1
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Yue M, Luan R, Ding D, Wang Y, Xue Q, Yang J. Identification and validation of biomarkers related to ferroptosis in idiopathic pulmonary fibrosis. Sci Rep 2025; 15:8622. [PMID: 40075162 PMCID: PMC11904244 DOI: 10.1038/s41598-025-93217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a kind of interstitial lung disease (ILD). It has a high incidence rate and mortality. Its pathogenesis remains unclear. So far, no effective methods have been found for the early diagnosis of IPF. Ferroptosis has been reported to be critical in the initiation and progression of IPF. Therefore, our aim was to identify the hub gene related to ferroptosis co-expressed in the peripheral blood and pulmonary tissue of patients with IPF. Sequencing data were obtained from the Gene Expression Omnibus database. A comprehensive analysis was conducted on the differentially expressed genes (DEGs) to extract ferroptosis-related differentially expressed genes (FRDEGs). The results showed that ferroptosis-related signal paths were highly enriched in IPF, and 10 FRDEGs were identified.The hub gene was predicted through protein-protein interactions (PPI) and Cytoscape. The diagnostic utility of the hub gene was proven by enzyme-linked immunosorbent assay (ELISA) in serum and by immunohistochemistry (IHC) in pulmonary tissues. The results of ELISA indicated that the levels of ATM in the serum of patients with IPF were significantly lower than the normal levels. In contrast, the results of IHC showed that the expression of ATM in the pulmonary tissues of IPF patients exhibited a notably elevated trend. The immune status was assessed by the CIBERSORT method and so was the relevance between ATM and immune cells. These findings unveiled significant differences in various immune cell types in peripheral blood and pulmonary tissue between the IPF group and the control group. Furthermore, ATM was associated with various immune cells. This study suggests that as a ferroptosis-related gene, ATM assumes a pivotal role in the diagnosis and treatment of IPF. This discovery presents a novel approach for the clinical diagnosis and therapy of IPF.
Collapse
Affiliation(s)
- Ming Yue
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, Shandong First Medical University Affiliated Provincial Hospital, Jinan, China
| | - Dongyan Ding
- Department of Respiratory Medicine, The 958 Hospital of Chinese PLA/Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuhong Wang
- Department of Respiratory Medicine, Jilin Central General Hospital, Jilin, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China.
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Chen W, Feng H, Mo Y, Pan Z, Ji S, Liang H, Shen XC, Jiang BP. Hyaluronic acid-functionalized ruthenium photothermal nanoenzyme for enhancing osteosarcoma chemotherapy: Cascade targeting and bidirectional modulation of drug resistance. Carbohydr Polym 2025; 349:122945. [PMID: 39643406 DOI: 10.1016/j.carbpol.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
Insufficient drug delivery efficiency in vivo and robust drug resistance are two major factors to induce suboptimal efficacy in chemotherapy of osteosarcoma (OS). To address these challenges, we developed polysaccharide hyaluronic acid (HA)-functionalized ruthenium nanoaggregates (Ru NAs) to enhance the chemotherapy of doxorubicin (DOX) for OS. These NAs, comprising Ru nanoparticles (NPs) and alendronate-modified HA (HA-ALN), effectively load DOX, resulting in DOX@Ru-HA-ALN NAs. The combination of HA and ALN in NAs ensures outstanding cascade targeting towards tumor-invaded bone tissues and CD44-overexpressing tumor cells, maximizing therapeutic efficacy while minimizing off-target effects. Concurrently, the Ru NPs in NAs function as "smart" photoenzymatic agent to not only in situ relieve hypoxia of OS via the catalysis of overexpressed H2O2 to produce O2, but also generate mild photothermal effect under 808-nm laser irradiation. They can bidirectionally overcome drug resistance of DOX via downregulation of resistance-related factors including multi-drug resistant associate protein, P-glycoprotein, heat shock factor 1, etc. The integration of cascade targeting with bidirectional modulation of drug resistance positions Ru-HA-ALN NAs to substantially enhance DOX chemotherapy for OS. Therefore, the present work highlights the potential of polysaccharide-functionalized nanomaterials in advancing tumor chemotherapy by addressing challenges of both delivery efficiency and drug resistance.
Collapse
Affiliation(s)
- Weifeng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Hao Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yinyin Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Zhihui Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
5
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
6
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Stuart A, de Lange T. Replicative senescence is ATM driven, reversible, and accelerated by hyperactivation of ATM at normoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600514. [PMID: 38979390 PMCID: PMC11230194 DOI: 10.1101/2024.06.24.600514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed telomere shortening limits tumorigenesis through the induction of replicative senescence. Here we address three long-standing questions concerning senescence. First, we show that the ATM kinase is solely responsible for the induction of replicative senescence. Senescence was delayed by ATM inhibition (ATMi) or overexpression of TRF2, the shelterin subunit dedicated to ATM repression. In contrast, there was no evidence for ATR signaling contributing to replicative senescence even when ATMi was combined with ATR inhibition. Second, we show ATMi can induce apparently normal cell divisions in a subset of senescent cells, indicating that senescence can be reversed. Third, we show that the extended replicative life span at low (physiological) oxygen is due to diminished ATM activity. At low oxygen, cells show a decreased ATM response to dysfunctional telomeres and genome-wide DSBs compared to 20% oxygen. As this effect could be reversed by NAC, the attenuated response of ATM to critically short telomeres and the resulting extended life span at low oxygen is likely due to ROS-induced formation of cysteine disulfide-bridges that crosslink ATM dimers into a form that is not activated by DSBs. These findings show how primary human cells detect shortened telomeres and reveal the molecular mechanism underlying the telomere tumor suppressor pathway.
Collapse
Affiliation(s)
- Alexander Stuart
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
8
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
9
|
Takashima M, Nagaya M, Takamura Y, Inatani M, Oki M. HIF-1 inhibition reverses opacity in a rat model of galactose-induced cataract. PLoS One 2024; 19:e0299145. [PMID: 38416732 PMCID: PMC10901314 DOI: 10.1371/journal.pone.0299145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
Cataract is an eye disease, in which the lens becomes opaque, causing vision loss and blindness. The detailed mechanism of cataract development has not been characterized, and effective drug therapies remain unavailable. Here, we investigated the effects of Hypoxia-inducible factor 1 (HIF-1) inhibitors using an ex vivo model, in which rat lenses were cultured in galactose-containing medium to induce opacity formation. We found that treatment with the HIF-1 inhibitors 2-Methoxyestradiol (2ME2), YC-1, and Bavachinin decreased lens opacity. Microarray analysis on 2ME2-treated samples, in which opacity was decreased, identified genes upregulated by galactose and downregulated by inhibitor treatment. Subsequent STRING analysis on genes that showed expression change by RT-qPCR identified two clusters. First cluster related to the cytoskeleton and epithelial-mesenchymal transition (EMT). Second cluster related to the oxidative stress, and apoptosis. ACTA2, a known marker for EMT, and TXNIP, a suppressor of cell proliferation and activator of apoptosis, were present in each cluster. Thus, suppression of EMT and apoptosis, as well as activation of cell proliferation, appear to underlie the decrease in lens opacity.
Collapse
Affiliation(s)
- Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
10
|
Kim LC, Lesner NP, Simon MC. Cancer Metabolism under Limiting Oxygen Conditions. Cold Spring Harb Perspect Med 2024; 14:a041542. [PMID: 37848248 PMCID: PMC10835619 DOI: 10.1101/cshperspect.a041542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Molecular oxygen (O2) is essential for cellular bioenergetics and numerous biochemical reactions necessary for life. Solid tumors outgrow the native blood supply and diffusion limits of O2, and therefore must engage hypoxia response pathways that evolved to withstand acute periods of low O2 Hypoxia activates coordinated gene expression programs, primarily through hypoxia inducible factors (HIFs), to support survival. Many of these changes involve metabolic rewiring such as increasing glycolysis to support ATP generation while suppressing mitochondrial metabolism. Since low O2 is often coupled with nutrient stress in the tumor microenvironment, other responses to hypoxia include activation of nutrient uptake pathways, metabolite scavenging, and regulation of stress and growth signaling cascades. Continued development of models that better recapitulate tumors and their microenvironments will lead to greater understanding of oxygen-dependent metabolic reprogramming and lead to more effective cancer therapies.
Collapse
Affiliation(s)
- Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
11
|
Yamahara K, Yasuda-Yamahara M, Kuwagata S, Chin-Kanasaki M, Kume S. Ketone Body Metabolism in Diabetic Kidney Disease. KIDNEY360 2024; 5:320-326. [PMID: 38227425 PMCID: PMC10914200 DOI: 10.34067/kid.0000000000000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Ketone bodies have a negative image because of ketoacidosis, one of the acute and serious complications in diabetes. The negative image persists despite the fact that ketone bodies are physiologically produced in the liver and serve as an indispensable energy source in extrahepatic organs, particularly during long-term fasting. However, accumulating experimental evidence suggests that ketone bodies exert various health benefits. Particularly in the field of aging research, there is growing interest in the potential organoprotective effects of ketone bodies. In addition, ketone bodies have a potential role in preventing kidney diseases, including diabetic kidney disease (DKD), a diabetic complication caused by prolonged hyperglycemia that leads to a decline in kidney function. Ketone bodies may help alleviate the renal burden from hyperglycemia by being used as an alternative energy source in patients with diabetes. Furthermore, ketone body production may reduce inflammation and delay the progression of several kidney diseases in addition to DKD. Although there is still insufficient research on the use of ketone bodies as a treatment and their effects, their renoprotective effects are being gradually proven. This review outlines the ketone body-mediated renoprotective effects in DKD and other kidney diseases.
Collapse
Affiliation(s)
- Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|
12
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Zhou X, Liu X, Wan X, Xu M, Wang R, Yang D, Peng M, Jin T, Tang R, Liu M, Hou Y. Oxidized ATM governs stemness of breast cancer stem cell through regulating ubiquitylation and acetylation switch. Biochem Biophys Res Commun 2024; 691:149243. [PMID: 38016338 DOI: 10.1016/j.bbrc.2023.149243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer stem cells (CSCs), as parts of tumor initiation cells, play a crucial role to tumorigenesis, development and recurrence. However, the complicated mechanisms of CSCs to adapt to tumor microenvironment and its stemness maintenance remains unclear. Here, we show that oxidized ATM, a hypoxia-activated cytoplasm ATM, acts a novel function to maintain CSC stemness in triple-negative breast cancer cells (BCSCs) via regulating histone H4 acetylation. Mechanistically, oxidized ATM phosphorylates TRIM21 (a E3 ubiquitin ligase) serine 80 and serine 469. Serine 80 phosphorylation of TRIM21 is essential for the ubiquitination activity of TRIM21. TRIM21 binds with SIRT1 (one of deacetylase), resulting in ubiquitylation-mediated degradation of SIRT1. The reduced SIRT1 leads to increase of histone H4 acetylation, thus facilitating CSC-related gene expression. Clinical data verify that high level of ATM in breast tumors is positively correlated with malignant grade, and is closely related with low SIRT1, high p-TRIM21, and high CD44 expression. In conclusion, our study provides a novel mechanism by which oxidized ATM governing BCSCs stemness and reveals an important link among oxidized ATM, histone acetylation, and BCSCs maintenance.
Collapse
Affiliation(s)
- Xinyue Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqi Liu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Xu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Jin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
15
|
Minisini M, Cricchi E, Brancolini C. Acetylation and Phosphorylation in the Regulation of Hypoxia-Inducible Factor Activities: Additional Options to Modulate Adaptations to Changes in Oxygen Levels. Life (Basel) 2023; 14:20. [PMID: 38276269 PMCID: PMC10821055 DOI: 10.3390/life14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
O2 is essential for the life of eukaryotic cells. The ability to sense oxygen availability and initiate a response to adapt the cell to changes in O2 levels is a fundamental achievement of evolution. The key switch for adaptation consists of the transcription factors HIF1A, HIF2A and HIF3A. Their levels are tightly controlled by O2 through the involvement of the oxygen-dependent prolyl hydroxylase domain-containing enzymes (PHDs/EGNLs), the von Hippel-Lindau tumour suppressor protein (pVHL) and the ubiquitin-proteasome system. Furthermore, HIF1A and HIF2A are also under the control of additional post-translational modifications (PTMs) that positively or negatively regulate the activities of these transcription factors. This review focuses mainly on two PTMs of HIF1A and HIF2A: phosphorylation and acetylation.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Lab of Epigenomics, Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy; (M.M.); (E.C.)
| |
Collapse
|
16
|
Sherapura A, Siddesh BM, Malojirao VH, Thirusangu P, Avin BRV, Kumari NS, Ramachandra YL, Prabhakar BT. Steroidal alkaloid solanidine impedes hypoxia-driven ATM phosphorylation to switch on anti-angiogenesis in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154981. [PMID: 37531902 DOI: 10.1016/j.phymed.2023.154981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE The declined oxygen tension in the cancer cell leads to the hypoxic adaptive response and favors establishment of tumor micro environment [TEM]. The complex TME consists of interwoven hypoxic HIF-1α and DNA damage repair ATM signaling. The ATM/HIF-1α phosphorylation switch on angiogenesis and abort apoptosis. Targeting this signaling nexus would be a novel therapeutic strategy for the treatment of cancer. BACKGROUND Steroidal alkaloid solanidine is known for varied pharmacological role but with less molecular evidences. Our earlier findings on solanidine proven its anti-neoplastic activity by inducing apoptosis in lung cancer. In continued research, efforts have been made to establish the underlying molecular signaling in induction of DNA damage in prevailing hypoxic TME. METHODS The solanidine induced DNA damage was assessed trough alkali COMET assay; signaling nexus and gene expression profile analysis through IB, qRT-PCR, Gelatin Zymography, IHC, IF and ELISA. Pathophysiological modulations assessed through tube formation, migration, invasion assays. Anti-angiogenic studies through CAM, rat aorta, matrigel assays and corneal neovascularization assay. Anti-tumor activity through in-vivo DLA ascites tumor model and LLC model. RESULTS The results postulates, inhibition of hypoxia driven DDR proteins pATMser1981/pHIF-1αser696 by solanidine induces anti-angiogenesis. Systematic study of both non-tumorigenic and tumorigenic models in-vitro as well as in-vivo experimental system revealed the angio-regression mediated anticancer effect in lung cancer. These effects are due to the impeded expression of angiogenic mediators such as VEGF, MMP2&9 and inflammatory cytokines IL6 and TNFα to induce pathophysiological changes CONCLUSION: The study establishes new role of solanidine by targeting ATM/HIF-1α signaling to induce anti-angiogenesis for the first time. The study highlights the potentiality of plant based phytomedicine solanidine which can targets the multiple hallmarks of cancer by targeting interwoven signaling crosstalk. Such an approach through solanidine necessary to counteract heterogeneous complexity of cancer which could be nearly translated into drug.
Collapse
Affiliation(s)
- Ankith Sherapura
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - B M Siddesh
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - Vikas H Malojirao
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India; Division for DNA Repair Research, Department of Neurosurgery, Centre for Neuroregeneration, Houston Methodist, Fannin Street, Houston, TX, USA
| | - Prabhu Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India; Department of Experidmental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - B R Vijay Avin
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India; Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, 60612, USA
| | - N Suchetha Kumari
- Department of Biochemistry, K.S. Hegde Medical College, Nitte University, Mangalore, India
| | - Y L Ramachandra
- Postgraduate Department of Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, 577 451, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India.
| |
Collapse
|
17
|
Macieja A, Gulbas I, Popławski T. DNA Double-Strand Break Repair Inhibitors: YU238259, A12B4C3 and DDRI-18 Overcome the Cisplatin Resistance in Human Ovarian Cancer Cells, but Not under Hypoxia Conditions. Curr Issues Mol Biol 2023; 45:7915-7932. [PMID: 37886943 PMCID: PMC10605129 DOI: 10.3390/cimb45100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Cisplatin (CDDP) is the cornerstone of standard treatment for ovarian cancer. However, the resistance of ovarian cancer cells to CDDP leads to an inevitable recurrence. One of the strategies to overcome resistance to CDDP is the combined treatment of ovarian cancer with CDDP and etoposide (VP-16), although this strategy is not always effective. This article presents a new approach to sensitize CDDP-resistant human ovarian carcinoma cells to combined treatment with CDDP and VP-16. To replicate the tumor conditions of cancers, we performed analysis under hypoxia conditions. Since CDDP and VP-16 induce DNA double-strand breaks (DSB), we introduce DSB repair inhibitors to the treatment scheme. We used novel HRR and NHEJ inhibitors: YU238259 inhibits the HRR pathway, and DDRI-18 and A12B4C3 act as NHEJ inhibitors. All inhibitors enhanced the therapeutic effect of the CDDP/VP-16 treatment scheme and allowed a decrease in the effective dose of CDDP/VP16. Inhibition of HRR or NHEJ decreased survival and increased DNA damage level, increased the amount of γ-H2AX foci, and caused an increase in apoptotic fraction after treatment with CDDP/VP16. Furthermore, delayed repair of DSBs was detected in HRR- or NHEJ-inhibited cells. This favorable outcome was altered under hypoxia, during which alternation at the transcriptome level of the transcriptome in cells cultured under hypoxia compared to aerobic conditions. These changes suggest that it is likely that other than classical DSB repair systems are activated in cancer cells during hypoxia. Our study suggests that the introduction of DSB inhibitors may improve the effectiveness of commonly used ovarian cancer treatment, and HRR, as well as NHEJ, is an attractive therapeutic target for overcoming the resistance to CDDP resistance of ovarian cancer cells. However, a hypoxia-mediated decrease in response to our scheme of treatment was observed.
Collapse
Affiliation(s)
- Anna Macieja
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland;
| | - Izabela Gulbas
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Tomasz Popławski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland;
| |
Collapse
|
18
|
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med 2023; 55:1933-1944. [PMID: 37653030 PMCID: PMC10545776 DOI: 10.1038/s12276-023-01056-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023] Open
Abstract
Regulated in development and DNA damage-response 1 (REDD1) is a stress-induced protein that controls various cellular functions, including metabolism, oxidative stress, autophagy, and cell fate, and contributes to the pathogenesis of metabolic and inflammatory disorders, neurodegeneration, and cancer. REDD1 usually exerts deleterious effects, including tumorigenesis, metabolic inflammation, neurodegeneration, and muscle dystrophy; however, it also exhibits protective functions by regulating multiple intrinsic cell activities through either an mTORC1-dependent or -independent mechanism. REDD1 typically regulates mTORC1 signaling, NF-κB activation, and cellular pro-oxidant or antioxidant activity by interacting with 14-3-3 proteins, IκBα, and thioredoxin-interacting protein or 75 kDa glucose-regulated protein, respectively. The diverse functions of REDD1 depend on cell type, cellular context, interaction partners, and cellular localization (e.g., mitochondria, endomembrane, or cytosol). Therefore, comprehensively understanding the molecular mechanisms and biological roles of REDD1 under pathophysiological conditions is of utmost importance. In this review, based on the published literature, we highlight and discuss the molecular mechanisms underlying the REDD1 expression and its actions, biological functions, and pathophysiological roles.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
19
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
20
|
Nevler A, Khalilieh S, Lavu H, Bowne W, Yeo CJ. Hypercapnic Tissue Gene Expression and Survival in Early-Stage Pancreatic Ductal Adenocarcinoma. J Am Coll Surg 2023; 236:913-922. [PMID: 36728372 DOI: 10.1097/xcs.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer. Hypercapnic tumor microenvironments were previously shown to promote cancer chemoresistance. In this study, we aimed to investigate the impact of tissue hypercapnia on PDAC prognosis. STUDY DESIGN PDAC cancer-cell lines were cultured in normocapnic (5% CO 2 ) and hypercapnic conditions (10% CO 2 ). RNA was extracted, and whole-exome transcriptome was sequenced. Differentially expressed genes were identified and used to construct a "hypercapnic gene set." PDAC transcriptomic patient data from the Tumor Cancer Genome Atlas was used to calculate single-sample gene set enrichment scores based on each patient's tissue expression of the hypercapnic gene set. Tissue hypercapnic scores (HSs) in PDAC patients (TMN stages Ia-IIb) were determined and correlated with clinicopathological parameters and overall survival. RESULTS A cohort of 135 resected stage I-II PDAC patients were assessed in this study. The average age was 65 ± 11.0 years, and the male:female ratio was 74:61. Median overall survival was 19.5 ± 1.4 months. High HSs were associated with increased tumor stage (p < 0.05) and higher lymph-node ratio (p < 0.05). In active smokers, high HS also correlated with smoking pack-years (p < 0.05). Cox regression analysis revealed high HS to be an independent prognostic factor for overall survival (hazard ratio [HR] 2.66, p = 0.004), along with lymph-node ratio (HR 4.2, p = 0.002) and age at diagnosis (HR 2.63, p = 0.01). CONCLUSIONS The pancreatic tumor microenvironment plays an integral role in tumor aggressiveness, and our previous in vitro data suggest that hypercapnia promotes an aggressive, more resistant phenotype. Herein, we show that in early-stage pancreatic cancer, hypercapnic tissue signatures corresponded with a worse overall survival.
Collapse
Affiliation(s)
- Avinoam Nevler
- From the Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | | | | | | | | |
Collapse
|
21
|
Ceranski AK, Carreño-Gonzalez MJ, Ehlers AC, Colombo MV, Cidre-Aranaz F, Grünewald TGP. Hypoxia and HIFs in Ewing sarcoma: new perspectives on a multi-facetted relationship. Mol Cancer 2023; 22:49. [PMID: 36915100 PMCID: PMC10010019 DOI: 10.1186/s12943-023-01750-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Hypoxia develops during the growth of solid tumors and influences tumoral activity in multiple ways. Low oxygen tension is also present in the bone microenvironment where Ewing sarcoma (EwS) - a highly aggressive pediatric cancer - mainly arises. Hypoxia inducible factor 1 subunit alpha (HIF-1-a) is the principal molecular mediator of the hypoxic response in cancer whereas EWSR1::FLI1 constitutes the oncogenic driver of EwS. Interaction of the two proteins has been shown in EwS. Although a growing body of studies investigated hypoxia and HIFs in EwS, their precise role for EwS pathophysiology is not clarified to date. This review summarizes and structures recent findings demonstrating that hypoxia and HIFs play a role in EwS at multiple levels. We propose to view hypoxia and HIFs as independent protagonists in the story of EwS and give a perspective on their potential clinical relevance as prognostic markers and therapeutic targets in EwS treatment.
Collapse
Affiliation(s)
- A Katharina Ceranski
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martha J Carreño-Gonzalez
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Anna C Ehlers
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Maria Vittoria Colombo
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Via F. Chiesa 5, CH-6500, Bellinzona, Switzerland.,Department of Surgery, Service of Orthopaedics and Traumatology, EOC, Lugano, Switzerland.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Florencia Cidre-Aranaz
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany. .,Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
22
|
Li J, Gong SH, He YL, Cao Y, Chen Y, Huang GH, Wang YF, Zhao M, Cheng X, Zhou YZ, Zhao T, Zhao YQ, Fan M, Wu HT, Zhu LL, Wu LY. Autophagy Is Essential for Neural Stem Cell Proliferation Promoted by Hypoxia. Stem Cells 2023; 41:77-92. [PMID: 36208284 DOI: 10.1093/stmcls/sxac076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/06/2022] [Indexed: 02/02/2023]
Abstract
Hypoxia as a microenvironment or niche stimulates proliferation of neural stem cells (NSCs). However, the underlying mechanisms remain elusive. Autophagy is a protective mechanism by which recycled cellular components and energy are rapidly supplied to the cell under stress. Whether autophagy mediates the proliferation of NSCs under hypoxia and how hypoxia induces autophagy remain unclear. Here, we report that hypoxia facilitates embryonic NSC proliferation through HIF-1/mTORC1 signaling pathway-mediated autophagy. Initially, we found that hypoxia greatly induced autophagy in NSCs, while inhibition of autophagy severely impeded the proliferation of NSCs in hypoxia conditions. Next, we demonstrated that the hypoxia core regulator HIF-1 was necessary and sufficient for autophagy induction in NSCs. Considering that mTORC1 is a key switch that suppresses autophagy, we subsequently analyzed the effect of HIF-1 on mTORC1 activity. Our results showed that the mTORC1 activity was negatively regulated by HIF-1. Finally, we provided evidence that HIF-1 regulated mTORC1 activity via its downstream target gene BNIP3. The increased expression of BNIP3 under hypoxia enhanced autophagy activity and proliferation of NSCs, which was mediated by repressing the activity of mTORC1. We further illustrated that BNIP3 can interact with Rheb, a canonical activator of mTORC1. Thus, we suppose that the interaction of BNIP3 with Rheb reduces the regulation of Rheb toward mTORC1 activity, which relieves the suppression of mTORC1 on autophagy, thereby promoting the rapid proliferation of NSCs. Altogether, this study identified a new HIF-1/BNIP3-Rheb/mTORC1 signaling axis, which regulates the NSC proliferation under hypoxia through induction of autophagy.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sheng-Hui Gong
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yun-Ling He
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yan Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Guang-Hai Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yu-Fei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ming Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Xiang Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yan-Zhao Zhou
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Tong Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yong-Qi Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Hai-Tao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ling-Ling Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Department of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China.,Department of Pharmacology, University of Nanhua, Hengyang, China
| | - Li-Ying Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Liu P, Zhao D, Pan Z, Tang W, Chen H, Hu K. Identification and validation of ferroptosis-related hub genes in obstructive sleep apnea syndrome. Front Neurol 2023; 14:1130378. [PMID: 36937508 PMCID: PMC10018165 DOI: 10.3389/fneur.2023.1130378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Background By 2020, the prevalence of Obstructive Sleep Apnea Syndrome (OSAS) in the US has reached 26. 6-43.2% in men and 8.7-27.8% in women. OSAS promotes hypertension, diabetes, and tumor growth through unknown means. Chronic intermittent hypoxia (CIH), sleep fragmentation, and increased pleural pressure are central mechanisms of OSAS complications. CIH exacerbates ferroptosis, which is closely related to malignancies. The mechanism of ferroptosis in OSAS disease progression remains unknown. Methods OSAS-related datasets (GSE135917 and GSE38792) were obtained from the GEO. Differentially expressed genes (DEGs) were screened using the R software and intersected with the ferroptosis database (FerrDb V2) to get ferroptosis-related DEGs (f-DEGs). GO, DO, KEGG, and GSEA enrichment were performed, a PPI network was constructed and hub genes were screened. The TCGA database was used to obtain the thyroid cancer (THCA) gene expression profile, and hub genes were analyzed for differential and survival analysis. The mechanism was investigated using GSEA and immune infiltration. The hub genes were validated with RT-qPCR, IHC, and other datasets. Sprague-Dawley rats were randomly separated into normoxia and CIH groups. ROS, MDA, and GSH methods were used to detect CIH-induced ferroptosis and oxidative stress. Results GSEA revealed a statistically significant difference in ferroptosis in OSAS (FDR < 0.05). HIF1A, ATM, HSPA5, MAPK8, MAPK14, TLR4, and CREB1 were identified as hub genes among 3,144 DEGs and 74 f-DEGs. HIF1A and ATM were the only two validated genes. F-DEGs were mainly enriched in THCA. HIF1A overexpression in THCA promotes its development. HIF1A is associated with CD8 T cells and macrophages, which may affect the immunological milieu. The result found CIH increased ROS and MDA while lowering GSH indicating that it could cause ferroptosis. In OSAS patients, non-invasive ventilation did not affect HIF1A and ATM expression. Carvedilol, hydralazine, and caffeine may be important in the treatment of OSAS since they suppress HIF1A and ATM. Conclusions Our findings revealed that the genes HIF1A and ATM are highly expressed in OSAS, and can serve as biomarkers and targets for OSAS.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Ke Hu
| |
Collapse
|
24
|
Ray SK, Mukherjee S. Altered Expression of TRIM Proteins - Inimical Outcome and Inimitable Oncogenic Function in Breast Cancer with Diverse Carcinogenic Hallmarks. Curr Mol Med 2023; 23:44-53. [PMID: 35021972 DOI: 10.2174/1566524022666220111122450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
Deregulation of ubiquitin-mediated degradation of oncogene products or tumor suppressors appears to be implicated in the genesis of carcinomas, according to new clinical findings. Conferring to recent research, some members of the tripartite motif (TRIM) proteins (a subfamily of the RING type E3 ubiquitin ligases) act as significant carcinogenesis regulators. Intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis are all regulated by TRIM family proteins, the majority of which have E3 ubiquitin ligase activity. The expression of TRIMs in tumors is likely to be related to the formation and/or progression of the disease, and TRIM expression could be used to predict cancer prognosis. Breast cancer is the most common malignancy in women and also the leading cause of death. TRIM family proteins have unique, vital activities, and their dysregulation, such as TRIM 21, promotes breast cancer, according to growing evidence. Many TRIM proteins have been identified as important cancer biomarkers, with decreased or elevated levels of expression. TRIM29 functions as a hypoxia-induced tumor suppressor gene, revealing a new molecular mechanism for ATM-dependent breast cancer suppression. In breast cancer cells, the TRIM28-TWIST1-EMT axis exists, and TRIM28 enhances breast cancer metastasis by stabilizing TWIST1, and thereby increasing epithelial-tomesenchymal transition. Interestingly, many TRIM proteins are involved in the control of p53, and many TRIM proteins are likewise regulated by p53, according to current research. Furthermore, TRIMs linked to specific tumors may aid in the creation of innovative TRIM-targeted cancer treatments. This review focuses on TRIM proteins that are involved in tumor development, progression, and are of clinical significance in breast cancer.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
25
|
Liu Y, Yu Y, Li S, Sun M, Li F. Comparative transcriptomic analysis of gill reveals genes belonging to mTORC1 signaling pathway associated with the resistance trait of shrimp to VP AHPND. Front Immunol 2023; 14:1150628. [PMID: 37143674 PMCID: PMC10151482 DOI: 10.3389/fimmu.2023.1150628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Selective breeding for acute hepatopancreatic necrosis disease (AHPND) resistant shrimp is an effective way to deal with heavy losses to shrimp aquaculture caused by AHPND. However, knowledge about the molecular mechanism of susceptibility or resistance to AHPND is very limited. We herein performed a comparative transcriptomic analysis of gill tissue between AHPND susceptible and resistant families of the white Pacific shrimp Litopenaeus vannamei during Vibrio parahaemolyticus (VPAHPND) infection. A total of 5,013 genes that were differentially expressed between the two families at 0 and 6 h post-infection, and 1,124 DEGs were shared for both two time points. Both GO and KEGG analyses in each or two time point's comparisons showed DEGs involved in endocytosis, protein synthesis and cell inflammation were significantly enriched. Several immune DEGs including PRRs, antioxidants and AMPs were also identified. The susceptible shrimp showed enhanced endocytosis, higher aminoacyl-tRNA ligase activity and occurrence of inflammatory response, while the resistant shrimp had much more strong ability in ribosome biogenesis, antioxidant activity and pathogen recognition and clearance. These genes and processes were mostly associated with mTORC1 signaling pathway, which could reflect differences in cell growth, metabolism and immune response between the two families. Our findings indicate a close link between mTORC1 signaling-related genes and Vibrio-resistance phenotype of shrimp, and provide new clues for further research on resistance strategy of shrimp to AHPND.
Collapse
Affiliation(s)
- Yuan Liu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Yu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Fuhua Li,
| |
Collapse
|
26
|
Barzilai A, Mitiagin Y. Ataxia-telangiectasia mutated plays an important role in cerebellar integrity and functionality. Neural Regen Res 2023; 18:497-502. [DOI: 10.4103/1673-5374.350194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
He Y, Yu H, Zhang Z, Zhang J, Kang S, Zhang X. Effects of chronic hypoxia on growth performance, antioxidant capacity and protein turnover of largemouth bass (Micropterus salmoides). AQUACULTURE 2022; 561:738673. [DOI: 10.1016/j.aquaculture.2022.738673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022; 12:984525. [PMID: 36338690 PMCID: PMC9634253 DOI: 10.3389/fonc.2022.984525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD), irrespective of their smoking history, are more likely to develop lung cancer than the general population. This is mainly because COPD is characterized by chronic persistent inflammation and hypoxia, which are the risk factors for lung cancer. However, the mechanisms underlying this observation are still unknown. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role in the crosstalk that exists between inflammation and hypoxia. Furthermore, HIF-1α is the main regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic environments. In this review, we discuss the molecular aspects of the crosstalk between hypoxia and inflammation, showing that HIF-1α is an important signaling pathway that drives COPD progression to lung cancer. Here, we also provide an overview of HIF-1α and its principal regulatory mechanisms, briefly describe HIF-1α-targeted therapy in lung cancer, and summarize substances that may be used to target HIF-1α at the level of COPD-induced inflammation.
Collapse
Affiliation(s)
- Yuan-rui Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - An-long Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ya-qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- *Correspondence: Ya-qing Li,
| |
Collapse
|
29
|
Park HJ, Gregory MA, Zaberezhnyy V, Goodspeed A, Jordan CT, Kieft JS, DeGregori J. Therapeutic resistance in acute myeloid leukemia cells is mediated by a novel ATM/mTOR pathway regulating oxidative phosphorylation. eLife 2022; 11:e79940. [PMID: 36259537 PMCID: PMC9645811 DOI: 10.7554/elife.79940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
While leukemic cells are susceptible to various therapeutic insults, residence in the bone marrow microenvironment typically confers protection from a wide range of drugs. Thus, understanding the unique molecular changes elicited by the marrow is of critical importance toward improving therapeutic outcomes. In this study, we demonstrate that aberrant activation of oxidative phosphorylation serves to induce therapeutic resistance in FLT3 mutant human AML cells challenged with FLT3 inhibitor drugs. Importantly, our findings show that AML cells are protected from apoptosis following FLT3 inhibition due to marrow-mediated activation of ATM, which in turn upregulates oxidative phosphorylation via mTOR signaling. mTOR is required for the bone marrow stroma-dependent maintenance of protein translation, with selective polysome enrichment of oxidative phosphorylation transcripts, despite FLT3 inhibition. To investigate the therapeutic significance of this finding, we tested the mTOR inhibitor everolimus in combination with the FLT3 inhibitor quizartinib in primary human AML xenograft models. While marrow resident AML cells were highly resistant to quizartinib alone, the addition of everolimus induced profound reduction in tumor burden and prevented relapse. Taken together, these data provide a novel mechanistic understanding of marrow-based therapeutic resistance and a promising strategy for improved treatment of FLT3 mutant AML patients.
Collapse
Affiliation(s)
- Hae J Park
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Mark A Gregory
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Craig T Jordan
- Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
30
|
Melone V, Salvati A, Palumbo D, Giurato G, Nassa G, Rizzo F, Palo L, Giordano A, Incoronato M, Vitale M, Mian C, Di Biase I, Cristiano S, Narciso V, Cantile M, Di Mauro A, Tatangelo F, Tafuto S, Modica R, Pivonello C, Salvatore M, Colao A, Weisz A, Tarallo R. Identification of functional pathways and molecular signatures in neuroendocrine neoplasms by multi-omics analysis. J Transl Med 2022; 20:306. [PMID: 35794609 PMCID: PMC9258165 DOI: 10.1186/s12967-022-03511-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroendocrine neoplasms (NENs) represent a heterogeneous class of rare tumors with increasing incidence. They are characterized by the ability to secrete peptide hormones and biogenic amines but other reliable biomarkers are lacking, making diagnosis and identification of the primary site very challenging. While in some NENs, such as the pancreatic ones, next generation sequencing technologies allowed the identification of new molecular hallmarks, our knowledge of the molecular profile of NENs from other anatomical sites is still poor. METHODS Starting from the concept that NENs from different organs may be clinically and genetically correlated, we applied a multi-omics approach by combining multigene panel testing, CGH-array, transcriptome and miRNome profiling and computational analyses, with the aim to highlight common molecular and functional signatures of gastroenteropancreatic (GEP)-NENs and medullary thyroid carcinomas (MTCs) that could aid diagnosis, prognosis and therapy. RESULTS By comparing genomic and transcriptional profiles, ATM-dependent signaling emerged among the most significant pathways at multiple levels, involving gene variations and miRNA-mediated regulation, thus representing a novel putative druggable pathway in these cancer types. Moreover, a set of circulating miRNAs was also selected as possible diagnostic/prognostic biomarkers useful for clinical management of NENs. CONCLUSIONS These findings depict a complex molecular and functional landscape of NENs, shedding light on novel therapeutic targets and disease biomarkers to be exploited.
Collapse
Affiliation(s)
- Viola Melone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
- Medical Genomics Program and Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno, Rete Oncologica Campana, 84131, Salerno, Italy
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
- Medical Genomics Program and Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno, Rete Oncologica Campana, 84131, Salerno, Italy
- Genome Research Center for Health, 84081, Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
- Medical Genomics Program and Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno, Rete Oncologica Campana, 84131, Salerno, Italy
- Genome Research Center for Health, 84081, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
- Medical Genomics Program and Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno, Rete Oncologica Campana, 84131, Salerno, Italy
- Genome Research Center for Health, 84081, Baronissi, SA, Italy
| | - Luigi Palo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
| | - Alessandro Giordano
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy
| | | | - Mario Vitale
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Immacolata Di Biase
- MeriGen Diagnostic & c sas, traversa M. Pietravalle 11, 80131, Naples, Italy
| | - Stefano Cristiano
- MeriGen Diagnostic & c sas, traversa M. Pietravalle 11, 80131, Naples, Italy
| | - Viviana Narciso
- MeriGen Diagnostic & c sas, traversa M. Pietravalle 11, 80131, Naples, Italy
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131, Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131, Naples, Italy
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131, Naples, Italy
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131, Naples, Italy
| | - Roberta Modica
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Federico II University, Naples, Italy
| | - Claudia Pivonello
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Federico II University, Naples, Italy
| | - Marco Salvatore
- IRCCS Synlab SDN s.p.a, Via Gianturco 113, 80143, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Federico II University, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy.
- Medical Genomics Program and Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno, Rete Oncologica Campana, 84131, Salerno, Italy.
- Genome Research Center for Health, 84081, Baronissi, SA, Italy.
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende, 84081, Baronissi, SA, Italy.
- Medical Genomics Program and Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno, Rete Oncologica Campana, 84131, Salerno, Italy.
- Genome Research Center for Health, 84081, Baronissi, SA, Italy.
| |
Collapse
|
31
|
Schröder-Heurich B, Büder T, Meyer N, Vu TH, Richter K, Ramachandran D, Brodowski L, von Kaisenberg CS, von Versen-Höynck F. Downregulation of miR-1270 mediates endothelial progenitor cell function in preeclampsia: Role for ATM in the Src/VE-cadherin axis. FASEB J 2022; 36:e22379. [PMID: 35648632 DOI: 10.1096/fj.202200040rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Preeclampsia, a pregnancy-related hypertensive disorder, is associated with endothelial dysfunction and increased cardiovascular risk of the offspring in adulthood. In preeclampsia, endothelial colony-forming cells (ECFC) are reduced in number and function. Recently, we have shown that miR-1270, which is involved in cancer in vitro proliferation, migration, and tumor progression, is downregulated in fetal ECFC from preeclamptic pregnancies. We now hypothesize that miR-1270 dysregulation contributes to vascular endothelial dysfunction occurring after preeclampsia via ATM (ataxia telangiectasia mutated) overexpression, the key kinase of DNA damage repair. Here, we show that miR-1270 silencing in normal ECFC and downregulation in preeclamptic ECFC are accompanied by an increase in the expression levels of ATM. Furthermore, ATM activation correlates with upregulated tyrosine kinase Src leading to phosphorylation and internalization of VE-cadherin (vascular endothelial-cadherin) which subsequently compromises endothelial barrier permeability and morphodynamic cell parameters. Treatment with specific ATM inhibitors reveals a novel role of ATM upstream of tyrosine kinase Src activation. Subsequently, Src phosphorylation and internalization of VE-cadherin compromise endothelial barrier permeability. Our findings suggest that downregulation of miR-1270 contributes to impaired ECFC function via the associated ATM overexpression, which further identifies ATM as a novel and critical factor for ECFC defects in preeclampsia. Our study provides new insights into the understanding of ECFC impairment associated with cardiovascular risk in preeclamptic offspring and identifies potential novel therapeutic targets.
Collapse
Affiliation(s)
| | - Tim Büder
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nadia Meyer
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Thu Huong Vu
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Katja Richter
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Lars Brodowski
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | | | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Jaskiewicz M, Moszynska A, Serocki M, Króliczewski J, Bartoszewska S, Collawn JF, Bartoszewski R. Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia. EXCLI JOURNAL 2022; 21:454-469. [PMID: 35391921 PMCID: PMC8983852 DOI: 10.17179/excli2021-4622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression. Two of the three HIFs isoforms present in mammals, HIF-1 and HIF-2, are well characterized and have overlapping functions that promote cell survival, whereas HIF-3's role remains less clear. The HIF-3 response is complicated because the HIF3A gene can utilize different promotors and alternate splicing sites that result in a number of different HIF-3α isoforms. Here, using human umbilical vein endothelial cells (HUVECs), we demonstrate that one of the isoforms of HIF-3α, isoform 2 (HIF-3α2) accumulates at a late stage of hypoxia and induces the expression of DNA damage inducible transcript 3 (DDIT4), a gene known to promote apoptosis. We also demonstrate that caspase 3/7 activity is elevated, supporting that the role of the HIF-3α2 isoform is to promote apoptosis. Furthermore, we provide evidence that HIF-3α2 is also expressed in seven other primary endothelial cell types, suggesting that this may be a common feature of HIF-3α2 in endothelial cells.
Collapse
Affiliation(s)
- Maciej Jaskiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Moszynska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA, Birmingham, AL 35233
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
33
|
Huan J, Grivas P, Birch J, Hansel DE. Emerging Roles for Mammalian Target of Rapamycin (mTOR) Complexes in Bladder Cancer Progression and Therapy. Cancers (Basel) 2022; 14:1555. [PMID: 35326708 PMCID: PMC8946148 DOI: 10.3390/cancers14061555] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates important cellular functions. Aberrant activation of this pathway, either through upstream activation by growth factors, loss of inhibitory controls, or molecular alterations, can enhance cancer growth and progression. Bladder cancer shows high levels of mTOR activity in approximately 70% of urothelial carcinomas, suggesting a key role for this pathway in this cancer. mTOR signaling initiates through upstream activation of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) and results in activation of either mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2). While these complexes share several key protein components, unique differences in their complex composition dramatically alter the function and downstream cellular targets of mTOR activity. While significant work has gone into analysis of molecular alterations of the mTOR pathway in bladder cancer, this has not yielded significant benefit in mTOR-targeted therapy approaches in urothelial carcinoma to date. New discoveries regarding signaling convergence onto mTOR complexes in bladder cancer could yield unique insights the biology and targeting of this aggressive disease. In this review, we highlight the functional significance of mTOR signaling in urothelial carcinoma and its potential impact on future therapy implications.
Collapse
Affiliation(s)
- Jianya Huan
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA 98195, USA;
| | - Jasmine Birch
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| |
Collapse
|
34
|
HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat Commun 2022; 13:316. [PMID: 35031618 PMCID: PMC8760265 DOI: 10.1038/s41467-021-27944-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30–60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that modulates target gene expression in response to changes in oxygen availability. Here the authors show that HIF-1 forms a complex with TRIM28 and DNA-dependent protein kinase (DNA-PK) that phosphorylates TRIM28. This leads to CDK9 recruitment, which stimulates RNA polymerase II (RNAPII) pause release and transcriptional elongation.
Collapse
|
35
|
Watts D, Jaykar MT, Bechmann N, Wielockx B. Hypoxia signaling pathway: A central mediator in endocrine tumors. Front Endocrinol (Lausanne) 2022; 13:1103075. [PMID: 36699028 PMCID: PMC9868855 DOI: 10.3389/fendo.2022.1103075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Adequate oxygen levels are essential for the functioning and maintenance of biological processes in virtually every cell, albeit based on specific need. Thus, any change in oxygen pressure leads to modulated activation of the hypoxia pathway, which affects numerous physiological and pathological processes, including hematopoiesis, inflammation, and tumor development. The Hypoxia Inducible Factors (HIFs) are essential transcription factors and the driving force of the hypoxia pathway; whereas, their inhibitors, HIF prolyl hydroxylase domain (PHDs) proteins are the true oxygen sensors that critically regulate this response. Recently, we and others have described the central role of the PHD/HIF axis in various compartments of the adrenal gland and its potential influence in associated tumors, including pheochromocytomas and paragangliomas. Here, we provide an overview of the most recent findings on the hypoxia signaling pathway in vivo, including its role in the endocrine system, especially in adrenal tumors.
Collapse
|
36
|
Yang W, Yin Y, Bi L, Wang Y, Yao J, Xu L, Jiao L. MiR-182-5p promotes the Metastasis and Epithelial-mesenchymal Transition in Non-small Cell Lung Cancer by Targeting EPAS1. J Cancer 2021; 12:7120-7129. [PMID: 34729113 PMCID: PMC8558643 DOI: 10.7150/jca.60419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/21/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Dysregulation of microRNAs (miRNAs) is associated with the pathogenesis of non-small cell lung cancer (NSCLC). However, the mechanisms through which miR-182-5p regulate NSCLC progression have not been established. This study aimed at evaluating the expression levels of miR-182-5p in human NSCLC and its function in lung cancer cells. Endothelial PAS Domain-containing protein 1 (EPAS1; also referred to as hypoxia-inducing factor 2A, HIF-2α) is a transcription factor that is responsible for induction of genes related to cell survival under hypoxia conditions. Hypoxia, an inherent feature of solid tumors, is associated with aggressive phenotypes, as well as resistance to radiotherapy and chemotherapy, which predict metastasis and poor prognosis. Methods: The Cancer Genome Atlas (TCGA) dataset was used to investigate the association between miR-182-5p expression and clinicopathological characteristics as well as prognosis of NSCLC patients. Target genes of miR-182-5p were identified using the PITA, miRmap, microT, miRanda, PicTar, and TargetScan prediction tools. Transwell assays were performed to determine the potential functions of miR-182-5p in lung cancer cells. Luciferase reporter assays were performed to analyze regulation of the putative target of miR-182-5p while western blot assays were used to validate the luciferase results. Results: miR-182-5p was found to be upregulated in NSCLC tissues and acted as an independent prognostic factor for tumor recurrence in NSCLC patients. Functionally, overexpression of miR-182-5p promoted lung cancer cell migration and invasion. Genome-wide gene expression analysis and luciferase report assays revealed that EPAS1 is a direct target of miR-182-5p. EPAS1 was negatively correlated with miR-182-5p expression in NSCLC tissues. Univariate and multivariate survival analyses identified EPAS1 as an independent prognostic factor for overall survival (OS) in NSCLC. Conclusions: These findings imply that miR-182-5p promotes NSCLC progression by targeting EPAS1 and is, therefore, a potential indicator of tumor recurrence in NSCLC patients.
Collapse
Affiliation(s)
- Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinan Yin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Likhatcheva M, Gieling RG, Brown JAL, Demonacos C, Williams KJ. A Novel Mechanism of Ataxia Telangiectasia Mutated Mediated Regulation of Chromatin Remodeling in Hypoxic Conditions. Front Cell Dev Biol 2021; 9:720194. [PMID: 34621741 PMCID: PMC8491615 DOI: 10.3389/fcell.2021.720194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
The effects of genotoxic stress can be mediated by activation of the Ataxia Telangiectasia Mutated (ATM) kinase, under both DNA damage-dependent (including ionizing radiation), and independent (including hypoxic stress) conditions. ATM activation is complex, and primarily mediated by the lysine acetyltransferase Tip60. Epigenetic changes can regulate this Tip60-dependent activation of ATM, requiring the interaction of Tip60 with tri-methylated histone 3 lysine 9 (H3K9me3). Under hypoxic stress, the role of Tip60 in DNA damage-independent ATM activation is unknown. However, epigenetic changes dependent on the methyltransferase Suv39H1, which generates H3K9me3, have been implicated. Our results demonstrate severe hypoxic stress (0.1% oxygen) caused ATM auto-phosphorylation and activation (pS1981), H3K9me3, and elevated both Suv39H1 and Tip60 protein levels in FTC133 and HCT116 cell lines. Exploring the mechanism of ATM activation under these hypoxic conditions, siRNA-mediated Suv39H1 depletion prevented H3K9me3 induction, and Tip60 inhibition (by TH1834) blocked ATM auto-phosphorylation. While MDM2 (Mouse double minute 2) can target Suv39H1 for degradation, it can be blocked by sirtuin-1 (Sirt1). Under severe hypoxia MDM2 protein levels were unchanged, and Sirt1 levels depleted. SiRNA-mediated depletion of MDM2 revealed MDM2 dependent regulation of Suv39H1 protein stability under these conditions. We describe a novel molecular circuit regulating the heterochromatic state (H3K9me3 positive) under severe hypoxic conditions, showing that severe hypoxia-induced ATM activation maintains H3K9me3 levels by downregulating MDM2 and preventing MDM2-mediated degradation of Suv39H1. This novel mechanism is a potential anti-cancer therapeutic opportunity, which if exploited could target the hypoxic tumor cells known to drive both tumor progression and treatment resistance.
Collapse
Affiliation(s)
- Maria Likhatcheva
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| | - Roben G Gieling
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom.,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - James A L Brown
- Department of Biological Science, University of Limerick, Limerick, Ireland.,Discipline of Biochemistry, Centre for Chromosome Biology, School of Science, National University of Ireland Galway, Galway, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Constantinos Demonacos
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
AMPK-mTOR Signaling and Cellular Adaptations in Hypoxia. Int J Mol Sci 2021; 22:ijms22189765. [PMID: 34575924 PMCID: PMC8465282 DOI: 10.3390/ijms22189765] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular energy is primarily provided by the oxidative degradation of nutrients coupled with mitochondrial respiration, in which oxygen participates in the mitochondrial electron transport chain to enable electron flow through the chain complex (I-IV), leading to ATP production. Therefore, oxygen supply is an indispensable chapter in intracellular bioenergetics. In mammals, oxygen is delivered by the bloodstream. Accordingly, the decrease in cellular oxygen level (hypoxia) is accompanied by nutrient starvation, thereby integrating hypoxic signaling and nutrient signaling at the cellular level. Importantly, hypoxia profoundly affects cellular metabolism and many relevant physiological reactions induce cellular adaptations of hypoxia-inducible gene expression, metabolism, reactive oxygen species, and autophagy. Here, we introduce the current knowledge of hypoxia signaling with two-well known cellular energy and nutrient sensing pathways, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1). Additionally, the molecular crosstalk between hypoxic signaling and AMPK/mTOR pathways in various hypoxic cellular adaptions is discussed.
Collapse
|
39
|
Xie J, Kong X, Wang W, Li Y, Lin M, Li H, Chen J, Zhou W, He J, Wu H. Vasculogenic Mimicry Formation Predicts Tumor Progression in Oligodendroglioma. Pathol Oncol Res 2021; 27:1609844. [PMID: 34483751 PMCID: PMC8408314 DOI: 10.3389/pore.2021.1609844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Vasculogenic mimicry (VM) has been identified as an important vasculogenic mechanism in malignant tumors, but little is known about its clinical meanings and mechanisms in oligodendroglioma. In this study, VM-positive cases were detected in 28 (20.6%) out of 136 oligodendroglioma samples, significantly associated with higher WHO grade, lower Karnofsky performance status (KPS) scores, and recurrent tumor (p < 0.001, p = 0.040, and p = 0.020 respectively). Patients with VM-positive oligodendroglioma had a shorter progress-free survival (PFS) compared with those with VM-negative tumor (p < 0.001), whereas no significant difference was detected in overall survival (OS) between these patients. High levels of phosphorylate serine/threonine kinases Ataxia-telangiectasia mutated (pATM) and phosphorylate Ataxia-telangiectasia and Rad3-Related (pATR) were detected in 31 (22.8%) and 34 (25.0%), respectively out of 136 oligodendroglioma samples. Higher expressions of pATM and pATR were both associated with a shorter PFS (p < 0.001 and p < 0.001). VM-positive oligodendroglioma specimens tended to exhibit higher pATM and pATR staining than VM-negative specimens (rs = 0.435, p < 0.001 and rs = 0.317, p < 0.001). Besides, Hypoxia-inducible factor-1α (HIF1α) expression was detected in 14(10.3%) samples, correlated with higher WHO grade and non-frontal lobe (p = 0.010 and p = 0.029). However, no obvious connection was detected between HIF1α expression and VM formation (p = 0.537). Finally, either univariate or multivariate analysis suggested that VM was an independent unfavorable predictor for oligodendroglioma patients (p < 0.001, HR = 7.928, 95%CI: 3.382-18.584, and p = 0.007, HR = 4.534, 95%CI: 1.504-13.675, respectively). VM is a potential prognosticator for tumor progression in oligodendroglioma patients. Phosphorylation of ATM and ATR linked to treatment-resistance may be associated with VM formation. The role of VM in tumor progression and the implication of pATM/pATR in VM formation may provide potential therapeutic targets for oligodendroglioma treatment.
Collapse
Affiliation(s)
- Jing Xie
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Kong
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuan Li
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyu Lin
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Heng Li
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Chen
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie He
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
40
|
Mu H, Yu G, Li H, Wang M, Cui Y, Zhang T, Song T, Liu C. Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation. Cell Oncol (Dordr) 2021; 44:1151-1166. [PMID: 34339013 DOI: 10.1007/s13402-021-00625-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) has emerged as a leading cause of cancer-related deaths globally, in which hypoxia and activated hypoxia-inducible factors (HIFs) play important roles. The sibling rivalry between HIF-1α and HIF-2α in hypoxic tumor growth and progression still remains to be resolved, including in HCC. In this study, we aimed to analyze the mechanism by which HIF-1α and HIF-2α balance the proliferative response of HCC cells to hypoxia. METHODS The expression of HIF-1α, HIF-2α, c-MYC, Rictor and Raptor in corresponding tumor and non-tumor tissues from twenty-six patients with HCC was analyzed. The relationships between HIF-1α and HIF-2α and their respective effects were evaluated further in vitro in hypoxic HCC cells using co-immunoprecipitation, chromatin immunoprecipitation, in situ proximity ligation, annexin V-FITC/PI staining apoptosis and MTT assay. In addition, short hairpin RNA (shRNA) transfections targeting HIF-1α/2α and Rictor and Western blotting were applied in HCC cells to study the underlying mechanism. RESULTS We found that HIF-2α expression showed a positive correlation with c-MYC expression in tumor tissues, whereas HIF-1α did not. In vitro, increased HCC cell proliferation and an increased interaction between HIF-2α and c-MYC were observed under mild chronic hypoxic conditions. Although mild hypoxia led to HIF-1α, HIF-2α and c-MYC up-regulation, we found that mTORC2-regulated HIF-2α competed with HIF-1α to bind to c-MYC. Moreover, we found that HIF-2α knockdown decreased the expression of downstream c-MYC, suppressed hypoxic cell proliferation, and induced HCC cell apoptosis, whereas HIF-1α knockdown did not. Additionally, we found that the PI3K inhibitor apitolisib counteracted the effect of HIF-2α, thereby inducing HCC cell apoptosis. CONCLUSIONS Our data highlight a role of HIF-2α in activating and binding c-MYC, thereby inducing HCC cell proliferation during mild chronic hypoxia. The PI3K/mTORC2/HIF-2α/c-MYC axis may play a key role in this process. The PI3K inhibitor apitolisib may serve as a potential treatment option for patients suffering from HCC, especially in cases with rapidly growing tumors under mild chronic hypoxic conditions.
Collapse
Affiliation(s)
- Han Mu
- Department of Hepatobiliary Surgery, Liver Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ge Yu
- Department of Hepatobiliary Surgery, Liver Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Huikai Li
- Department of Hepatobiliary Surgery, Liver Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Mengmeng Wang
- Department of Medicine II, University Hospital, University of Munich, Munich, 80333, Germany
| | - Yunlong Cui
- Department of Hepatobiliary Surgery, Liver Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ti Zhang
- Department of Hepatobiliary Surgery, Liver Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Tianqiang Song
- Department of Hepatobiliary Surgery, Liver Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Changfu Liu
- Department of Interventional Treatment, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
41
|
Casillas AL, Chauhan SS, Toth RK, Sainz AG, Clements AN, Jensen CC, Langlais PR, Miranti CK, Cress AE, Warfel NA. Direct phosphorylation and stabilization of HIF-1α by PIM1 kinase drives angiogenesis in solid tumors. Oncogene 2021; 40:5142-5152. [PMID: 34211090 PMCID: PMC8364516 DOI: 10.1038/s41388-021-01915-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Angiogenesis is essential for the sustained growth of solid tumors. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of angiogenesis and constitutive activation of HIF-1 is frequently observed in human cancers. Therefore, understanding the mechanisms governing the activation of HIF-1 is critical for successful therapeutic targeting of tumor angiogenesis. Herein, we establish a new regulatory mechanism responsible for the constitutive activation of HIF-1α in cancer, irrespective of oxygen tension. PIM1 kinase directly phosphorylates HIF-1α at threonine 455, a previously uncharacterized site within its oxygen-dependent degradation domain. This phosphorylation event disrupts the ability of prolyl hydroxylases to bind and hydroxylate HIF-1α, interrupting its canonical degradation pathway and promoting constitutive transcription of HIF-1 target genes. Moreover, phosphorylation of the analogous site in HIF-2α (S435) stabilizes the protein through the same mechanism, indicating post-translational modification within the oxygen-dependent degradation domain as a mechanism of regulating the HIF-α subunits. In vitro and in vivo models demonstrate that expression of PIM1 is sufficient to stabilize HIF-1α and HIF-2α in normoxia and stimulate angiogenesis in a HIF-1-dependent manner. CRISPR mutants of HIF-1α (Thr455D) promoted increased tumor growth, proliferation, and angiogenesis. Moreover, HIF-1α-T455D xenograft tumors were refractory to the anti-angiogenic and cytotoxic effects of PIM inhibitors. These data identify a new signaling axis responsible for hypoxia-independent activation of HIF-1 and expand our understanding of the tumorigenic role of PIM1 in solid tumors.
Collapse
Affiliation(s)
- Andrea L Casillas
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | | | - Rachel K Toth
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Alva G Sainz
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amber N Clements
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Corbin C Jensen
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Cindy K Miranti
- The University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Anne E Cress
- The University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Noel A Warfel
- The University of Arizona Cancer Center, Tucson, AZ, USA.
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
42
|
Wozny AS, Gauthier A, Alphonse G, Malésys C, Varoclier V, Beuve M, Brichart-Vernos D, Magné N, Vial N, Ardail D, Nakajima T, Rodriguez-Lafrasse C. Involvement of HIF-1α in the Detection, Signaling, and Repair of DNA Double-Strand Breaks after Photon and Carbon-Ion Irradiation. Cancers (Basel) 2021; 13:cancers13153833. [PMID: 34359734 PMCID: PMC8345054 DOI: 10.3390/cancers13153833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Hypoxia-Inducible Factor 1α (HIF-1α), the main regulator of the oxygen homeostasis, promotes cancer cell survival through proliferation, angiogenesis, metastasis and radioresistance. Previously, our group demonstrated that silencing HIF-1α under hypoxia leads to a substantial radiosensitization of Head-and-Neck Squamous Cell Carcinoma (HNSCC) cells after both photons and carbon-ions, probably resulting from an accumulation of deleterious complex DNA damage. In this study, we aimed at determining the potential role of HIF-1α in the detection, signaling, and repair of DNA Double-Strand-Breaks (DSBs) in response to both irradiations, under hypoxia, in two HNSCC cell lines and their subpopulations of Cancer-Stem Cells (CSCs). Silencing HIF-1α under hypoxia led us to demonstrate the involvement of this transcriptional regulator in DSB repair in non-CSCS and CSC, thus highlighting its targeting together with radiation as a promising therapeutic strategy against radioresistant tumor cells in hypoxic niches. Abstract Hypoxia-Inducible Factor 1α (HIF-1α), which promotes cancer cell survival, is the main regulator of oxygen homeostasis. Hypoxia combined with photon and carbon ion irradiation (C-ions) stabilizes HIF-1α. Silencing HIF-1α under hypoxia leads to substantial radiosensitization of Head-and-Neck Squamous Cell Carcinoma (HNSCC) cells after both photons and C-ions. Thus, this study aimed to clarify a potential involvement of HIF-1α in the detection, signaling, and repair of DNA Double-Strand-Breaks (DSBs) in response to both irradiations, in two HNSCC cell lines and their subpopulations of Cancer-Stem Cells (CSCs). After confirming the nucleoshuttling of HIF-1α in response to both exposure under hypoxia, we showed that silencing HIF-1α in non-CSCs and CSCs decreased the initiation of the DSB detection (P-ATM), and increased the residual phosphorylated H2AX (γH2AX) foci. While HIF-1α silencing did not modulate 53BP1 expression, P-DNA-PKcs (NHEJ-c) and RAD51 (HR) signals decreased. Altogether, our experiments demonstrate the involvement of HIF-1α in the detection and signaling of DSBs, but also in the main repair pathways (NHEJ-c and HR), without favoring one of them. Combining HIF-1α silencing with both types of radiation could therefore present a potential therapeutic benefit of targeting CSCs mostly present in tumor hypoxic niches.
Collapse
Affiliation(s)
- Anne-Sophie Wozny
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Arnaud Gauthier
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Gersende Alphonse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Céline Malésys
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Virginie Varoclier
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Michael Beuve
- Univ Lyon, Lyon 1 University, UMR CNRS5822/IP2I, 69100 Villeurbanne, France;
| | - Delphine Brichart-Vernos
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Nicolas Magné
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Radiotherapy, Institute of Cancerology Lucien Neuwirth, 42270 Saint-Priest-en-Jarez, France
| | - Nicolas Vial
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Radiotherapy, Institute of Cancerology Lucien Neuwirth, 42270 Saint-Priest-en-Jarez, France
| | - Dominique Ardail
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Tetsuo Nakajima
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Claire Rodriguez-Lafrasse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Correspondence: ; Tel.: +33-426-235-965
| |
Collapse
|
43
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
44
|
Mechanisms of Ataxia Telangiectasia Mutated (ATM) Control in the DNA Damage Response to Oxidative Stress, Epigenetic Regulation, and Persistent Innate Immune Suppression Following Sepsis. Antioxidants (Basel) 2021; 10:antiox10071146. [PMID: 34356379 PMCID: PMC8301080 DOI: 10.3390/antiox10071146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.
Collapse
|
45
|
Daly LA, Brownridge PJ, Batie M, Rocha S, Sée V, Eyers CE. Oxygen-dependent changes in binding partners and post-translational modifications regulate the abundance and activity of HIF-1α/2α. Sci Signal 2021; 14:eabf6685. [PMID: 34285132 DOI: 10.1126/scisignal.abf6685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular adaptation to low-oxygen environments is mediated in part by the hypoxia-inducible factors (HIFs). Like other transcription factors, the stability and transcriptional activity of HIFs-and consequently, the hypoxic response-are regulated by post-translational modifications (PTMs) and changes in protein-protein interactions. Our current understanding of PTM-mediated regulation of HIFs is primarily based on in vitro protein fragment-based studies typically validated in fragment-expressing cells treated with hypoxia-mimicking compounds. Here, we used immunoprecipitation-based mass spectrometry to characterize the PTMs and binding partners for full-length HIF-1α and HIF-2α under normoxic (21% oxygen) and hypoxic (1% oxygen) conditions. Hypoxia substantially altered the complexity and composition of the HIFα protein interaction networks, particularly for HIF-2α, with the hypoxic networks of both isoforms being enriched for mitochondrial proteins. Moreover, both HIFα isoforms were heavily covalently modified. We identified ~40 PTM sites composed of 13 different types of modification on both HIFα isoforms, including multiple cysteine modifications and an unusual phosphocysteine. More than 80% of the PTMs identified were not previously known and about half exhibited oxygen dependency. We further characterized an evolutionarily conserved phosphorylation of Ser31 in HIF-1α as a regulator of its transcriptional function, and we propose functional roles for Thr406, Thr528, and Ser581 in HIF-2α. These data will help to delineate the different physiological roles of these closely related isoforms in fine-tuning the hypoxic response.
Collapse
Affiliation(s)
- Leonard A Daly
- Department of Biochemistry and System Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - Philip J Brownridge
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - Michael Batie
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Violaine Sée
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Centre for Cell Imaging, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry and System Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
46
|
Phan LM, Rezaeian AH. ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development. Genes (Basel) 2021; 12:845. [PMID: 34070860 PMCID: PMC8228802 DOI: 10.3390/genes12060845] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
ATM is among of the most critical initiators and coordinators of the DNA-damage response. ATM canonical and non-canonical signaling pathways involve hundreds of downstream targets that control many important cellular processes such as DNA damage repair, apoptosis, cell cycle arrest, metabolism, proliferation, oxidative sensing, among others. Of note, ATM is often considered a major tumor suppressor because of its ability to induce apoptosis and cell cycle arrest. However, in some advanced stage tumor cells, ATM signaling is increased and confers remarkable advantages for cancer cell survival, resistance to radiation and chemotherapy, biosynthesis, proliferation, and metastasis. This review focuses on addressing major characteristics, signaling pathways and especially the diverse roles of ATM in cellular homeostasis and cancer development.
Collapse
Affiliation(s)
- Liem Minh Phan
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdol-Hossein Rezaeian
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, The University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
47
|
Blakemore D, Vilaplana‐Lopera N, Almaghrabi R, Gonzalez E, Moya M, Ward C, Murphy G, Gambus A, Petermann E, Stewart GS, García P. MYBL2 and ATM suppress replication stress in pluripotent stem cells. EMBO Rep 2021; 22:e51120. [PMID: 33779025 PMCID: PMC8097389 DOI: 10.15252/embr.202051120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Replication stress, a major cause of genome instability in cycling cells, is mainly prevented by the ATR-dependent replication stress response pathway in somatic cells. However, the replication stress response pathway in embryonic stem cells (ESCs) may be different due to alterations in cell cycle phase length. The transcription factor MYBL2, which is implicated in cell cycle regulation, is expressed a hundred to a thousand-fold more in ESCs compared with somatic cells. Here we show that MYBL2 activates ATM and suppresses replication stress in ESCs. Consequently, loss of MYBL2 or inhibition of ATM or Mre11 in ESCs results in replication fork slowing, increased fork stalling and elevated origin firing. Additionally, we demonstrate that inhibition of CDC7 activity rescues replication stress induced by MYBL2 loss and ATM inhibition, suggesting that uncontrolled new origin firing may underlie the replication stress phenotype resulting from loss/inhibition of MYBL2 and ATM. Overall, our study proposes that in addition to ATR, a MYBL2-MRN-ATM replication stress response pathway functions in ESCs to control DNA replication initiation and prevent genome instability.
Collapse
Affiliation(s)
- Daniel Blakemore
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Nuria Vilaplana‐Lopera
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Elena Gonzalez
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Miriam Moya
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Carl Ward
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences (CAS)GuangzhouChina
- Chinese Academy of Sciences (CAS)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and regenerative MedicineGuangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - George Murphy
- Department of MedicineBoston University School of MedicineBostonMAUSA
| | - Agnieszka Gambus
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Eva Petermann
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Grant S Stewart
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Paloma García
- Institute of Cancer and Genomic ScienceCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
48
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
49
|
Ricci A, Biancucci F, Magnani M, Menotta M. Transcriptomic profile of ataxia telangiectasia cells treated for 30 days with a low dose of dexamethasone. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1911863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| |
Collapse
|
50
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|