast telomerase and its associated proteins. We summarize the methods we used and describe the experiments that show that four telomerase-associated proteins identified by mass spectrometry, none of which had been linked previously to telomeres, affect telomere length and cell cycle regulation of telomerase by controlling Est1 abundance.
Collapse
Affiliation(s)
- Kah Wai Lin
- Department of Molecular Biology, Lewis Thomas Labs, Princeton University, Princeton, New Jersey 08544
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Labs, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
27
|
The Tetrahymena telomerase p75-p45-p19 subcomplex is a unique CST complex. Nat Struct Mol Biol 2015; 22:1023-6. [PMID: 26551074 DOI: 10.1038/nsmb.3126] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
Tetrahymena telomerase holoenzyme subunits p75, p45 and p19 form a subcomplex (7-4-1) peripheral to the catalytic core. We report structures of p45 and p19 and reveal them as the Stn1 and Ten1 subunits of the CST complex, which stimulates telomerase complementary-strand synthesis. 7-4-1 binds telomeric single-stranded DNA, and mutant p19 overexpression causes telomere 3'-overhang elongation. We propose that telomerase-tethered Tetrahymena CST coordinates telomere G-strand and C-strand synthesis.
Collapse
|
28
|
Jiang J, Chan H, Cash DD, Miracco EJ, Ogorzalek Loo RR, Upton HE, Cascio D, O'Brien Johnson R, Collins K, Loo JA, Zhou ZH, Feigon J. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 2015; 350:aab4070. [PMID: 26472759 DOI: 10.1126/science.aab4070] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022]
Abstract
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo-electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Darian D Cash
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Edward J Miracco
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA
| | - Reid O'Brien Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Lin KW, McDonald KR, Guise AJ, Chan A, Cristea IM, Zakian VA. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nat Commun 2015; 6:8290. [PMID: 26365526 PMCID: PMC4579843 DOI: 10.1038/ncomms9290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Almost 400 genes affect yeast telomere length, including Est1, which is critical for recruitment and activation of telomerase. Here we use mass spectrometry to identify novel telomerase regulators by their co-purification with the telomerase holoenzyme. In addition to all known subunits, over 100 proteins are telomerase associated, including all three subunits of the essential Cdc48-Npl4-Ufd1 complex as well as three E3 ubiquitin ligases. The Cdc48 complex is evolutionarily conserved and targets ubiquitinated proteins for degradation. Est1 levels are ∼40-fold higher in cells with reduced Cdc48, yet, paradoxically, telomeres are shorter. Furthermore, Est1 is ubiquitinated and its cell cycle-regulated abundance is lost in Cdc48-deficient cells. Deletion of the telomerase-associated E3 ligase, Ufd4, in cdc48-3 cells further increases Est1 abundance but suppresses the telomere length phenotype of the single mutant. These data argue that, in concert with Ufd4, the Cdc48 complex regulates telomerase by controlling the level and activity of Est1.
Collapse
Affiliation(s)
- Kah-Wai Lin
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Karin R McDonald
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Amanda J Guise
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Angela Chan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, 08544 Princeton, New Jersey, USA
| |
Collapse
|
30
|
Abstract
In this review, Schmidt and Cech cover human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species. Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species.
Collapse
Affiliation(s)
- Jens C Schmidt
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
31
|
RPA-1 from Leishmania amazonensis (LaRPA-1) structurally differs from other eukaryote RPA-1 and interacts with telomeric DNA via its N-terminal OB-fold domain. FEBS Lett 2014; 588:4740-8. [PMID: 25451229 DOI: 10.1016/j.febslet.2014.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/25/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
Abstract
Replication protein A-1 (RPA-1) is a single-stranded DNA-binding protein involved in DNA metabolism. We previously demonstrated the interaction between LaRPA-1 and telomeric DNA. Here, we expressed and purified truncated mutants of LaRPA-1 and used circular dichroism measurements and molecular dynamics simulations to demonstrate that the tertiary structure of LaRPA-1 differs from human and yeast RPA-1. LaRPA-1 interacts with telomeric ssDNA via its N-terminal OB-fold domain, whereas RPA from higher eukaryotes show different binding modes to ssDNA. Our results show that LaRPA-1 is evolutionary distinct from other RPA-1 proteins and can potentially be used for targeting trypanosomatid telomeres.
Collapse
|
32
|
Renfrew KB, Song X, Lee JR, Arora A, Shippen DE. POT1a and components of CST engage telomerase and regulate its activity in Arabidopsis. PLoS Genet 2014; 10:e1004738. [PMID: 25329641 PMCID: PMC4199523 DOI: 10.1371/journal.pgen.1004738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/06/2014] [Indexed: 11/18/2022] Open
Abstract
Protection of Telomeres 1 (POT1) is a conserved nucleic acid binding protein implicated in both telomere replication and chromosome end protection. We previously showed that Arabidopsis thaliana POT1a associates with the TER1 telomerase RNP, and is required for telomere length maintenance in vivo. Here we further dissect the function of POT1a and explore its interplay with the CST (CTC1/STN1/TEN1) telomere complex. Analysis of pot1a null mutants revealed that POT1a is not required for telomerase recruitment to telomeres, but is required for telomerase to maintain telomere tracts. We show that POT1a stimulates the synthesis of long telomere repeat arrays by telomerase, likely by enhancing repeat addition processivity. We demonstrate that POT1a binds STN1 and CTC1 in vitro, and further STN1 and CTC1, like POT1a, associate with enzymatically active telomerase in vivo. Unexpectedly, the in vitro interaction of STN1 with TEN1 and POT1a was mutually exclusive, indicating that POT1a and TEN1 may compete for the same binding site on STN1 in vivo. Finally, unlike CTC1 and STN1, TEN1 was not associated with active telomerase in vivo, consistent with our previous data showing that TEN1 negatively regulates telomerase enzyme activity. Altogether, our data support a two-state model in which POT1a promotes an extendable telomere state via contacts with the telomerase RNP as well as STN1 and CTC1, while TEN1 opposes these functions.
Collapse
Affiliation(s)
- Kyle B. Renfrew
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Xiangyu Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jung Ro Lee
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Amit Arora
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Direct single-stranded DNA binding by Teb1 mediates the recruitment of Tetrahymena thermophila telomerase to telomeres. Mol Cell Biol 2014; 34:4200-12. [PMID: 25225329 DOI: 10.1128/mcb.01030-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic reverse transcriptase telomerase copies its internal RNA template to synthesize telomeric DNA repeats at chromosome ends in balance with sequence loss during cell proliferation. Previous work has established several factors involved in telomerase recruitment to telomeres in yeast and mammalian cells; however, it remains unclear what determines the association of telomerase with telomeres in other organisms. Here we investigate the cell cycle dependence of telomere binding by each of the seven Tetrahymena thermophila telomerase holoenzyme proteins TERT, p65, Teb1, p50, p75, p45, and p19. We observed coordinate cell cycle-regulated recruitment and release of all of the subunits, including the telomeric-repeat DNA-binding subunit Teb1. Using domain truncation and mutagenesis approaches, we investigated which subunits govern the interaction of telomerase holoenzyme with telomeres. Our results show that Teb1 is critical for telomere interaction of other holoenzyme subunits and demonstrate that high-affinity Teb1 DNA-binding activity is necessary and sufficient for cell cycle-regulated telomere association. Overall, these and additional findings indicate that in the ciliate Tetrahymena, telomerase recruitment to telomeres requires direct binding to single-stranded DNA, unlike the indirect DNA recognition through telomere-bound proteins essential in yeast and mammalian cells.
Collapse
|
34
|
Sandin S, Rhodes D. Telomerase structure. Curr Opin Struct Biol 2014; 25:104-10. [PMID: 24704747 PMCID: PMC4045397 DOI: 10.1016/j.sbi.2014.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/18/2022]
Abstract
First of telomerase architecture. Human telomerase functions as a dimer. Conserved RNA/reverse transcriptase core.
The telomerase reverse transcriptase has an essential role in telomere maintenance and in cancer biology. Progress during the last year has revealed the three-dimensional architecture of both human and ciliate telomerase at about 25 Å resolution, obtained using single particle electron microscopy (EM). The structural analysis of the two holoenzyme complexes isolated from cells shows that whilst the ciliate telomerase is monomeric, the human telomerase is dimeric and only functional as a dimer. We critically discuss the approaches taken to assign the location of protein and RNA subunits, as well as fitting the crystal structure of the catalytic protein subunit in the medium resolution EM density maps. Comparison of the two structural interpretations reveals not only a common RNA/reverse transcriptase core, but also significant differences due to different RNA subunit size and protein composition. These differences suggest that the oligomeric state and subunit composition of telomerase in evolutionary distant organism have evolved.
Collapse
Affiliation(s)
- Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Daniela Rhodes
- School of Biological Sciences and LKC Medicine, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
35
|
Wu RA, Collins K. Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 2014; 33:921-35. [PMID: 24619002 DOI: 10.1002/embj.201387205] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
With eukaryotic genome replication, incomplete telomere synthesis results in chromosome shortening and eventual compromise of genome stability. Telomerase counteracts this terminal sequence loss by synthesizing telomeric repeats through repeated cycles of reverse transcription of its internal RNA template. Using human telomerase domain-complementation assays for telomerase reverse transcriptase protein (TERT) and RNA in combination with the first direct footprinting assay for telomerase association with bound DNA, we resolve mechanisms by which TERT domains and RNA motifs direct repeat synthesis. Surprisingly, we find that product-template hybrid is sensed in a length- and sequence-dependent manner to set the template 5' boundary. We demonstrate that the TERT N-terminal (TEN) domain determines active-site use of the atypically short primer-template hybrid necessary for telomeric-repeat synthesis. Also against expectation, we show that the remainder of TERT (the TERT ring) supports functional recognition and physical protection of single-stranded DNA adjacent to the template hybrid. These findings establish unprecedented polymerase recognition specificities for DNA-RNA hybrid and single-stranded DNA and suggest a new perspective on the mechanisms of telomerase specialization for telomeric-repeat synthesis.
Collapse
Affiliation(s)
- Robert Alexander Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
36
|
Progress in structural studies of telomerase. Curr Opin Struct Biol 2014; 24:115-24. [PMID: 24508601 DOI: 10.1016/j.sbi.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/01/2014] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
Telomerase is the ribonucleoprotein (RNP) reverse transcriptase responsible for synthesizing the 3' ends of linear chromosomes. It plays critical roles in tumorigenesis, cellular aging, and stem cell renewal. The past two years have seen exciting progress in determining telomerase holoenzyme architecture and the structural basis of telomerase activity. Notably, the first electron microscopy structures of telomerase were reported, of the Tetrahymena thermophila telomerase holoenzyme and a human telomerase dimer. In addition to new structures of TERT and TER domains, the first structures of telomerase protein domains beyond TERT, and their complexes with TER or telomeric single-stranded DNA, were reported. Together these studies provide the first glimpse into the organization of the proteins and RNA in the telomerase RNP.
Collapse
|
37
|
The 3' overhangs at Tetrahymena thermophila telomeres are packaged by four proteins, Pot1a, Tpt1, Pat1, and Pat2. EUKARYOTIC CELL 2013; 13:240-5. [PMID: 24297442 DOI: 10.1128/ec.00275-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although studies with the ciliate Tetrahymena thermophila have played a central role in advancing our understanding of telomere biology and telomerase mechanisms and composition, the full complement of Tetrahymena telomere proteins has not yet been identified. Previously, we demonstrated that in Tetrahymena, the telomeric 3' overhang is protected by a three-protein complex composed of Pot1a, Tpt1, and Pat1. Here we show that Tpt1 and Pat1 associate with a fourth protein, Pat2 (Pot1 associated Tetrahymena 2). Mass spectrometry of proteins copurifying with Pat1 or Tpt1 identified peptides from Pat2, Pot1a, Tpt1, and Pat1. The lack of other proteins copurifying with Pat1 or Tpt1 implies that the overhang is protected by a four-protein Pot1a-Tpt1-Pat1-Pat2 complex. We verified that Pat2 localizes to telomeres, but we were unable to detect direct binding to telomeric DNA. Cells depleted of Pat2 continue to divide, but the telomeres exhibit gradual shortening. The lack of growth arrest indicates that, in contrast to Pot1a and Tpt1, Pat2 is not required for the sequestration of the telomere from the DNA repair machinery. Instead, Pat2 is needed to regulate telomere length, most likely by acting in conjunction with Pat1 to allow telomerase access to the telomere.
Collapse
|
38
|
Garg J, Lambert JP, Karsou A, Marquez S, Nabeel-Shah S, Bertucci V, Retnasothie DV, Radovani E, Pawson T, Gingras AC, Pearlman RE, Fillingham JS. Conserved Asf1-importin β physical interaction in growth and sexual development in the ciliate Tetrahymena thermophila. J Proteomics 2013; 94:311-26. [PMID: 24120531 DOI: 10.1016/j.jprot.2013.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/07/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023]
Abstract
UNLABELLED How the eukaryotic cell specifies distinct chromatin domains is a central problem in molecular biology. The ciliate protozoan Tetrahymena thermophila features a separation of structurally and functionally distinct germ-line and somatic chromatin into two distinct nuclei, the micronucleus (MIC) and macronucleus (MAC) respectively. To address questions about how distinct chromatin states are assembled in the MAC and MIC, we have initiated studies to define protein-protein interactions for T. thermophila chromatin-related proteins. Affinity purification followed by mass spectrometry analysis of the conserved Asf1 histone chaperone in T. thermophila revealed that it forms a complex with an importin β, ImpB6. Furthermore, these proteins co-localized to both the MAC and MIC in growth and development. We suggest that newly synthesized histones H3 and H4 in T. thermophila are transported via Asf1-ImpB6 in an evolutionarily conserved pathway to both nuclei where they then enter nucleus-specific chromatin assembly pathways. These studies set the stage for further use of functional proteomics to elucidate details of the characterization and functional analysis of the unique chromatin domains in T. thermophila. BIOLOGICAL SIGNIFICANCE Asf1 is an evolutionarily conserved chaperone of H3 and H4 histones that functions in replication dependent and independent chromatin assembly. Although Asf1 has been well studied in humans and yeast (members of the Opisthokonta lineage of eukaryotes), questions remain concerning its mechanism of function. To obtain additional insight into the Asf1 function we have initiated a proteomic analysis in the ciliate protozoan T. thermophila, a member of the Alveolata lineage of eukaryotes. Our results suggest that an evolutionarily conserved function of Asf1 is mediating the nuclear transport of newly synthesized histones H3 and H4.
Collapse
Affiliation(s)
- Jyoti Garg
- Department of Biology, York University, 4700 Keele St., Toronto M3J 1P3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hong K, Upton H, Miracco EJ, Jiang J, Zhou ZH, Feigon J, Collins K. Tetrahymena telomerase holoenzyme assembly, activation, and inhibition by domains of the p50 central hub. Mol Cell Biol 2013; 33:3962-71. [PMID: 23918804 PMCID: PMC3811867 DOI: 10.1128/mcb.00792-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023] Open
Abstract
The eukaryotic reverse transcriptase, telomerase, adds tandem telomeric repeats to chromosome ends to promote genome stability. The fully assembled telomerase holoenzyme contains a ribonucleoprotein (RNP) catalytic core and additional proteins that modulate the ability of the RNP catalytic core to elongate telomeres. Electron microscopy (EM) structures of Tetrahymena telomerase holoenzyme revealed a central location of the relatively uncharacterized p50 subunit. Here we have investigated the biochemical and structural basis for p50 function. We have shown that the p50-bound RNP catalytic core has a relatively low rate of tandem repeat synthesis but high processivity of repeat addition, indicative of high stability of enzyme-product interaction. The rate of tandem repeat synthesis is enhanced by p50-dependent recruitment of the holoenzyme single-stranded DNA binding subunit, Teb1. An N-terminal p50 domain is sufficient to stimulate tandem repeat synthesis and bridge the RNP catalytic core, Teb1, and the p75 subunit of the holoenzyme subcomplex p75/p19/p45. In cells, the N-terminal p50 domain assembles a complete holoenzyme that is functional for telomere maintenance, albeit at shortened telomere lengths. Also, in EM structures of holoenzymes, only the N-terminal domain of p50 is visible. Our findings provide new insights about subunit and domain interactions and functions within the Tetrahymena telomerase holoenzyme.
Collapse
Affiliation(s)
- Kyungah Hong
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Heather Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Edward J. Miracco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jiansen Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
40
|
Wang YF, Wang XS, Gao SG, Chen Q, Yang YT, Xiao ZY, Peng XQ, Hu XF, Wang QY, Feng XS. Clinical significance of combined detection of human papilloma virus infection and human telomerase RNA component gene amplification in patients with squamous cell carcinoma of the esophagus in northern China. Eur J Med Res 2013; 18:11. [PMID: 23634750 PMCID: PMC3644284 DOI: 10.1186/2047-783x-18-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/03/2013] [Indexed: 11/29/2022] Open
Abstract
Background The aim of the study was to test for human papilloma virus (HPV) infection and human telomerase RNA component (hTERC) gene amplification in tissues derived from esophageal cancer, in esophagus displaying atypical hyperplasia and in normal tissue, and to analyze the relationship between them and discuss whether HPV infection and hTERC gene amplification play a role in the duration of survival of esophageal cancer patients. Methods To test for HPV infection, surface plasma resonance was used after extracting and subjecting the DNA to PCR amplification. Measurement of hTERC gene amplification was performed by the fluorescence in situ hybridization technique. Results The rates of HPV infection in the normal group, the atypical esophageal hyperplasia group and the cancer group were 0% (0/40), 10.00% (1/10) and 20.65% (19/92), respectively, with a statistically significant difference of P < 0.01. The hTERC gene amplification rate in normal tissue, grade I atypical hyperplastic tissue, grade II/III atypical hyperplastic tissue and esophageal cancer tissue were 0% (0/89), 15.38% (4/26), 47.06% (8/17) and 89.13% (82/92), respectively, with a statistically significant difference of P < 0.01. On follow-up of 92 patients, survival curves of the HPV-positive and HPV-negative groups were not significantly different (P > 0.05). Survival curves of the hTERC gene amplification-positive and hTERC gene amplification-negative groups were statistically significant (P < 0.05). A matching chi-square test showed that there was no correlation between HPV infection and hTERC gene amplification (P > 0.05). Conclusion HPV infection may be one of many factors contributing to the development of esophageal cancer, but it does not influence prognosis. Amplification of the hTERC gene appears to influence certain features associated with postoperative survival in esophageal carcinoma patients.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Oncology, First Affiliated Hospital, Cancer Institute, Henan University of Science and Technology, Luoyang, Henan Province, 471003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiang J, Miracco EJ, Hong K, Eckert B, Chan H, Cash DD, Min B, Zhou ZH, Collins K, Feigon J. The architecture of Tetrahymena telomerase holoenzyme. Nature 2013; 496:187-92. [PMID: 23552895 PMCID: PMC3817743 DOI: 10.1038/nature12062] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/08/2013] [Indexed: 01/15/2023]
Abstract
Telomerase adds telomeric repeats to chromosome ends using an internal RNA template and a specialized telomerase reverse transcriptase (TERT), thereby maintaining genome integrity. Little is known about the physical relationships among protein and RNA subunits within a biologically functional holoenzyme. Here we describe the architecture of Tetrahymena thermophila telomerase holoenzyme determined by electron microscopy. Six of the seven proteins and the TERT-binding regions of telomerase RNA (TER) have been localized by affinity labelling. Fitting with high-resolution structures reveals the organization of TERT, TER and p65 in the ribonucleoprotein (RNP) catalytic core. p50 has an unanticipated role as a hub between the RNP catalytic core, p75-p19-p45 subcomplex, and the DNA-binding Teb1. A complete in vitro holoenzyme reconstitution assigns function to these interactions in processive telomeric repeat synthesis. These studies provide the first view of the extensive network of subunit associations necessary for telomerase holoenzyme assembly and physiological function.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Leehy KA, Lee JR, Song X, Renfrew KB, Shippen DE. MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis. THE PLANT CELL 2013; 25:1343-54. [PMID: 23572541 PMCID: PMC3663272 DOI: 10.1105/tpc.112.107425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Telomeres protect chromosome ends from being recognized as DNA damage, and they facilitate the complete replication of linear chromosomes. CST [for CTC1(Cdc13)/STN1/TEN1] is a trimeric chromosome end binding complex implicated in both aspects of telomere function. Here, we characterize TEN1 in the flowering plant Arabidopsis thaliana. We report that TEN1 (for telomeric pathways in association with Stn1, which stands for suppressor of cdc thirteen) is encoded by a previously characterized gene, MERISTEM DISORGANIZATION1 (MDO1). A point mutation in MDO1, mdo1-1/ten1-3 (G77E), triggers stem cell differentiation and death as well as a constitutive DNA damage response. We provide biochemical and genetic evidence that ten1-3 is likely to be a null mutation. As with ctc1 and stn1 null mutants, telomere tracts in ten1-3 are shorter and more heterogeneous than the wild type. Mutants also exhibit frequent telomere fusions, increased single-strand telomeric DNA, and telomeric circles. However, unlike stn1 or ctc1 mutants, telomerase enzyme activity is elevated in ten1-3 mutants due to an increase in repeat addition processivity. In addition, TEN1 is detected at a significantly smaller fraction of telomeres than CTC1. These data indicate that TEN1 is critical for telomere stability and also plays an unexpected role in modulating telomerase enzyme activity.
Collapse
|
44
|
Singh M, Choi CP, Feigon J. xRRM: a new class of RRM found in the telomerase La family protein p65. RNA Biol 2013; 10:353-9. [PMID: 23328630 DOI: 10.4161/rna.23608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genuine La and La-related proteins group 7 (LARP7) bind to the non-coding RNAs transcribed by RNA polymerase III (RNAPIII), which end in UUU-3'OH. The La motif and RRM1 of these proteins (the La module) cooperate to bind the UUU-3'OH, protecting the RNA from degradation, while other domains may be important for RNA folding or other functions. Among the RNAPIII transcripts is ciliate telomerase RNA (TER). p65, a member of the LARP7 family, is an integral Tetrahymena thermophila telomerase holoenzyme protein required for TER biogenesis and telomerase RNP assembly. p65, together with TER and telomerase reverse transcriptase (TERT), form the Tetrahymena telomerase RNP catalytic core. p65 has an N-terminal domain followed by a La module and a C-terminal domain, which binds to the TER stem 4. We recently showed that the p65 C-terminal domain harbors a cryptic, atypical RRM, which uses a unique mode of single- and double-strand RNA binding and is required for telomerase RNP catalytic core assembly. This domain, which we named xRRM, appears to be present in and unique to genuine La and LARP7 proteins. Here we review the structure of the xRRM, discuss how this domain could recognize diverse substrates of La and LARP7 proteins and discuss the functional implications of the xRRM as an RNP chaperone.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry and the Molecular Biology Institute; University of California; Los Angeles, CA USA
| | | | | |
Collapse
|
45
|
Abstract
Telomerase adds simple-sequence repeats to the ends of linear chromosomes to counteract the loss of end sequence inherent in conventional DNA replication. Catalytic activity for repeat synthesis results from the cooperation of the telomerase reverse transcriptase protein (TERT) and the template-containing telomerase RNA (TER). TERs vary widely in sequence and structure but share a set of motifs required for TERT binding and catalytic activity. Species-specific TER motifs play essential roles in RNP biogenesis, stability, trafficking, and regulation. Remarkably, the biogenesis pathways that generate mature TER differ across eukaryotes. Furthermore, the cellular processes that direct the assembly of a biologically functional telomerase holoenzyme and its engagement with telomeres are evolutionarily varied and regulated. This review highlights the diversity of strategies for telomerase RNP biogenesis, RNP assembly, and telomere recruitment among ciliates, yeasts, and vertebrates and suggests common themes in these pathways and their regulation.
Collapse
Affiliation(s)
- Emily D. Egan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
- Corresponding authorE-mail
| |
Collapse
|
46
|
Biochemical approaches including the design and use of strains expressing epitope-tagged proteins. Methods Cell Biol 2012; 109:347-55. [PMID: 22444151 DOI: 10.1016/b978-0-12-385967-9.00012-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epitope tagging is a powerful approach used to enable investigations of a cellular component by elucidating its localization, interaction partners, and/or activity targets. Successful tag-based affinity purification yields a mixture of the molecule of interest, associated proteins and nucleic acids, and nonspecific background proteins and nucleic acids, many of which can depend on details of the protocol for enrichment. This chapter provides guidelines and considerations for designing an affinity purification experiment, beginning with construction of a strain expressing a tagged subunit. Common biochemical methods for detecting protein, RNA, and DNA in Tetrahymena thermophila are also discussed.
Collapse
|
47
|
Singh M, Wang Z, Koo BK, Patel A, Cascio D, Collins K, Feigon J. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol Cell 2012; 47:16-26. [PMID: 22705372 PMCID: PMC3398246 DOI: 10.1016/j.molcel.2012.05.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/02/2012] [Accepted: 05/10/2012] [Indexed: 02/07/2023]
Abstract
Telomerase is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. The catalytic core of Tetrahymena telomerase comprises a ternary complex of telomerase RNA (TER), telomerase reverse transcriptase (TERT), and the essential La family protein p65. NMR and crystal structures of p65 C-terminal domain and its complex with stem IV of TER reveal that RNA recognition is achieved by a combination of single- and double-stranded RNA binding, which induces a 105° bend in TER. The domain is a cryptic, atypical RNA recognition motif with a disordered C-terminal extension that forms an α helix in the complex necessary for hierarchical assembly of TERT with p65-TER. This work provides the first structural insight into biogenesis and assembly of TER with a telomerase-specific protein. Additionally, our studies define a structurally homologous domain (xRRM) in genuine La and LARP7 proteins and suggest a general mode of RNA binding for biogenesis of their diverse RNA targets.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Bon-Kyung Koo
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Anooj Patel
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
48
|
Goldin S, Kertesz Rosenfeld K, Manor H. Tracing the path of DNA substrates in active Tetrahymena telomerase holoenzyme complexes: mapping of DNA contact sites in the RNA subunit. Nucleic Acids Res 2012; 40:7430-41. [PMID: 22584626 PMCID: PMC3424564 DOI: 10.1093/nar/gks416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Telomerase, the enzyme that extends single-stranded telomeric DNA, consists of an RNA subunit (TER) including a short template sequence, a catalytic protein (TERT) and accessory proteins. We used site-specific UV cross-linking to map the binding sites for DNA primers in TER within active Tetrahymena telomerase holoenzyme complexes. The mapping was performed at single-nucleotide resolution by a novel technique based on RNase H digestion of RNA–DNA hybrids made with overlapping complementary oligodeoxynucleotides. These data allowed tracing of the DNA path through the telomerase complexes from the template to the TERT binding element (TBE) region of TER. TBE is known to bind TERT and to be involved in the template 5′-boundary definition. Based on these findings, we propose that upstream sequences of each growing telomeric DNA chain are involved in regulation of its growth arrest at the 5′-end of the RNA template. The upstream DNA–TBE interaction may also function as an anchor for the subsequent realignment of the 3′-end of the DNA with the 3′-end of the template to enable initiation of synthesis of a new telomeric repeat.
Collapse
Affiliation(s)
- Svetlana Goldin
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32 000, Israel
| | | | | |
Collapse
|
49
|
Telomerase and retrotransposons: reverse transcriptases that shaped genomes. Proc Natl Acad Sci U S A 2012; 108:20304-10. [PMID: 22187457 DOI: 10.1073/pnas.1100269109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
50
|
Eckert B, Collins K. Roles of telomerase reverse transcriptase N-terminal domain in assembly and activity of Tetrahymena telomerase holoenzyme. J Biol Chem 2012; 287:12805-14. [PMID: 22367200 DOI: 10.1074/jbc.m112.339853] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Telomerase extends chromosome ends by the addition of single-stranded telomeric repeats. To support processive repeat synthesis, it has been proposed that coordination occurs between DNA interactions with the telomerase RNA template, the active site in the telomerase reverse transcriptase (TERT) core, a TERT N-terminal (TEN) domain, and additional subunits of the telomerase holoenzyme required for telomere elongation in vivo. The roles of TEN domain surface residues in primer binding and product elongation have been studied largely using assays of minimal recombinant telomerase enzymes, which lack holoenzyme subunits that properly fold and conformationally stabilize the ribonucleoprotein and/or control its association with telomere substrates in vivo. Here, we use Tetrahymena telomerase holoenzyme reconstitution in vitro to assess TEN domain sequence requirements in the physiological enzyme context. We find that TEN domain sequence substitutions in the Tetrahymena telomerase holoenzyme influence synthesis initiation and elongation rate but not processivity. Functional and direct physical interaction assays pinpoint a conserved TEN domain surface required for holoenzyme subunit association and for high repeat addition processivity. Our results add to the understanding of telomerase holoenzyme architecture and TERT domain functions with direct implications for the unique mechanism of single-stranded repeat synthesis.
Collapse
Affiliation(s)
- Barbara Eckert
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|