1
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Razipour M, Jamali Z, Khorsand M, Zargar M, Maghsudlu M, Ghadami E, Shakoori A. Circular RNAs in laryngeal cancer. Clin Chim Acta 2025; 564:119916. [PMID: 39153653 DOI: 10.1016/j.cca.2024.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Laryngeal cancer remains a significant global health concern, with poor prognosis for advanced-stage disease highlighting the need for novel diagnostic, prognostic, and therapeutic approaches. Circular RNAs (circRNAs), a class of covalently closed non-coding RNAs, have emerged as important regulators of gene expression and cellular processes in various cancers, including laryngeal cancer. This review summarizes the current understanding of circRNAs in laryngeal cancer, covering their biogenesis, regulatory mechanisms, and potential clinical applications. We explore the diverse functions of circRNAs, including their roles as miRNA sponges, protein interactors, and direct mRNA regulators, and their influence on key cellular processes such as proliferation, invasion, and metastasis. The review highlights promising circRNAs as diagnostic and prognostic biomarkers, as well as potential therapeutic targets. We also outline current strategies for circRNA modulation, including suppression techniques like RNA interference and CRISPR/Cas systems, and overexpression methods using vectors and synthetic circRNAs.
Collapse
Affiliation(s)
- Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Zargar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bahramiazar P, Abdollahzade N, Tartibian B, Ahmadiasl N, Yaghoob Nezhad F. The Role of Estrogen in Brain MicroRNAs Regulation. Adv Pharm Bull 2024; 14:819-835. [PMID: 40190672 PMCID: PMC11970499 DOI: 10.34172/apb.39216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose This review aims to elucidate the role of estrogen-sensitive microRNAs (miRNAs) in modulating brain functions and disorders, highlighting the protective effects of estrogen on the central nervous system. Methods A comprehensive literature review was conducted, examining the relationship between estrogen, miRNAs, and cognitive health. The study focused on experimental data comparing cognitive impairments between genders and the mechanisms of estrogen's effects on brain function. Results Cognitive impairments are less prevalent in women of reproductive age compared to men, indicating estrogen's neuroprotective role. Estrogen modulates gene expression through specific receptors, while miRNAs regulate approximately 30% of protein-coding genes in mammals. These miRNAs play critical roles in synaptic plasticity and neuronal survival. The review identifies several estrogen-sensitive miRNAs and their potential involvement in brain disorders. Conclusion The interplay between estrogen and miRNAs offers valuable insights into the molecular mechanisms underlying cognitive health and disease. Understanding these relationships may lead to novel therapeutic strategies for addressing various brain disorders, particularly those associated with hormonal changes and aging.
Collapse
Affiliation(s)
- Peyvand Bahramiazar
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Naser Ahmadiasl
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
4
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
5
|
Maltseva D, Kirillov I, Zhiyanov A, Averinskaya D, Suvorov R, Gubani D, Kudriaeva A, Belogurov A, Tonevitsky A. Incautious design of shRNAs for stable overexpression of miRNAs could result in generation of undesired isomiRs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195046. [PMID: 38876159 DOI: 10.1016/j.bbagrm.2024.195046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
shRNA-mediated strategy of miRNA overexpression based on RNA Polymerase III (Pol III) expression cassettes is widely used for miRNA functional studies. For some miRNAs, e.g., encoded in the genome as a part of a polycistronic miRNA cluster, it is most likely the only way for their individual stable overexpression. Here we have revealed that expression of miRNAs longer than 19 nt (e.g. 23 nt in length hsa-miR-93-5p) using such approach could be accompanied by undesired predominant generation of 5' end miRNA isoforms (5'-isomiRs). Extra U residues (up to five) added by Pol III at the 3' end of the transcribed shRNA during transcription termination could cause a shift in the Dicer cleavage position of the shRNA. This results in the formation of 5'-isomiRs, which have a significantly altered seed region compared to the initially encoded canonical hsa-miR-93-5p. We demonstrated that the commonly used qPCR method is insensitive to the formation of 5'-isomiRs and cannot be used to confirm miRNA overexpression. However, the predominant expression of 5'-isomiRs without three or four first nucleotides instead of the canonical isoform could be disclosed based on miRNA-Seq analysis. Moreover, mRNA sequencing data showed that the 5'-isomiRs of hsa-miR-93-5p presumably regulate their own mRNA targets. Thus, omitting miRNA-Seq analysis may lead to erroneous conclusions regarding revealed mRNA targets and possible molecular mechanisms in which studied miRNA is involved. Overall, the presented results show that structures of shRNAs for stable overexpression of miRNAs requires careful design to avoid generation of undesired 5'-isomiRs.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Ivan Kirillov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Anton Zhiyanov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Daria Averinskaya
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Roman Suvorov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Daria Gubani
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Art Photonics GmbH, Berlin 12489, Germany.
| |
Collapse
|
6
|
Nakka P, Jassi C, Chen MC, Liu YS, Liu JY, Yeh CM, Li CC, Chang YC, Kuo WW, Huang CY. Sensitization of hepatocellular carcinoma cells to HDACi is regulated through hsa-miR-342-5p/CFL1. Cancer Cell Int 2024; 24:291. [PMID: 39152428 PMCID: PMC11328471 DOI: 10.1186/s12935-024-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/13/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Increased prevalence of hepatocellular carcinoma (HCC) remains a global health challenge. HCC chemoresistance is a clinical obstacle for its management. Aberrant miRNA expression is a hallmark for both cancer progression and drug resistance. However, it is unclear which miRNAs are involved in HCC chemoresistance. METHODS MicroRNA microarray analysis revealed a differential expression profile of microRNAs between the hepatocellular carcinoma HA22T cell line and the HDACi-R cell line, which was validated by quantitative real-time PCR (qRT-PCR). To determine the biological function of miR-342-5p and the mechanism of the microRNA-342-5p/CFL1 axis in hepatocellular carcinoma HDACi resistance, loss- and gain-of-function studies were conducted in vitro. RESULTS Here we demonstrated the molecular mechanism of histone deacetylase inhibitor (HDACi) resistance in HCC. Differential miRNA expression analysis showed significant down regulation of miR-342-5p in HDACi-R cells than in parental HA22T cells. Mimics of miR-342-5p enhanced apoptosis through upregulation of Bax, cyto-C, cleaved-caspase-3 expressions with concomitant decline in anti-apoptotic protein (Bcl-2) in HDACi-R cells. Although HDACi did not increase cell viability of HDACi-R, overexpression of miR-342-5p decreased cofilin-1 expression, upregulated reactive oxygen species (ROS) mediated apoptosis, and sensitized HDACi-R to HDACi in a dose-dependent manner. CONCLUSION Our findings demonstrated the critical role of miR-342-5p in HDACi resistance of HCC and that this mechanism might be attributed to miR-342-5p/cofilin-1 regulation.
Collapse
Affiliation(s)
- Parvathi Nakka
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Chikondi Jassi
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Chi-Cheng Li
- School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
7
|
Wu L, Fu W, Cao Y, Zhao S, Zhang Y, Li X, Dong N, Qi W, Malik R, Wang J, Zhao RC. Inhibiting miR-618 Promotes Keratinocytes Proliferation and Migration to Enhance Wound Healing in Mice. Int J Mol Sci 2024; 25:7617. [PMID: 39062857 PMCID: PMC11277496 DOI: 10.3390/ijms25147617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The delay in wound healing caused by chronic wounds or pathological scars is a pressing issue in clinical practice, imposing significant economic and psychological burdens on patients. In particular, with the aging of the population and the increasing incidence of diseases such as diabetes, impaired wound healing is one of the growing health problems. MicroRNA (miRNA) plays a crucial role in wound healing and regulates various biological processes. Our results show that miR-618 was significantly upregulated during the inflammatory phase of wound healing.Subsequently, miR-618 promotes the secretion of pro-inflammatory cytokines and regulates the proliferation and migration of keratinocytes. Mechanistically, miR-618 binds to the target gene-Atp11b and inhibits the PI3K-Akt signaling pathway, inhibiting the epithelial-mesenchymal transition (EMT) of keratinocytes. In addition, the PI3K-Akt signaling pathway induces the enrichment of nuclear miR-618, and miR-618 binds to the promoter of Lin7a to regulate gene transcription. Intradermal injection of miR-618 antagomir around full-thickness wounds in peridermal mice effectively accelerates wound closure compared to control. In conclusion, miR-618 antagomir can be a potential therapeutic agent for wound healing.
Collapse
Affiliation(s)
- Lingling Wu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Yiyang Cao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Shuo Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaonan Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rabia Malik
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
- Institute of Basic Medical, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing 100005, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| |
Collapse
|
8
|
Xue X, Li Y, Yao Y, Zhang S, Peng C, Li Y. A comprehensive review of miR-21 in liver disease: Big impact of little things. Int Immunopharmacol 2024; 134:112116. [PMID: 38696909 DOI: 10.1016/j.intimp.2024.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
microRNAs (miRNAs), a class of non-coding RNA with 20-24 nucleotides, are defined as the powerful regulators for gene expression. miR-21 is a multifunctional miRNA enriched in the circulatory system and multiple organs, which not only serves as a non-invasive biomarker in disease diagnosis, but also participates in many cellular activities. In various chronic liver diseases, the increase of miR-21 affects glycolipid metabolism, viral infection, inflammatory and immune cell activation, hepatic stellate cells activation and tissue fibrosis, and autophagy. Moreover, miR-21 is also a liaison in the deterioration of chronic liver disease to hepatocellular carcinoma (HCC), and it impacts on cell proliferation, apoptosis, migration, invasion, angiogenesis, immune escape, and epithelial-mesenchymal transformation by regulating target genes expression in different signaling pathways. In current research on miRNA therapy, some natural products can exert the hepatoprotective effects depending on the inhibition of miR-21 expression. In addition, miR-21-based therapeutic also play a role in regulating intracellular miR-21 levels and enhancing the efficacy of chemotherapy drugs. Herein, we systemically summarized the recent progress of miR-21 on biosynthesis, biomarker function, molecular mechanism and miRNA therapy in chronic liver disease and HCC, and looked forward to outputting some information to enable it from bench to bedside.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
10
|
Liu H, Wang Y, Huang S, Tai J, Wang X, Dai X, Qiu C, Gu D, Yuan W, Ho HP, Chen J, Shao Y. Advancing MicroRNA Detection: Enhanced Biotin-Streptavidin Dual-Mode Phase Imaging Surface Plasmon Resonance Aptasensor. Anal Chem 2024; 96:8791-8799. [PMID: 38742926 DOI: 10.1021/acs.analchem.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
MicroRNAs (miRNAs) are novel tumor biomarkers owing to their important physiological functions in cell communication and the progression of multiple diseases. Due to the small molecular weight, short sequence length, and low concentration levels of miRNA, miRNA detection presents substantial challenges, requiring the advancement of more refined and sensitive techniques. There is an urgent demand for the development of a rapid, user-friendly, and sensitive miRNA analysis method. Here, we developed an enhanced biotin-streptavidin dual-mode phase imaging surface plasmon resonance (PI-SPR) aptasensor for sensitive and rapid detection of miRNA. Initially, we evaluated the linear sensing range for miRNA detection across two distinct sensing modalities and investigated the physical factors that influence the sensing signal in the aptamer-miRNA interaction within the PI-SPR aptasensor. Then, an enhanced biotin-streptavidin amplification strategy was introduced in the PI-SPR aptasensor, which effectively reduced the nonspecific adsorption by 20% and improved the limit of detection by 548 times. Furthermore, we have produced three types of tumor marker chips, which utilize the rapid sensing mode (less than 2 min) of PI-SPR aptasensor to achieve simultaneous detection of multiple miRNA markers in the serum from clinical cancer patients. This work not only developed a new approach to detect miRNA in different application scenarios but also provided a new reference for the application of the biotin-streptavidin amplification system in the detection of other small biomolecules.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuye Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Songfeng Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiali Tai
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xueliang Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqi Dai
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuanghua Qiu
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 852, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 852, China
| | - Jiajie Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Shao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks and ferroptosis in cancer: novel therapeutic targets. Cell Death Dis 2024; 15:357. [PMID: 38778030 PMCID: PMC11111666 DOI: 10.1038/s41419-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Daniel Thomas S, Vijayakumar K, John L, Krishnan D, Rehman N, Revikumar A, Kandel Codi JA, Prasad TSK, S S V, Raju R. Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:213-233. [PMID: 38752932 DOI: 10.1089/omi.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and vice versa, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.
Collapse
Affiliation(s)
- Sonet Daniel Thomas
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Krithika Vijayakumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Thiruvananthapuram, Kerala, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | | | - Vinodchandra S S
- Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| |
Collapse
|
13
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
14
|
Tang J, Li S, Zhou Z, Chang W, Wang Y, Mei J, Zhou S. Identification and validation of key miRNAs and a microRNA-mRNA regulatory network associated with liver cancer. Cell Cycle 2024; 23:353-368. [PMID: 38547309 PMCID: PMC11174128 DOI: 10.1080/15384101.2024.2335024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/15/2024] Open
Abstract
MiRNAs play crucial regulatory roles in the growth and development of tumor cells by serving as carriers of post-transcriptional regulatory information derived from genes. Investigating the potential function and clinical significance of miRNA-mediated mRNA regulatory networks in liver cancer can offer novel insights and therapeutic strategies for the treatment of this disease. We identified 300 differentially expressed miRNAs, and five miRNAs were identified to be correlated with overall survival and could be used as an independent prognostic. GO enrichment analysis mainly included carboxylic acid biosynthesis, organic acid biosynthesis, peroxisomal membrane, microsomal membrane, DNA binding, C-acyltransferase activity, etc. KEGG enrichment analysis showed that the pathways of target genes related to liver cancer were mainly focused on butyric acid metabolism and partial amino acid metabolism. Eight of the top 10 HUB genes were associated with prognosis, and the expression of four genes was positively correlated with prognosis, of which ABAT, BHMT, and SHMT1 were target genes of hsa-miR-5003-3p. MiR-5003-3p inhibits ABAT/BHMT/SHMT1 expression, thereby promoting liver cancer development. Overall, our study provides new ideas for the treatment of liver cancer, and these five miRNAs may be independent prognostic biomarkers and therapeutic targets for liver cancer patients. And miR-5003-3p may be a critical factor in the mechanism of liver cancer development.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Song Li
- Department of Hepatobiliary pancreatic gastrointestinal Surgery, JinHua People’s Hospital, JinHua, China
| | - Zixiao Zhou
- Xiangya Medical College, Central South University, Changsha, China
| | - Weicai Chang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yongqiang Wang
- General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Juan Mei
- Pathology Department, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shaobo Zhou
- General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Guo LX, Wang L, You ZH, Yu CQ, Hu ML, Zhao BW, Li Y. Biolinguistic graph fusion model for circRNA-miRNA association prediction. Brief Bioinform 2024; 25:bbae058. [PMID: 38426324 PMCID: PMC10939421 DOI: 10.1093/bib/bbae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 03/02/2024] Open
Abstract
Emerging clinical evidence suggests that sophisticated associations with circular ribonucleic acids (RNAs) (circRNAs) and microRNAs (miRNAs) are a critical regulatory factor of various pathological processes and play a critical role in most intricate human diseases. Nonetheless, the above correlations via wet experiments are error-prone and labor-intensive, and the underlying novel circRNA-miRNA association (CMA) has been validated by numerous existing computational methods that rely only on single correlation data. Considering the inadequacy of existing machine learning models, we propose a new model named BGF-CMAP, which combines the gradient boosting decision tree with natural language processing and graph embedding methods to infer associations between circRNAs and miRNAs. Specifically, BGF-CMAP extracts sequence attribute features and interaction behavior features by Word2vec and two homogeneous graph embedding algorithms, large-scale information network embedding and graph factorization, respectively. Multitudinous comprehensive experimental analysis revealed that BGF-CMAP successfully predicted the complex relationship between circRNAs and miRNAs with an accuracy of 82.90% and an area under receiver operating characteristic of 0.9075. Furthermore, 23 of the top 30 miRNA-associated circRNAs of the studies on data were confirmed in relevant experiences, showing that the BGF-CMAP model is superior to others. BGF-CMAP can serve as a helpful model to provide a scientific theoretical basis for the study of CMA prediction.
Collapse
Affiliation(s)
- Lu-Xiang Guo
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Lei Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China
- College of Information Science and Engineering, Zaozhuang University, Shandong 277100, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Chang-Qing Yu
- College of Information Engineering, Xijing University, Xi’an 710123, China
| | - Meng-Lei Hu
- School of Medicine, Peking University, Beijing, 100091, China
| | - Bo-Wei Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yang Li
- School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
16
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Sharma H, Kaushik M, Goswami P, Sreevani S, Chakraborty A, Ashique S, Pal R. Role of miRNAs in Brain Development. Microrna 2024; 13:96-109. [PMID: 38571343 DOI: 10.2174/0122115366287127240322054519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Non-coding RNAs that are small in size, called microRNAs (miRNAs), exert a consequence in neutralizing gene activity after transcription. The nervous system is a massively expressed organ, and an expanding body of research reveals the vital functions that miRNAs play in the brain's growth and neural activity. The significant benefit of miRNAs on the development of the central nervous system is currently shown through new scientific methods that concentrate on targeting and eradicating vital miRNA biogenesis pathways the elements involving Dicer and DGCR8. Modulation of miRNA has been associated with numerous essential cellular processes on neural progenitors, like differentiation, proliferation, and destiny determination. Current research discoveries that emphasize the significance of miRNAs in the complex process of brain development are included in this book. The miRNA pathway plays a major role in brain development, its operational dynamics, and even diseases. Recent studies on miRNA-mediated gene regulation within neural discrepancy, the circadian period and synaptic remodeling are signs of this. We also discussed how these discoveries may affect our comprehension of the fundamental processes behind brain diseases, highlighting the novel therapeutic opportunities miRNAs provide for treating various human illnesses.
Collapse
Affiliation(s)
- Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP), 244001, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Gwalior, 474005, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Maharashtra Educational Society's H. K. College of Pharmacy, Mumbai, Maharashtra, 400102, India
| | - Sanakattula Sreevani
- Department of Pharmacology, Vivekananda College of Pharmacy, Rajajinagar, Bengaluru, Karnataka, 560055, India
| | - Ananya Chakraborty
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, 700064, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Radheshyam Pal
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| |
Collapse
|
18
|
Yu X, Zhang M, Liu P, Li J, Gao B, Meng X. The miRNAs let-7b and miR-141 Coordinately Regulate Vitellogenesis by Modulating Methyl Farnesoate Degradation in the Swimming Crab Portunus trituberculatus. Int J Mol Sci 2023; 25:279. [PMID: 38203450 PMCID: PMC10778691 DOI: 10.3390/ijms25010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Methyl farnesoate (MF), a crucial sesquiterpenoid hormone, plays a pivotal role in the reproduction of female crustaceans, particularly in the vitellogenesis process. Despite extensive research on its functions, the molecular mechanisms that regulate MF levels during the vitellogenic phase remain largely elusive. This study investigates the roles of microRNAs (miRNAs), significant post-transcriptional regulators of gene expression, in controlling MF levels in the swimming crab Portunus trituberculatus. Through bioinformatic analysis, four miRNAs were identified as potential regulators targeting two genes encoding Carboxylesterases (CXEs), which are key enzymes in MF degradation. Dual luciferase reporter assays revealed that let-7b and miR-141 suppress CXE1 and CXE2 expression by directly binding to their 3' UTRs. In vivo overexpression of let-7b and miR-141 significantly diminished CXE1 and CXE2 levels, consequently elevating hemolymph MF and enhancing vitellogenin expression. Spatiotemporal expression profile analysis showed that these two miRNAs and their targets exhibited generally opposite patterns during ovarian development. These findings demonstrate that let-7b and miR-141 collaboratively modulate MF levels by targeting CXEs, thus influencing vitellogenesis in P. trituberculatus. Additionally, we found that the expression of let-7b and miR-141 were suppressed by MF, constituting a regulatory loop for the regulation of MF levels. The findings contribute novel insights into miRNA-mediated ovarian development regulation in crustaceans and offer valuable information for developing innovative reproduction manipulation techniques for P. trituberculatus.
Collapse
Affiliation(s)
- Xuee Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Mengqian Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Baoquan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xianliang Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
19
|
Bessaid M, Kwak JS, Kim KH. Generation of Recombinant Snakehead Rhabdovirus (SHRV) Expressing Artificial MicroRNA Targeting Spring Viremia of Carp Virus (SVCV) P Gene and In Vivo Therapeutic Use Against SVCV Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1076-1084. [PMID: 37861943 DOI: 10.1007/s10126-023-10260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Spring viremia of carp virus (SVCV) is a highly lethal virus in common carp (Cyprinus carpio) and other cyprinid fish species. The aim of the present study was to develop an in vivo therapeutic measure against SVCV using artificial microRNA (AmiRNA) targeting the SVCV P gene transcript. Three candidates of AmiRNAs (AmiR-P1, -P2, and -P3) were selected, and their ability to downregulate SVCV P gene transcript was analyzed by both synthesized AmiRNA mimics and AmiRNA-expressing vector system, in which AmiR-P3 showed the strongest inhibitory activity among the three candidates. To overcome in vivo limitation of miRNA mimics or plasmid-based miRNA expression systems, we rescued recombinant snakehead rhabdoviruses (SHRVs) expressing SVCV P gene-targeting AmiRNA (rSHRV-AmiR-P3) or control AmiRNA (rSHRV-AmiR-C) using reverse genetic technology. The successful expression of AmiR-P3 and AmiR-C in cells infected with the rescued viruses was verified by quantitative PCR. To evaluate the availability of rSHRV-AmiR-P3 for in vivo control of SVCV, zebrafish (Danio rerio) were (i) infected with either rSHRV-AmiR-C or rSHRV-AmiR-P3 followed by SVCV infection or (ii) infected with SVCV followed by either rSHRV-AmiR-C or rSHRV-AmiR-P3 infection. Fish infected with rSHRVs before and after SVCV infection showed significantly higher survival rates than fish infected with SVCV alone. There was no significant difference in survival rates between groups of fish infected with rSHRV-AmiR-C and rSHRV-AmiR-P3 before SVCV infection; however, fish infected with SVCV followed by infection with rSHRV-AmiR-P3 showed significantly higher survival rates than fish infected with rSHRV-AmiR-C. These results suggest that rSHRV-AmiR-P3 has therapeutic potential against SVCV in fish when administered after SVCV infection, and rSHRVs expressing artificial microRNAs targeting SVCV transcripts could be used as a tool to control SVCV infection in fish for a therapeutic purpose.
Collapse
Affiliation(s)
- Mariem Bessaid
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
20
|
Ho WY, Chak LL, Hor JH, Liu F, Diaz-Garcia S, Chang JC, Sanford E, Rodriguez MJ, Alagappan D, Lim SM, Cho YL, Shimizu Y, Sun AX, Tyan SH, Koo E, Kim SH, Ravits J, Ng SY, Okamura K, Ling SC. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons. iScience 2023; 26:108152. [PMID: 37920668 PMCID: PMC10618709 DOI: 10.1016/j.isci.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Li-Ling Chak
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Fujia Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jer-Cherng Chang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Maria J. Rodriguez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Durgadevi Alagappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Su Min Lim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yuji Shimizu
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Alfred Xuyang Sun
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sheue-Houy Tyan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Edward Koo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Seung Hyun Kim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shi-Yan Ng
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Katsutomo Okamura
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
21
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
22
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
23
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
24
|
Liu T, Xiao L, Pei T, Luo B, Tan J, Long Y, Huang X, Ouyang Y, Huang W. miR-297 inhibits expression of progesterone receptor and decidualization in eutopic endometria of endometriosis. J Obstet Gynaecol Res 2023; 49:956-965. [PMID: 36572643 DOI: 10.1111/jog.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
AIM Progesterone resistance is an epigenetic factor that reduces endometrial receptivity and causes implantation failure in women with endometriosis. In addition, dysregulated miRNAs contribute to the underlying pathogenic mechanisms of endometriosis. This study aimed to determine the effect of miR-297 on the progesterone receptor (PR) expression and on insufficient decidualization of endometrial stromal cells (ESCs) within the eutopic endometria of infertile women with minimal or mild endometriosis. METHODS ESCs were isolated from infertile endometriosis and normal patients and were transfected with miR-297 mimic or miR-297 inhibitor or respective control. qRT-PCR and western blot were conducted to quantify the expression of miR-297 and PR. The effect of miR-297 on ESCs decidualization was investigated by induced decidualization in vitro. RESULTS We observed an increase in miR-297 expression and a decrease in the expression of PR in the ESCs from endometriosis patients. Moreover, the expression of PR, most notably PRB, was found to be downregulated following transfection with miR-297 mimic and upregulated following treatment with miR-297 inhibitor. In addition, overexpressed miR-297 inhibited the decidualization of ESCs in vitro. We further determined that miR-297 exerts direct regulatory effects on PR expression. CONCLUSIONS We demonstrated that miR-297 interferes with fertility by repressing the expression of PR and preventing efficient decidualization in eutopic endometria. Further, miR-297 directly contributes to progesterone resistance in minimal or mild cases of endometriosis. Thus, regulation of miR-297 may prove to be a promising therapeutic strategy for endometriosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Obstetrics and Gynecology, The People's Hospital of Leshan, Leshan, China.,Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianjiao Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Bin Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jing Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ying Long
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Xin Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yunwei Ouyang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Megahed F, Tabll A, Atta S, Ragheb A, Smolic R, Petrovic A, Smolic M. MicroRNAs: Small Molecules with Significant Functions, Particularly in the Context of Viral Hepatitis B and C Infection. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:173. [PMID: 36676797 PMCID: PMC9862007 DOI: 10.3390/medicina59010173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
A MicroRNA (miRNA) is defined as a small molecule of non-coding RNA (ncRNA). Its molecular size is about 20 nucleotides (nt), and it acts on gene expression's regulation at the post-transcription level through binding to the 3'untranslated regions (UTR), coding sequences, or 5'UTR of the target messenger RNAs (mRNAs), which leads to the suppression or degradation of the mRNA. In recent years, a huge evolution has identified the origin and function of miRNAs, focusing on their important effects in research and clinical applications. For example, microRNAs are key players in HCV infection and have important host cellular factors required for HCV replication and cell growth. Altered expression of miRNAs affects the pathogenicity associated with HCV infection through regulating different signaling pathways that control HCV/immunity interactions, proliferation, and cell death. On the other hand, circulating miRNAs can be used as novel biomarkers and diagnostic tools for HCV pathogenesis and early therapeutic response. Moreover, microRNAs (miRNA) have been involved in hepatitis B virus (HBV) gene expression and advanced antiviral discovery. They regulate HBV/HCV replication and pathogenesis with different pathways involving facilitation, inhibition, activation of the immune system (innate and adaptive), and epigenetic modifications. In this short review, we will discuss how microRNAs can be used as prognostic, diagnostic, and therapeutic tools, especially for chronic hepatitis viruses (HBV and HCV), as well as how they could be used as new biomarkers during infection and advanced treatment.
Collapse
Affiliation(s)
- Fayed Megahed
- Nucleic Acid Research Department, Genetic Engineering and Biotechnological Research Institute (GEBRI), City for Scientific Researches and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Ashraf Tabll
- Microbial Biotechnology Department, National Research Centre, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Shimaa Atta
- Department of Immunology, Theodor Bilharz Research Institute, Cairo 12411, Egypt
| | - Ameera Ragheb
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| |
Collapse
|
26
|
Ma S, Kotar A, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.519659. [PMID: 36711709 PMCID: PMC9881868 DOI: 10.1101/2023.01.03.519659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As an essential post-transcriptional regulator of gene expression, microRNA (miR) levels must be strictly maintained. The biogenesis of many, but not all, miRs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers and interestingly, its biogenesis is not known to be regulated by protein binding partners. Therefore, the intrinsic structural properties of pre-miR-31 can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of the precursor element of miR-31 (pre-miR-31) to investigate the role of distinct structural elements in regulating Dicer processing. We found that the presence or absence of mismatches within the helical stem do not strongly influence Dicer processing of the pre-miR. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by Dicer. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influence both Dicer binding and processing. Our results enrich our understanding of the active role that RNA structure plays in regulating Dicer processing which has direct implications for control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Anita Kotar
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Scott Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
28
|
miR-15a-5p enhances the malignant phenotypes of colorectal cancer cells through the STAT3/TWIST1 and PTEN/AKT signaling pathways by targeting SIRT4. Cell Signal 2023; 101:110517. [PMID: 36332797 DOI: 10.1016/j.cellsig.2022.110517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) continues to represent one of the major causes of cancer-related mortality and morbidity. MicroRNAs (miRNAs) are confirmed to be involved in modulating substential biological processes by affecting the expression of targeted genes, including carcinogenesis. In the present study, the expression pattern and functional roles of microRNA-15a-5p (miR-15a-5p) in CRC cells were investigated. The data from TCGA database indicated that miR-15a-5p is highly expressed in CRC tissues. Moreover, ectopic expression of miR-15a-5p facilitated the proliferation, migration, and invasion of CRC cells. Furthermore, bioinformatic analysis combinating with dual-luciferase assay revealed that SIRT4 acts as a crucial target of miR-15a-5p. Accordingly, overexpression of SIRT4 suppresses the miR-15a-5p-mediated enhancement in the proliferation, migration, and invasion of CRC cells, while the opposite phenotypes were observed after inhibition of SIRT4. Moreover, we further revealed that miR-15a-5p restrained the expression of SIRT4 to exacerbate the malignant phenotypes by modulating STAT3/TWIST1 and PETN/AKT signaling in CRC cells. Alternatively, inhibition of the miR-15a-5p/SIRT4 axis enhanced the chemosensitivity of 5-fluorouracil- and oxaliplatin-resistant HCT116 cells. Altogether, our evidence suggests that miR-15a-5p plays an essential role in promoting the proliferation, migration, and chemoresistance of CRC cells via targeting SIRT4 to modulate STAT3/TWIST1 and PETN/AKT signaling, which may serve as a promising therapeutic target for CRC therapy.
Collapse
|
29
|
Yan L, Liao L, Su X. Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022; 23:55. [PMID: 36581789 PMCID: PMC9800683 DOI: 10.1186/s40510-022-00450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022] Open
Abstract
Orthodontic tooth movement relies on bone remodeling and periodontal tissue regeneration in response to the complicated mechanical cues on the compressive and tensive side. In general, mechanical stimulus regulates the expression of mechano-sensitive coding and non-coding genes, which in turn affects how cells are involved in bone remodeling. Growing numbers of non-coding RNAs, particularly mechano-sensitive non-coding RNA, have been verified to be essential for the regulation of osteogenesis and osteoclastogenesis and have revealed how they interact with signaling molecules to do so. This review summarizes recent findings of non-coding RNAs, including microRNAs and long non-coding RNAs, as crucial regulators of gene expression responding to mechanical stimulation, and outlines their roles in bone deposition and resorption. We focused on multiple mechano-sensitive miRNAs such as miR-21, - 29, -34, -103, -494-3p, -1246, -138-5p, -503-5p, and -3198 that play a critical role in osteogenesis function and bone resorption. The emerging roles of force-dependent regulation of lncRNAs in bone remodeling are also discussed extensively. We summarized mechano-sensitive lncRNA XIST, H19, and MALAT1 along with other lncRNAs involved in osteogenesis and osteoclastogenesis. Ultimately, we look forward to the prospects of the novel application of non-coding RNAs as potential therapeutics for tooth movement and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lichao Yan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Daulagala AC, Kourtidis A. ECM Substrates Impact RNAi Localization at Adherens Junctions of Colon Epithelial Cells. Cells 2022; 11:3740. [PMID: 36497003 PMCID: PMC9737857 DOI: 10.3390/cells11233740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The extracellular matrix (ECM) plays crucial roles in tissue homeostasis. Abnormalities in ECM composition are associated with pathological conditions, such as fibrosis and cancer. These ECM alterations are sensed by the epithelium and can influence its behavior through crosstalk with other mechanosensitive complexes, including the adherens junctions (AJs). We have previously shown that the AJs, through their component PLEKHA7, recruit the RNAi machinery to regulate miRNA levels and function. We have particularly shown that the junctional localization of RNAi components is critical for their function. Here, we investigated whether different ECM substrates can influence the junctional localization of RNAi complexes. To do this, we plated colon epithelial Caco2 cells on four key ECM substrates found in the colon under normal or pathogenic conditions, namely laminin, fibronectin, collagen I, and collagen IV, and we examined the subcellular distribution of PLEKHA7, and of the key RNAi components AGO2 and DROSHA. Fibronectin and collagen I negatively impacted the junctional localization of PLEKHA7, AGO2, and DROSHA when compared to laminin. Furthermore, fibronectin, collagen I, and collagen IV disrupted interactions of AGO2 and DROSHA with their essential partners GW182 and DGCR8, respectively, both at AJs and throughout the cell. Combinations of all substrates with fibronectin also negatively impacted junctional localization of PLEKHA7 and AGO2. Additionally, collagen I triggered accumulation of DROSHA at tri-cellular junctions, while both collagen I and collagen IV resulted in DROSHA accumulation at basal areas of cell-cell contact. Altogether, fibronectin and collagens I and IV, which are elevated in the stroma of fibrotic and cancerous tissues, altered localization patterns and disrupted complex formation of PLEKHA7 and RNAi components. Combined with our prior studies showing that apical junctional localization of the PLEKHA7-RNAi complex is critical for regulating tumor-suppressing miRNAs, this work points to a yet unstudied mechanism that could contribute to epithelial cell transformation.
Collapse
Affiliation(s)
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Casanova M, Pontis F, Ghidotti P, Petraroia I, Venturini LV, Bergamaschi L, Chiaravalli S, De Cecco L, Massimino M, Sozzi G, Ferrari A, Fortunato O, Gasparini P. MiR-223 Exclusively Impairs In Vitro Tumor Growth through IGF1R Modulation in Rhabdomyosarcoma of Adolescents and Young Adults. Int J Mol Sci 2022; 23:13989. [PMID: 36430468 PMCID: PMC9695828 DOI: 10.3390/ijms232213989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup of patients whose optimal clinical management and best possible access to care remain a challenge and whose survival rates lag behind that of children diagnosed with histologically similar tumors. A better understanding of tumor biology that differentiates children (PEDS-) from AYA-RMS could provide critical information and drive new initiatives to improve their final outcome. We investigated the functional role of miRNAs implicated in AYA-RMS development, as they have the potential to lead to discovery of new targets pathways for a more tailored treatment in these age groups of young RMS patients. MiR-223 and miR-486 were observed de-regulated in nine RMS tissues compared to their normal counterparts, yet only miR-223 replacement impaired proliferation and aggressiveness of AYA-RMS cell lines, while inducing apoptosis and determining cell cycle arrest. Interestingly, IGF1R resulted in the direct target of miR-223 in AYA-RMS cells, as demonstrated by IGF1R silencing. Our results highlight an exclusive functional role of miR-223 in AYA-RMS development and aggressiveness.
Collapse
Affiliation(s)
- Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Francesca Pontis
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Patrizia Ghidotti
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ilaria Petraroia
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Lara Veronica Venturini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| |
Collapse
|
32
|
Chetta M, Tarsitano M, Oro M, Rivieccio M, Bukvic N. An in silico pipeline approach uncovers a potentially intricate network involving spike SARS-CoV-2 RNA, RNA vaccines, host RNA-binding proteins (RBPs), and host miRNAs at the cellular level. J Genet Eng Biotechnol 2022; 20:129. [PMID: 36066672 PMCID: PMC9446605 DOI: 10.1186/s43141-022-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the last 2 years, we have been fighting against SARS-CoV-2 viral infection, which continues to claim victims all over the world. The entire scientific community has been mobilized in an attempt to stop and eradicate the infection. A well-known feature of RNA viruses is their high mutational rate, particularly in specific gene regions. The SARS-CoV-2 S protein is also affected by these changes, allowing viruses to adapt and spread more easily. The vaccines developed using mRNA coding protein S undoubtedly contributed to the "fight" against the COVID-19 pandemic even though the presence of new variants in the spike protein could result in protein conformational changes, which could affect vaccine immunogenicity and thus vaccine effectiveness. RESULTS The study presents the findings of an in silico analysis using various bioinformatics tools finding conserved sequences inside SARS-CoV-2 S protein (encoding mRNA) same as in the vaccine RNA sequences that could be targeted by specific host RNA-binding proteins (RBPs). According to the results an interesting scenario emerges involving host RBPs competition and subtraction. The presence of viral RNA in cytoplasm could be a new tool in the virus's armory, allowing it to improve its chances of survival by altering cell gene expression and thus interfering with host cell processes. In silico analysis was used also to evaluate the presence of similar human miRNA sequences within RBPs motifs that can modulate human RNA expression. Increased cytoplasmic availability of exogenous RNA fragments derived from RNA physiological degradation could potentially mimic the effect of host human miRNAs within the cell, causing modulation of the host cell network. CONCLUSIONS Our in silico analysis could aid in shedding light on the potential effects of exogenous RNA (i.e. viruses and vaccines), thereby improving our understanding of the cellular interactions between virus and host biomolecules. Finally, using the computational approach, it is possible to obtain a safety assessment of RNA-based vaccines as well as indications for use in specific clinical conditions.
Collapse
Affiliation(s)
- Massimiliano Chetta
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy.
| | - Marina Tarsitano
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Oro
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Maria Rivieccio
- AORN A. Cardarelli-Dipartimento delle Tecnologie Avanzate Diagnostico-Terapeutiche e dei Servizi sanitari-U.O.C. Genetica Medica e di Laboratorio, Via A. Cardarelli 9, 80131, Napoli, Italy
| | - Nenad Bukvic
- AOUC "Policlinico di Bari"-UOC Lab. di Genetica Medica, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
33
|
Mutual regulation of noncoding RNAs and RNA modifications in psychopathology: Potential therapeutic targets for psychiatric disorders? Pharmacol Ther 2022; 237:108254. [DOI: 10.1016/j.pharmthera.2022.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
|
34
|
Wang XF, Yu CQ, Li LP, You ZH, Huang WZ, Li YC, Ren ZH, Guan YJ. KGDCMI: A New Approach for Predicting circRNA–miRNA Interactions From Multi-Source Information Extraction and Deep Learning. Front Genet 2022; 13:958096. [PMID: 36051691 PMCID: PMC9426772 DOI: 10.3389/fgene.2022.958096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence has revealed that circular RNA (circRNA) is widely distributed in mammalian cells and functions as microRNA (miRNA) sponges involved in transcriptional and posttranscriptional regulation of gene expression. Recognizing the circRNA–miRNA interaction provides a new perspective for the detection and treatment of human complex diseases. Compared with the traditional biological experimental methods used to predict the association of molecules, which are limited to the small-scale and are time-consuming and laborious, computing models can provide a basis for biological experiments at low cost. Considering that the proposed calculation model is limited, it is necessary to develop an effective computational method to predict the circRNA–miRNA interaction. This study thus proposed a novel computing method, named KGDCMI, to predict the interactions between circRNA and miRNA based on multi-source information extraction and fusion. The KGDCMI obtains RNA attribute information from sequence and similarity, capturing the behavior information in RNA association through a graph-embedding algorithm. Then, the obtained feature vector is extracted further by principal component analysis and sent to the deep neural network for information fusion and prediction. At last, KGDCMI obtains the prediction accuracy (area under the curve [AUC] = 89.30% and area under the precision–recall curve [AUPR] = 87.67%). Meanwhile, with the same dataset, KGDCMI is 2.37% and 3.08%, respectively, higher than the only existing model, and we conducted three groups of comparative experiments, obtaining the best classification strategy, feature extraction parameters, and dimensions. In addition, in the performed case study, 7 of the top 10 interaction pairs were confirmed in PubMed. These results suggest that KGDCMI is a feasible and useful method to predict the circRNA–miRNA interaction and can act as a reliable candidate for related RNA biological experiments.
Collapse
Affiliation(s)
- Xin-Fei Wang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Chang-Qing Yu, ; Li-Ping Li,
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
- *Correspondence: Chang-Qing Yu, ; Li-Ping Li,
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Wen-Zhun Huang
- School of Information Engineering, Xijing University, Xi’an, China
| | - Yue-Chao Li
- School of Information Engineering, Xijing University, Xi’an, China
| | - Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an, China
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
35
|
Heo Y, Kim H, Lim J, Choi SS. Adipocyte differentiation between obese and lean conditions depends on changes in miRNA expression. Sci Rep 2022; 12:11543. [PMID: 35798800 PMCID: PMC9262987 DOI: 10.1038/s41598-022-15331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Adipogenesis is the process by which precursor cells, preadipocytes (preACs), differentiate into adipocytes (ACs). Here, we investigated differentially expressed miRNAs (DEMs) between the two conditions to understand the regulatory role of miRNAs in altering adipogenesis-related mRNAs. A total of 812 and 748 DEMs were obtained in lean and obese conditions, respectively. The up- and downregulated DEMs were highly concordant with each other in both lean and obese conditions; however, DEMs related to adipogenesis in obese conditions were more strongly downregulated than DEMs related to adipogenesis in lean conditions. There were more obese-specific downregulated DEMs than lean-specific downregulated DEMs; in contrast, there were more lean-specific upregulated DEMs than obese-specific upregulated DEMs. Approximately 45% of DEMs were mapped to the list of miRNA-target mRNA pairs when DEMs were matched to the experimentally validated list of miRNA-target mRNA information of miRTarBase. Many of the target mRNAs were differentially expressed genes (DEGs) with functions in processes such as inflammatory responses and fat metabolism. In particular, a total of 25 miRNAs that target three upregulated adipogenesis-associated inflammatory genes (IL-6, TNF-α, and IL-1β) were commonly altered during adipogenesis. Taken together, our study reveals the types of adipogenesis-related miRNAs that are altered and the degree to which they influence healthy or pathogenic adipogenesis.
Collapse
Affiliation(s)
- Yerim Heo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hyunjung Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Jiwon Lim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
36
|
Chen L, Li S, Shi W, Wu Y. An Integrative Transcriptomic Analysis Reveals EGFR Exon-19 E746-A750 Fragment Deletion Regulated miRNA, circRNA, mRNA and lncRNA Networks in Lung Carcinoma. Int J Gen Med 2022; 15:6031-6042. [PMID: 35818580 PMCID: PMC9270948 DOI: 10.2147/ijgm.s370247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Competing endogenous RNA (ceRNA) appears to be an important post-transcriptional manner that regulates gene expression through a miRNA-mediated mechanism. Mutations in exon-19 of EGFR were frequently observed in lung cancer genes, which were associated with EGFR activity and EGFR-targeted therapies. Methods We explored the transcriptome regulated by mutation in EGFR exon-19 E746-A750 fragment via using a network modeling strategy. We applied transcriptome sequencing to detect the deletion process of EGFR exon-19 E746-A750 fragment. Bio-informatics analyses were used to predict the gene target pairs and explain their potential roles in tumorigenesis and progression of lung cancer. Results We conducted an explorative lncRNA/miRNA/circRNA and mRNA expression study with two groups of lung adenocarcinoma tissues, including EGFR exon-19 E746-A750 deletion group and EGFR exon-19 wild-type group. Meanwhile, we screen out the hub genes related to the EGFR-19-D patient. Significant pathways and biological functions potentially regulated by the deregulated 128 non-coding genes were enriched. Conclusion Our work provides an important theoretical, experimental and clinical foundation for further research on more effective targets for the diagnosis, therapy and prognosis of lung cancer.
Collapse
Affiliation(s)
- Ling Chen
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Shenyi Li
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Weifeng Shi
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Yibo Wu
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
- Correspondence: Yibo Wu; Weifeng Shi, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China, Tel +86-510-68089762; +86-510-68089762, Fax +86-510-68089762, Email ;
| |
Collapse
|
37
|
Li X, Zheng L, Zhang B, Deng ZY, Luo T. The Structure Basis of Phytochemicals as Metabolic Signals for Combating Obesity. Front Nutr 2022; 9:913883. [PMID: 35769384 PMCID: PMC9234462 DOI: 10.3389/fnut.2022.913883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
The consumption of phytochemicals, bioactive compounds in fruits and vegetables, has been demonstrated to ameliorate obesity and related metabolic symptoms by regulating specific metabolic pathways. This review summarizes the progress made in our understanding of the potential of phytochemicals as metabolic signals: we discuss herein selected molecular mechanisms which are involved in the occurrence of obesity that may be regulated by phytochemicals. The focus of our review highlights the regulation of transcription factors toll like receptor 4 (TLR4), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the peroxisome proliferator-activated receptors (PPARs), fat mass and obesity-associated protein (FTO) and regulation of microRNAs (miRNA). In this review, the effect of phytochemicals on signaling pathways involved in obesity were discussed on the basis of their chemical structure, suggesting molecular mechanisms for how phytochemicals may impact these signaling pathways. For example, compounds with an isothiocyanate group or an α, β-unsaturated carbonyl group may interact with the TLR4 signaling pathway. Regarding Nrf2, we examine compounds possessing an α, β-unsaturated carbonyl group which binds covalently with the cysteine thiols of Keap1. Additionally, phytochemical activation of PPARs, FTO and miRNAs were summarized. This information may be of value to better understand how specific phytochemicals interact with specific signaling pathways and help guide the development of new drugs to combat obesity and related metabolic diseases.
Collapse
|
38
|
Gao JR, Shi MM, Jiang H, Zhu XL, Wei LB, Qin XJ. MicroRNA-339-5p inhibits lipopolysaccharide-induced rat mesangial cells by regulating the Syk/Ras/c-Fos pathway. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1075-1085. [PMID: 35687145 DOI: 10.1007/s00210-022-02261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Chronic glomerulonephritis (CGN) is a disease occurred in glomeruli. The mechanism of CGN is regarded to be involved in a range of inflammatory responses. MicroRNA-339-5p (miR-339-5p) has been reported to be involved in inflammatory responses in many diseases. However, the role of miR-339-5p in CGN remains unclear. The purpose of this study was to investigate the role of miR-339-5p in lipopolysaccharide (LPS)-induced nephritis injury in vitro. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot (WB) were used to detect the expression of miR-339-5p and Syk/Ras/c-Fos pathway. Double luciferase was performed to identify targeted binding of miR-339-5p to Syk. Cell counting kit-8 (CCK-8) and flow cytometry were used to observe cell viability and cell cycle. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the concentrations of inflammatory cytokines IL-1β, IL-10, IL-6, and TNF-α. Lipopolysaccharide (LPS) could increase HBZY-1 (rat mesangial cells) cell viability, decrease the G2 phase, and promote cell proliferation and accelerate inflammatory cytokine. However, overexpression of miR-339-5p could inhibit LPS-induced HBZY-1 cell viability, decrease the expression of Syk/Ras/c-Fos signaling pathway, downregulate the expression level of inflammatory cytokines, increase the G2 phase, and inhibit cell proliferation. miR-339-5p could inhibit the proliferation and inflammation of the rat mesangial cells through regulating Syk/Ras/c-Fos signaling pathway.
Collapse
Affiliation(s)
- Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China.
| | - Miao Miao Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Xiao Li Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Liang Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China
| | - Xiu Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China
| |
Collapse
|
39
|
Chen G, Yang Y, Wu QJ, Cao L, Ruan W, Shao C, Jiang L, Tang P, Ma S, Jiang A, Wang Z, Wu K, Zhang QC, Fu XD, Zhou Y. ILF3 represses repeat-derived microRNAs targeting RIG-I mediated type I interferon response. J Mol Biol 2022; 434:167469. [PMID: 35120969 DOI: 10.1016/j.jmb.2022.167469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) play important roles in regulated gene expression and miRNA biogenesis is also subject to regulation, together constituting critical regulatory circuitries in numerous physiological and pathological processes. As a dsRNA binding protein, interleukin enhancer binding factor 3 (ILF3) has been implicated as a negative regulator in miRNA biogenesis, but the mechanism and specificity have remained undefined. Here, combining small-RNA-seq and CLIP-seq, we showed that ILF3 directly represses many miRNAs or perhaps other types of small RNAs annotated in both miRBase and MirGeneDB. We demonstrated that ILF3 preferentially binds to A/U-enriched motifs, which tend to lengthen and/or stabilize the stem-loop in pri-miRNAs, thereby effectively competing with the Microprocessor to block miRNA biogenesis. Focusing on the biological function of ILF3-suppressed miR-582-3p, we discovered that this LINE-derived miRNA targets a critical interferon-inducible gene RIG-I for repression, thus establishing a novel ILF3/miR-582/RIG-I axis in the antiviral response.
Collapse
Affiliation(s)
- Geng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi-Jia Wu
- Seqhealth Technology Co., Ltd, Wuhan, China
| | - Liu Cao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Ruan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Changwei Shao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, USA
| | - Li Jiang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Tang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Suping Ma
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ao Jiang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kai Wu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, USA
| | - Yu Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Yu CH, Yang SQ, Li L, Xin Y, Zhang F, Liu XF, Yi ZC. Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC Pharmacol Toxicol 2022; 23:20. [PMID: 35366954 PMCID: PMC8976366 DOI: 10.1186/s40360-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hydroquinone (HQ) is a phenolic metabolite of benzene with a potential risk for hematological disorders and hematotoxicity in humans. In the present study, an integrative analysis of microRNA (miRNA) and mRNA expressions was performed to identify potential pathways and miRNA-mRNA network associated with benzene metabolite hydroquinone-induced hematotoxicity. METHODS K562 cells were treated with 40 μM HQ for 72 h, mRNA and miRNA expression changes were examined using transcriptomic profiles and miRNA microarray, and then bioinformatics analysis was performed. RESULTS Out of all the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) induced by HQ, 1482 DEGs and 10 DEMs were up-regulated, and 1594 DEGs and 42 DEMs were down-regulated. HQ-induced DEGs were involved in oxidative stress, apoptosis, DNA methylation, histone acetylation and cellular response to leukemia inhibitory factor GO terms, as well as metabolic, Wnt/β-catenin, NF-κB, and leukemia-related pathways. The regulatory network of mRNAs and miRNAs includes 23 miRNAs, 1108 target genes, and 2304 potential miRNAs-mRNAs pairs. MiR-1246 and miR-224 had the potential to be major regulators in HQ-exposed K562 cells based on the miRNAs-mRNAs network. CONCLUSIONS This study reinforces the use of in vitro model of HQ exposure and bioinformatic approaches to advance our knowledge on molecular mechanisms of benzene hematotoxicity at the RNA level.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu Xin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Fang Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xiao-Fan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
41
|
Bhagat PK, Verma D, Singh K, Badmi R, Sharma D, Sinha AK. Dynamic Phosphorylation of miRNA Biogenesis Factor HYL1 by MPK3 Involving Nuclear-Cytoplasmic Shuttling and Protein Stability in Arabidopsis. Int J Mol Sci 2022; 23:ijms23073787. [PMID: 35409147 PMCID: PMC8998556 DOI: 10.3390/ijms23073787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are one of the prime regulators of gene expression. The recruitment of hyponastic leaves 1 (HYL1), a double-stranded RNA binding protein also termed as DRB1, to the microprocessor complex is crucial for accurate primary-miRNA (pri-miRNA) processing and the accumulation of mature miRNA in Arabidopsis thaliana. In the present study, we investigated the role of the MAP kinase-mediated phosphorylation of AtHYL1 and its sub-cellular activity. AtMPK3 specifically phosphorylates AtHYL1 at the evolutionarily conserved serine-42 present at the N-terminal regions and plays an important role in its nuclear-cytosolic shuttling. Additionally, we identified that AtHYL1 is cleaved by trypsin-like proteases into an N-terminal fragment, which renders its subcellular activities. We, for the first time, report that the dimerization of AtHYL1 not only takes place in the nucleus, but also in the cytosol, and the C-terminal of AtHYL1 has a role in regulating its stability, as well as its subcellular localization. AtHYL1 is hyper-phosphorylated in mpk3 mutants, leading to higher stability and reduced degradation. Our data show that AtMPK3 is a negative regulator of AtHYL1 protein stability and that the AtMPK3-induced phosphorylation of AtHYL1 leads to its protein degradation.
Collapse
Affiliation(s)
- Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
- Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
| | - Kirti Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
| | - Raghuram Badmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
- Raghu Ram Badmi, School of Biological, Earth and Environmental Sciences, University College Cork, T23TK30 Cork, Ireland
| | - Deepika Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
| |
Collapse
|
42
|
Mukherjee S, Murata A, Ishida R, Sugai A, Dohno C, Hamada M, Krishna S, Nakatani K. HT-SELEX-based identification of binding pre-miRNA hairpin-motif for small molecules. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:165-174. [PMID: 34976435 PMCID: PMC8685993 DOI: 10.1016/j.omtn.2021.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Selective targeting of biologically relevant RNAs with small molecules is a long-standing challenge due to the lack of clear understanding of the binding RNA motifs for small molecules. The standard SELEX procedure allows the identification of specific RNA binders (aptamers) for the target of interest. However, more effort is needed to identify and characterize the sequence-structure motifs in the aptamers important for binding to the target. Herein, we described a strategy integrating high-throughput (HT) sequencing with conventional SELEX followed by bioinformatic analysis to identify aptamers with high binding affinity and target specificity to unravel the sequence-structure motifs of pre-miRNA, which is essential for binding to the recently developed new water-soluble small-molecule CMBL3aL. To confirm the fidelity of this approach, we investigated the binding of CMBL3aL to the identified motifs by surface plasmon resonance (SPR) spectroscopy and its potential regulatory activity on dicer-mediated cleavage of the obtained aptamers and endogenous pre-miRNAs comprising the identified motif in its hairpin loop. This new approach would significantly accelerate the identification process of binding sequence-structure motifs of pre-miRNA for the compound of interest and would contribute to increase the spectrum of biomedical application.
Collapse
Affiliation(s)
- Sanjukta Mukherjee
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore 560065, India
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Ryoga Ishida
- Graduate School of Advanced Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ayako Sugai
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore 560065, India
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|
43
|
A miRNA-Disease Association Identification Method Based on Reliable Negative Sample Selection and Improved Single-Hidden Layer Feedforward Neural Network. INFORMATION 2022. [DOI: 10.3390/info13030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
miRNAs are a category of important endogenous non-coding small RNAs and are ubiquitous in eukaryotes. They are widely involved in the regulatory process of post-transcriptional gene expression and play a critical part in the development of human diseases. By utilizing recent advancements in big data technology, using bioinformatics methods to identify causative miRNA becomes a hot spot. In this paper, a method called RNSSLFN is proposed to identify the miRNA-disease associations by reliable negative sample selection and an improved single-hidden layer feedforward neural network (SLFN). It involves, firstly, obtaining integrated similarity for miRNAs and diseases; next, selecting reliable negative samples from unknown miRNA-disease associations via distinguishing up-regulated or down-regulated miRNAs; then, introducing an improved SLFN to solve the prediction task. The experimental results on the latest data sets HMDD v3.2 and the framework of 5-fold cross-validation (CV) show that the average AUC and AUPR of RNSSLFN achieve 0.9316 and 0.9065 m, respectively, which are superior to the other three state-of-the-art methods. Furthermore, in the case studies of 10 common cancers, more than 70% of the top 30 predicted miRNA-disease association pairs are verified in the databases, which further confirms the reliability and effectiveness of the RNSSLFN model. Generally, RNSSLFN in predicting miRNA-disease associations has prodigious potential and extensive foreground.
Collapse
|
44
|
Jungers CF, Djuranovic S. Modulation of miRISC-Mediated Gene Silencing in Eukaryotes. Front Mol Biosci 2022; 9:832916. [PMID: 35237661 PMCID: PMC8882679 DOI: 10.3389/fmolb.2022.832916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression is regulated at multiple levels in eukaryotic cells. Regulation at the post-transcriptional level is modulated by various trans-acting factors that bind to specific sequences in the messenger RNA (mRNA). The binding of different trans factors influences various aspects of the mRNA such as degradation rate, translation efficiency, splicing, localization, etc. MicroRNAs (miRNAs) are short endogenous ncRNAs that combine with the Argonaute to form the microRNA-induced silencing complex (miRISC), which uses base-pair complementation to silence the target transcript. RNA-binding proteins (RBPs) contribute to post-transcriptional control by influencing the mRNA stability and translation upon binding to cis-elements within the mRNA transcript. RBPs have been shown to impact gene expression through influencing the miRISC biogenesis, composition, or miRISC-mRNA target interaction. While there is clear evidence that those interactions between RBPs, miRNAs, miRISC and target mRNAs influence the efficiency of miRISC-mediated gene silencing, the exact mechanism for most of them remains unclear. This review summarizes our current knowledge on gene expression regulation through interactions of miRNAs and RBPs.
Collapse
|
45
|
Zhang Y, Zhang H, Yuan G, Yang G. circKLF4 Upregulates Klf4 and Endoglin to Promote Odontoblastic Differentiation of Mouse Dental Papilla Cells via Sponging miRNA-1895 and miRNA-5046. Front Physiol 2022; 12:760223. [PMID: 35222058 PMCID: PMC8865004 DOI: 10.3389/fphys.2021.760223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
circular RNAs (circRNAs) is a broad and diverse endogenous subfamily of non-coding RNAs, regulating the gene expression by acting as a microRNA (miRNA) sponge. However, the biological functions of circRNAs in odontoblast differentiation remain largely unknown. Our preliminary study identified an unknown mouse circRNA by circRNA sequencing generated from mouse dental papilla and we termed it circKLF4. In this study, quantitative real-time PCR and in situ hybridization were used and demonstrated that circKLF4 was upregulated during odontoblastic differentiation. Gene knockdown and overexpression assays indicated that circKLF4 promoted odontoblastic differentiation of mouse dental papilla cells (mDPCs). Mechanistically, we found that circKLF4 increased the linear KLF4 expression in a microRNA-dependent manner. By mutating the binding sites of microRNA and circKLF4, we further confirmed that circKLF4 acted as sponge of miRNA-1895 and miRNA-5046 to promote the expression of KLF4. We then also found that ENDOGLIN was also up-regulated by circKLF4 by transfection of circKLF4 overexpression plasmids with or without microRNA inhibitor. In conclusion, circKLF4 increases the expression of KLF4 and ENDOGLIN to promote odontoblastic differentiation via sponging miRNA-1895 and miRNA-5046.
Collapse
|
46
|
Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci 2022; 23:ijms23020951. [PMID: 35055144 PMCID: PMC8781102 DOI: 10.3390/ijms23020951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy in children and adults. TLE is characterized by variable onset and seizures. Moreover, this form of epilepsy is often resistant to pharmacotherapy. The search for new mechanisms for the development of TLE may provide us with a key to the development of new diagnostic methods and a personalized approach to the treatment. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, among which microRNA (miR) is of the greatest interest. (1) Background: The purpose of the systematic review is to analyze the studies carried out on the role of miRs in the development of mesial TLE (mTLE) and update the existing knowledge about the biomarkers of this disease. (2) Methods: The search for publications was carried out in the databases PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, Cochrane. The search was carried out using keywords and combinations. We analyzed publications for 2016–2021, including original studies in an animal model of TLE and with the participation of patients with TLE, thematic and systemic reviews, and Cochrane reviews. (3) Results: this thematic review showed that miR‒155, miR‒153, miR‒361‒5p, miR‒4668‒5p, miR‒8071, miR‒197‒5p, miR‒145, miR‒181, miR‒199a, miR‒1183, miR‒129‒2‒3p, miR‒143‒3p (upregulation), miR–134, miR‒0067835, and miR‒153 (downregulation) can be considered as biomarkers of mTLE. However, the roles of miR‒146a, miR‒142, miR‒106b, and miR‒223 are questionable and need further study. (4) Conclusion: In the future, it will be possible to consider previously studied miRs, which have high specificity and sensitivity in mTLE, as prognostic biomarkers (predictors) of the risk of developing this disease in patients with potentially epileptogenic structural damage to the mesial regions of the temporal lobe of the brain (congenital disorders of the neuronal migration and neurogenesis, brain injury, neuro-inflammation, tumor, impaired blood supply, neurodegeneration, etc.).
Collapse
|
47
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
48
|
Lite C, Raja GL, Juliet M, Sridhar VV, Subhashree KD, Kumar P, Chakraborty P, Arockiaraj J. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103779. [PMID: 34843942 DOI: 10.1016/j.etap.2021.103779] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Widespread persistence of endocrine-disrupting chemicals (EDCs) in the environment has mandated the need to study their potential effects on an individual's long-term health after both acute and chronic exposure periods. In this review article a particular focus is given on in utero exposure to EDCs in rodent models which resulted in altered epigenetic programming and transgenerational effects in the offspring causing disrupted reproductive and metabolic phenotypes. The literature to date establishes the impact of transgenerational effects of EDCs potentially associated with epigenetic mediated mechanisms. Therefore, this review aims to provide a comprehensive overview of epigenetic programming and it's regulation in mammals, primarily focusing on the epigenetic plasticity and susceptibility to exogenous hormone active chemicals during the early developmental period. Further, we have also in depth discussed the epigenetic alterations associated with the exposure to selected EDCs such as Bisphenol A (BPA), di-2-ethylhexyl phthalate (DEHP) and vinclozlin upon in utero exposure especially in rodent models.
Collapse
Affiliation(s)
- Christy Lite
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.
| | - Glancis Luzeena Raja
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - K Divya Subhashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Praveen Kumar
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
49
|
Moloudizargari M, Rahmani J, Asghari MH, Goel A. The prognostic role of miR-31 in colorectal cancer: the results of a meta-analysis of 4720 patients. Epigenomics 2021; 14:101-112. [PMID: 34894715 DOI: 10.2217/epi-2021-0277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims: To study the association between miR-31 expression and clinical outcomes in colorectal cancer. Methods: A systematic search was performed and 16 studies were found eligible. To calculate the combined hazard ratio (HR), the DerSimonian and Laird random-effects model was used. Results: Pooled analysis revealed significant associations between high miR-31 expression and poor overall (HR: 0.68; 95% CI: 0.47-0.97; I2: 68.6%) and progression-free survival (HR: 0.49; 95% CI: 0.33-0.73; I2: 81.1%). High expressers were more likely to have a BRAF mutation. Therapeutic regimen and the mutational status significantly affected the observed associations. Conclusion: We identified that high miR-31 expression is associated with poor overall survival and progression-free survival and has a significant predictive value for anti-EGFR response.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition & Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology & Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ajay Goel
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
50
|
Zhi L, Zhao J, Zhao H, Qing Z, Liu H, Ma J. Downregulation of LncRNA OIP5-AS1 Induced by IL-1β Aggravates Osteoarthritis via Regulating miR-29b-3p/PGRN. Cartilage 2021; 13:1345S-1355S. [PMID: 32037864 PMCID: PMC8804817 DOI: 10.1177/1947603519900801] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) is an oncogenic lncRNA; however, its role in osteoarthritis (OA) pathology still remains unknown. MATERIALS AND METHODS qRT-PCR was performed to measure the expressions of OIP5-AS1, miR-29b-3p and progranulin (PGRN) mRNA in OA cartilage tissues and normal cartilage tissues. Chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to induce the inflammatory response. Overexpression plasmids, microRNA mimics, microRNA inhibitors and small interfering RNAs were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 assay was used for determining the cell viability and Transwell assay was used for monitoring cell migration. Western blot was applied to measure the expressions of apoptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. StarBase and TargetScan were used to predict the binding sites between OIP5-AS1 and miR-29b-3p, miR-29b-3p and 3'-UTR of PGRN respectively, which were verified by dual luciferase reporter assay. RESULTS OIP5-AS1 and PGRN mRNA were downregulated while miR-29b-3p was upregulated in OA tissues and models. The up-regulated OIP5-AS1 facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while ameliorated the apoptosis and inflammatory response. However, miR-29b-3p had opposite effects. PGRN was identified as a target gene of miR-29b-3p, which could be indirectly suppressed by OIP5-AS1 knockdown. CONCLUSION Downregulation of OIP5-AS1 induced by IL-1β could inhibit the proliferation and migration abilities of CHON-001 and ATDC5 cells and facilitate the apoptosis and inflammation response via regulating miR-29b-3p/PGRN axis.
Collapse
Affiliation(s)
- Liqiang Zhi
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianwu Zhao
- Department of Microsurgery, Yulin First
Hospital, Second Affiliated Hospital of Yan-an University, Yulin, Shaanxi,
China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery,
Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhong Qing
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongliang Liu
- Department of Trauma Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Jianbing Ma, Department of Joint Surgery,
Honghui Hospital, Xi’an Jiaotong University, Youyi East Road No. 555, Xi’an,
Shaanxi 710054, China.
| |
Collapse
|