1
|
Tonsager AJ, Zukowski A, Radebaugh CA, Weirich A, Stargell LA, Ramachandran S. The histone chaperone Spn1 preserves chromatin protections at promoters and nucleosome positioning in open reading frames. G3 (BETHESDA, MD.) 2025; 15:jkaf032. [PMID: 39960479 PMCID: PMC12005155 DOI: 10.1093/g3journal/jkaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Spn1 is a multifunctional histone chaperone that associates with RNA polymerase II during elongation and is essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing to characterize chromatin structure in Saccharomyces cerevisiae expressing wild-type or mutants of Spn1 (spn1K192N or spn1141-305). We mapped protections of all sizes genome wide. Surprisingly, we observed a widespread loss of short fragments over nucleosome-depleted regions (NDRs) at promoters in the spn1K192N-containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture outside open reading frames. Additionally, there are shifts in DNA protections in both Spn1 mutant-expressing strains over open reading frames, which indicate changes in nucleosome and subnucleosome positioning. This was observed in markedly different Spn1 mutant strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames. Changes in chromatin structure correlate positively with changes in gene expression, as shown by RNA-seq analysis in the Spn1 mutant strains. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.
Collapse
Affiliation(s)
- Andrew J Tonsager
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Abigail Weirich
- Department of Biochemistry and Molecular Genetics, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Chen B, Dronamraju R, Smith-Kinnaman WR, Peck Justice SA, Hepperla AJ, MacAlpine HK, Simon JM, Mosley AL, MacAlpine DM, Strahl BD. Spt6-Spn1 interaction is required for RNA polymerase II association and precise nucleosome positioning along transcribed genes. J Biol Chem 2025; 301:108436. [PMID: 40127868 PMCID: PMC12053661 DOI: 10.1016/j.jbc.2025.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
Spt6-Spn1 is an essential histone chaperone complex that associates with RNA Polymerase II (RNAPII) and reassembles nucleosomes during gene transcription. While the interaction between Spt6 and Spn1 is important for its histone deposition and transcription functions, a precise mechanistic understanding is still limited. Here, using temperature-sensitive alleles of spt6 and spn1 that disrupt their interaction in yeast, we show that the Spt6-Spn1 association is important for its stable interaction with the elongating RNAPII complex and nucleosomes. Using micrococcal nuclease (MNase)-based chromatin occupancy profiling, we further find that Spt6-Spn1 interaction is required to maintain a preferred nucleosome positioning at actively transcribed genes; in the absence of Spt6-Spn1 interaction, we observe a return to replication-dependent phasing. In addition to positioning defects, Spt6-Spn1 disrupting mutants also resulted in an overall shift of nucleosomes toward the 5' end of genes that were correlated with decreased RNAPII levels. As loss of Spt6-Spn1 association results in cryptic transcription at a subset of genes, we examined these genes for their nucleosome profiles. These findings revealed that the chromatin organization at these loci is similar to other active genes, thus underscoring the critical role of DNA sequence in mediating cryptic transcription when nucleosome positioning is altered. Taken together, these findings reveal that Spt6-Spn1 interaction is key to its association with elongating RNAPII and to its ability to precisely organize nucleosomes across transcription units.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Whitney R Smith-Kinnaman
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, Indiana, USA
| | | | - Austin J Hepperla
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA; Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeremy M Simon
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts, USA
| | - Amber L Mosley
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, Indiana, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Bejjani F, Ségéral E, Mosca K, Lecourieux A, Bakail M, Hamoudi M, Emiliani S. Overlapping and distinct functions of SPT6, PNUTS, and PCF11 in regulating transcription termination. Nucleic Acids Res 2025; 53:gkaf179. [PMID: 40103229 PMCID: PMC11915507 DOI: 10.1093/nar/gkaf179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
The histone chaperone and transcription elongation factor SPT6 is integral to RNA polymerase II (RNAPII) activity. SPT6 also plays a crucial role in regulating transcription termination, although the mechanisms involved are largely unknown. In an attempt to identify the pathways employed by SPT6 in this regulation, we found that, while SPT6 and its partner IWS1 interact and co-localize with RNAPII, their functions diverge significantly at gene termination sites. Depletion of SPT6, but not of IWS1, results in extensive readthrough transcription, indicating that SPT6 independently regulates transcription termination. Further analysis identified that the cleavage and polyadenylation factor PCF11 and the phosphatase regulatory protein PNUTS collaborate with SPT6 in this process. These findings suggest that SPT6 may facilitate transcription termination by recruiting PNUTS and PCF11 to RNAPII. Additionally, SPT6 and PNUTS jointly restrict promoter upstream transcripts (PROMPTs), whereas PCF11 presence is essential for their accumulation in the absence of SPT6 at hundreds of genes. Thus, SPT6, PCF11, and PNUTS have both distinct and overlapping functions in transcription termination. Our data highlight the pivotal role of SPT6 in ensuring proper transcription termination at the 5' and 3'-ends of genes.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Emmanuel Ségéral
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Kevin Mosca
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Adriana Lecourieux
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - May Bakail
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Meriem Hamoudi
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Stéphane Emiliani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| |
Collapse
|
4
|
Akele M, Iervolino M, Van Belle S, Christ F, Debyser Z. Role of LEDGF/p75 (PSIP1) in oncogenesis. Insights in molecular mechanism and therapeutic potential. Biochim Biophys Acta Rev Cancer 2025; 1880:189248. [PMID: 39701326 DOI: 10.1016/j.bbcan.2024.189248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Aberrant gene expression due to dysfunction in proteins involved in transcriptional regulation is a hallmark of tumor development. Indeed, targeting transcriptional regulators represents an emerging approach in cancer therapeutics. Lens epithelium-derived growth factor (LEDGF/p75, PSIP1) is a co-transcriptional activator that tethers several proteins to the chromatin. LEDGF/p75 has been implicated in diseases such as HIV infection and KMT2A-rearranged leukemia. Notably, LEDGF/p75 is upregulated in various human cancers including prostate and breast cancer. In this review, we discuss the essential role of LEDGF/p75 in different malignancies and explore its mechanistic contribution to tumorigenesis revealing its potential as a therapeutic target for chemotherapy.
Collapse
Affiliation(s)
- Muluembet Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matteo Iervolino
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Markert JW, Soffers JH, Farnung L. Structural basis of H3K36 trimethylation by SETD2 during chromatin transcription. Science 2025; 387:528-533. [PMID: 39666822 DOI: 10.1126/science.adn6319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
During transcription, RNA polymerase II traverses through chromatin, and posttranslational modifications including histone methylations mark regions of active transcription. Histone protein H3 lysine 36 trimethylation (H3K36me3), which is established by the histone methyltransferase SET domain containing 2 (SETD2), suppresses cryptic transcription, regulates splicing, and serves as a binding site for transcription elongation factors. The mechanism by which the transcription machinery coordinates the deposition of H3K36me3 is not well understood. Here we provide cryo-electron microscopy structures of mammalian RNA polymerase II-DSIF-SPT6-PAF1c-TFIIS-IWS1-SETD2-nucleosome elongation complexes, revealing that the transcription machinery regulates H3K36me3 deposition by SETD2 on downstream and upstream nucleosomes. SPT6 binds the exposed H2A-H2B dimer during transcription, and the SPT6 death-like domain mediates an interaction with SETD2 bound to a nucleosome upstream of RNA polymerase II.
Collapse
|
6
|
Tonsager AJ, Zukowski A, Radebaugh CA, Weirich A, Stargell LA, Ramachandran S. THE HISTONE CHAPERONE SPN1 PRESERVES CHROMATIN PROTECTIONS AT PROMOTERS AND NUCLEOSOME POSITIONING IN OPEN READING FRAMES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.14.585010. [PMID: 38559248 PMCID: PMC10979989 DOI: 10.1101/2024.03.14.585010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spn1 is a multifunctional histone chaperone that associates with RNA polymerase II during elongation and is essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing (MNase-SSP) to characterize chromatin structure in Saccharomyces cerevisiae expressing wild-type or mutants of Spn1 (spn1 K192N or spn1 141-305 ). We mapped protections of all sizes genome-wide. Surprisingly, we observed a widespread loss of short fragments over nucleosome-depleted regions (NDRs) at promoters in the spn1 K192N -containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture outside open reading frames. Additionally, there are shifts in DNA protections in both Spn1 mutant expressing strains over open reading frames, which indicate changes in nucleosome and subnucleosome positioning. This was observed in markedly different Spn1 mutant strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames. Changes in chromatin structure correlate positively with changes in gene expression as shown by RNA-seq analysis in the Spn1 mutant strains. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.
Collapse
Affiliation(s)
- Andrew J. Tonsager
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Catherine A. Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Abigail Weirich
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Laurie A. Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
7
|
Farnung L. Chromatin Transcription Elongation - A Structural Perspective. J Mol Biol 2025; 437:168845. [PMID: 39476950 DOI: 10.1016/j.jmb.2024.168845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/10/2024]
Abstract
In eukaryotic cells, transcription by RNA polymerase II occurs in the context of chromatin, requiring the transcription machinery to navigate through nucleosomes as it traverses gene bodies. Recent advances in structural biology have provided unprecedented insights into the mechanisms underlying transcription elongation. This review presents a structural perspective on transcription through chromatin, focusing on the latest findings from high-resolution structures of transcribing RNA polymerase II-nucleosome complexes. I discuss how RNA polymerase II, in concert with elongation factors such as SPT4/5, SPT6, ELOF1, and the PAF1 complex, engages with and transcribes through nucleosomes. The review examines the stepwise unwrapping of nucleosomal DNA as polymerase advances, the roles of elongation factors in facilitating this process, and the mechanisms of nucleosome retention and transfer during transcription. This structural perspective provides a foundation for understanding the intricate interplay between the transcription machinery and chromatin, offering insights into how cells balance the need for genetic accessibility with the maintenance of genome stability and epigenetic regulation.
Collapse
Affiliation(s)
- Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Jiang Y, Chen X, Wang C, Lyu L, Al-Farraj SA, Stover NA, Gao F. Genes and proteins expressed at different life cycle stages in the model protist Euplotes vannus revealed by both transcriptomic and proteomic approaches. SCIENCE CHINA. LIFE SCIENCES 2025; 68:232-248. [PMID: 39276255 DOI: 10.1007/s11427-023-2605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 09/16/2024]
Abstract
Sexual reproduction first appeared in unicellular protists and has continued to be an essential biological process in almost all eukaryotes. Ciliated protists, which contain both germline and somatic genomes within a single cell, have evolved a special form of sexual reproduction called conjugation that involves mitosis, meiosis, fertilization, nuclear differentiation, genome rearrangement, and the development of unique cellular structures. The molecular basis and mechanisms of conjugation vary dramatically among ciliates, and many details of the process and its regulation are still largely unknown. In order to better comprehend these processes and mechanisms from an evolutionary perspective, this study provides the first comprehensive overview of the transcriptome and proteome profiles during the entire life cycle of the newly-established marine model ciliate Euplotes vannus. Transcriptome analyses from 14 life cycle stages (three vegetative stages and 11 sexual stages) revealed over 26,000 genes that are specifically expressed at different stages, many of which are related to DNA replication, transcription, translation, mitosis, meiosis, nuclear differentiation, and/or genome rearrangement. Quantitative proteomic analyses identified 338 proteins with homologs associated with conjugation and/or somatic nuclear development in other ciliates, including dicer-like proteins, Hsp90 proteins, RNA polymerase II and transcription elongation factors, ribosomal-associated proteins, and ubiquitin-related proteins. Four of these homologs belong to the PIWI family, each with different expression patterns identified and confirmed by RT-qPCR, which may function in small RNA-mediated genome rearrangement. Proteins involved in the nonhomologous end-joining pathway are induced early during meiosis and accumulate in the developing new somatic nucleus, where more than 80% of the germline sequences are eliminated from the somatic genome. A number of new candidate genes and proteins likely to play roles in conjugation and its related genome rearrangements have also been revealed. The gene expression profiles reported here will be valuable resources for further studies of the origin and evolution of sexual reproduction in this new model species.
Collapse
Affiliation(s)
- Yaohan Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai, 264209, China
| | - Chundi Wang
- Marine College, Shandong University, Weihai, 264209, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
9
|
Warner JL, Lux V, Veverka V, Winston F. The histone chaperone Spt6 controls chromatin structure through its conserved N-terminal domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625227. [PMID: 39651134 PMCID: PMC11623573 DOI: 10.1101/2024.11.25.625227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The disassembly and reassembly of nucleosomes by histone chaperones is an essential activity during eukaryotic transcription elongation. This highly conserved process maintains chromatin integrity by transiently removing nucleosomes as barriers and then restoring them in the wake of transcription. While transcription elongation requires multiple histone chaperones, there is little understanding of how most of them function and why so many are required. Here, we show that the histone chaperone Spt6 acts through its acidic, intrinsically disordered N-terminal domain (NTD) to bind histones and control chromatin structure. The Spt6 NTD is essential for viability and its histone binding activity is conserved between yeast and humans. The essential nature of the Spt6 NTD can be bypassed by changes in another histone chaperone, FACT, revealing a close functional connection between the two. Our results have led to a mechanistic model for dynamic cooperation between multiple histone chaperones during transcription elongation.
Collapse
|
10
|
Qian H, Song L, Wang L, Yang Q, Wu R, Du J, Zheng B, Liang W. FolIws1-driven nuclear translocation of deacetylated FolTFIIS ensures conidiation of Fusarium oxysporum. Cell Rep 2024; 43:114588. [PMID: 39110594 DOI: 10.1016/j.celrep.2024.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Plant diseases caused by fungal pathogens pose a great threat to crop production. Conidiation of fungi is critical for disease epidemics and serves as a promising drug target. Here, we show that deacetylation of the FolTFIIS transcription elongation factor is indispensable for Fusarium oxysporum f. sp. lycopersici (Fol) conidiation. Upon microconidiation, Fol decreases K76 acetylation of FolTFIIS by altering the level of controlling enzymes, allowing for its nuclear translocation by FolIws1. Increased nuclear FolTFIIS enhances the transcription of sporulation-related genes and, consequently, enables microconidia production. Deacetylation of FolTFIIS is also critical for the production of macroconidia and chlamydospores, and its homolog has similar functions in Botrytis cinerea. We identify two FolIws1-targeting chemicals that block the conidiation of Fol and have effective activity against a wide range of pathogenic fungi without harm to the hosts. These findings reveal a conserved mechanism of conidiation regulation and provide candidate agrochemicals for disease management.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Limin Song
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lulu Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Yang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruihan Wu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Du
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bangxian Zheng
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Geisberg JV, Moqtaderi Z, Struhl K. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 2024; 121:e2405827121. [PMID: 38748572 PMCID: PMC11127049 DOI: 10.1073/pnas.2405827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
12
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Miller CLW, Warner JL, Winston F. Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability. Trends Genet 2023; 39:858-872. [PMID: 37481442 PMCID: PMC10592469 DOI: 10.1016/j.tig.2023.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Transcription elongation requires elaborate coordination between the transcriptional machinery and chromatin regulatory factors to successfully produce RNA while preserving the epigenetic landscape. Recent structural and genomic studies have highlighted that suppressor of Ty 6 (Spt6), a conserved histone chaperone and transcription elongation factor, sits at the crux of the transcription elongation process. Other recent studies have revealed that Spt6 also promotes DNA replication and genome integrity. Here, we review recent studies of Spt6 that have provided new insights into the mechanisms by which Spt6 controls transcription and have revealed the breadth of Spt6 functions in eukaryotic cells.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - James L Warner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Ellison MA, Namjilsuren S, Shirra M, Blacksmith M, Schusteff R, Kerr E, Fang F, Xiang Y, Shi Y, Arndt K. Spt6 directly interacts with Cdc73 and is required for Paf1 complex occupancy at active genes in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:4814-4830. [PMID: 36928138 PMCID: PMC10250246 DOI: 10.1093/nar/gkad180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The Paf1 complex (Paf1C) is a conserved transcription elongation factor that regulates transcription elongation efficiency, facilitates co-transcriptional histone modifications, and impacts molecular processes linked to RNA synthesis, such as polyA site selection. Coupling of the activities of Paf1C to transcription elongation requires its association with RNA polymerase II (Pol II). Mutational studies in yeast identified Paf1C subunits Cdc73 and Rtf1 as important mediators of Paf1C association with Pol II on active genes. While the interaction between Rtf1 and the general elongation factor Spt5 is relatively well-understood, the interactions involving Cdc73 have not been fully elucidated. Using a site-specific protein cross-linking strategy in yeast cells, we identified direct interactions between Cdc73 and two components of the Pol II elongation complex, the elongation factor Spt6 and the largest subunit of Pol II. Both of these interactions require the tandem SH2 domain of Spt6. We also show that Cdc73 and Spt6 can interact in vitro and that rapid depletion of Spt6 dissociates Paf1 from chromatin, altering patterns of Paf1C-dependent histone modifications genome-wide. These results reveal interactions between Cdc73 and the Pol II elongation complex and identify Spt6 as a key factor contributing to the occupancy of Paf1C at active genes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew S Blacksmith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rachel A Schusteff
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eleanor M Kerr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
15
|
Miller CLW, Winston F. The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Rep 2023; 42:112264. [PMID: 36924499 PMCID: PMC10106089 DOI: 10.1016/j.celrep.2023.112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Histone chaperones are an important class of proteins that regulate chromatin accessibility for DNA-templated processes. Spt6 is a conserved histone chaperone and key regulator of transcription and chromatin structure. However, its functions outside of these roles have been little explored. In this work, we demonstrate a requirement for S. cerevisiae Spt6 in DNA replication and, more broadly, as a regulator of genome stability. Depletion or mutation of Spt6 impairs DNA replication in vivo. Additionally, spt6 mutants are sensitive to DNA replication stress-inducing agents. Interestingly, this sensitivity is independent of the association of Spt6 with RNA polymerase II (RNAPII), suggesting that spt6 mutants have a transcription-independent impairment of DNA replication. Specifically, genomic studies reveal that spt6 mutants have decreased loading of the MCM replicative helicase at replication origins, suggesting that Spt6 promotes origin licensing. Our results identify Spt6 as a regulator of genome stability, at least in part through a role in DNA replication.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
The TFIIS N-terminal domain (TND): a transcription assembly module at the interface of order and disorder. Biochem Soc Trans 2023; 51:125-135. [PMID: 36651856 PMCID: PMC9987994 DOI: 10.1042/bst20220342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Interaction scaffolds that selectively recognize disordered protein strongly shape protein interactomes. An important scaffold of this type that contributes to transcription is the TFIIS N-terminal domain (TND). The TND is a five-helical bundle that has no known enzymatic activity, but instead selectively reads intrinsically disordered sequences of other proteins. Here, we review the structural and functional properties of TNDs and their cognate disordered ligands known as TND-interacting motifs (TIMs). TNDs or TIMs are found in prominent members of the transcription machinery, including TFIIS, super elongation complex, SWI/SNF, Mediator, IWS1, SPT6, PP1-PNUTS phosphatase, elongin, H3K36me3 readers, the transcription factor MYC, and others. We also review how the TND interactome contributes to the regulation of transcription. Because the TND is the most significantly enriched fold among transcription elongation regulators, TND- and TIM-driven interactions have widespread roles in the regulation of many transcriptional processes.
Collapse
|
17
|
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. Int J Mol Sci 2023; 24:1051. [PMID: 36674565 PMCID: PMC9864664 DOI: 10.3390/ijms24021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Ellyn Rousselot
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Stéphane Téletchéa
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, 31326 Castanet-Tolosan, France
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Josien van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Christophe Thiriet
- Université Rennes 1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, 35043 Rennes, France
| | - Céline Duc
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| |
Collapse
|
18
|
López-Rivera F, Chuang J, Spatt D, Gopalakrishnan R, Winston F. Suppressor mutations that make the essential transcription factor Spn1/Iws1 dispensable in Saccharomyces cerevisiae. Genetics 2022; 222:iyac125. [PMID: 35977387 PMCID: PMC9526074 DOI: 10.1093/genetics/iyac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Spn1/Iws1 is an essential eukaryotic transcription elongation factor that is conserved from yeast to humans as an integral member of the RNA polymerase II elongation complex. Several studies have shown that Spn1 functions as a histone chaperone to control transcription, RNA splicing, genome stability, and histone modifications. However, the precise role of Spn1 is not understood, and there is little understanding of why it is essential for viability. To address these issues, we have isolated 8 suppressor mutations that bypass the essential requirement for Spn1 in Saccharomyces cerevisiae. Unexpectedly, the suppressors identify several functionally distinct complexes and activities, including the histone chaperone FACT, the histone methyltransferase Set2, the Rpd3S histone deacetylase complex, the histone acetyltransferase Rtt109, the nucleosome remodeler Chd1, and a member of the SAGA coactivator complex, Sgf73. The identification of these distinct groups suggests that there are multiple ways in which Spn1 bypass can occur, including changes in histone acetylation and alterations in other histone chaperones. Thus, Spn1 may function to overcome repressive chromatin by multiple mechanisms during transcription. Our results suggest that bypassing a subset of these functions allows viability in the absence of Spn1.
Collapse
Affiliation(s)
| | - James Chuang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Spatt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Aoi Y, Shah AP, Ganesan S, Soliman SHA, Cho BK, Goo YA, Kelleher NL, Shilatifard A. SPT6 functions in transcriptional pause/release via PAF1C recruitment. Mol Cell 2022; 82:3412-3423.e5. [PMID: 35973425 PMCID: PMC9714687 DOI: 10.1016/j.molcel.2022.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 01/24/2023]
Abstract
It is unclear how various factors functioning in the transcriptional elongation by RNA polymerase II (RNA Pol II) cooperatively regulate pause/release and productive elongation in living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in the release of paused RNA Pol II into gene bodies through an impaired recruitment of PAF1C. Short genes demonstrate a release with increased mature transcripts, whereas long genes are released but fail to yield mature transcripts, due to a reduced processivity resulting from both SPT6 and PAF1C loss. Unexpectedly, SPT6 depletion causes an association of NELF with the elongating RNA Pol II on gene bodies, without any observed functional significance on transcriptional elongation pattern, arguing against a role for NELF in keeping RNA Pol II in the paused state. Furthermore, SPT6 depletion impairs heat-shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause/release through PAF1C recruitment.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sheetal Ganesan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shimaa H A Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Byoung-Kyu Cho
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Young Ah Goo
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Neil L Kelleher
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Ehara H, Kujirai T, Shirouzu M, Kurumizaka H, Sekine SI. Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science 2022; 377:eabp9466. [PMID: 35981082 DOI: 10.1126/science.abp9466] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During gene transcription, RNA polymerase II (RNAPII) traverses nucleosomes in chromatin, but its mechanism has remained elusive. Using cryo-electron microscopy, we obtained structures of the RNAPII elongation complex (EC) passing through a nucleosome, in the presence of transcription elongation factors Spt6, Spn1, Elf1, Spt4/5, and Paf1C and the histone chaperone FACT. The structures show snapshots of EC progression on DNA, mediating downstream nucleosome disassembly followed by its reassembly upstream of the EC, facilitated by FACT. FACT dynamically adapts to successively occurring subnucleosome intermediates, forming an interface with the EC. Spt6, Spt4/5, and Paf1C form a "cradle" at the EC DNA-exit site, and support the upstream nucleosome reassembly. These structures explain the mechanism by which the EC traverses nucleosomes while maintaining the chromatin structure and epigenetic information.
Collapse
Affiliation(s)
- Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoya Kujirai
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan.,Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan.,Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shun-Ichi Sekine
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
21
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
22
|
Kasiliauskaite A, Kubicek K, Klumpler T, Zanova M, Zapletal D, Koutna E, Novacek J, Stefl R. Cooperation between intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly. Nucleic Acids Res 2022; 50:5961-5973. [PMID: 35640611 PMCID: PMC9177984 DOI: 10.1093/nar/gkac451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Transcription elongation factor Spt6 associates with RNA polymerase II (Pol II) and acts as a histone chaperone, which promotes the reassembly of nucleosomes following the passage of Pol II. The precise mechanism of nucleosome reassembly mediated by Spt6 remains unclear. In this study, we used a hybrid approach combining cryo-electron microscopy and small-angle X-ray scattering to visualize the architecture of Spt6 from Saccharomyces cerevisiae. The reconstructed overall architecture of Spt6 reveals not only the core of Spt6, but also its flexible N- and C-termini, which are critical for Spt6's function. We found that the acidic N-terminal region of Spt6 prevents the binding of Spt6 not only to the Pol II CTD and Pol II CTD-linker, but also to pre-formed intact nucleosomes and nucleosomal DNA. The N-terminal region of Spt6 self-associates with the tSH2 domain and the core of Spt6 and thus controls binding to Pol II and nucleosomes. Furthermore, we found that Spt6 promotes the assembly of nucleosomes in vitro. These data indicate that the cooperation between the intrinsically disordered and structured regions of Spt6 regulates nucleosome and Pol II CTD binding, and also nucleosome assembly.
Collapse
Affiliation(s)
- Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - Tomas Klumpler
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Martina Zanova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno CZ-61137, Czech Republic
| | - David Zapletal
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novacek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno CZ-62500, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| |
Collapse
|
23
|
Li S, Edwards G, Radebaugh CA, Luger K, A Stargell L. Spn1 and its dynamic interactions with Spt6, histones and nucleosomes. J Mol Biol 2022; 434:167630. [PMID: 35595162 DOI: 10.1016/j.jmb.2022.167630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Histone chaperones facilitate the assembly and disassembly of nucleosomes and regulate DNA accessibility for critical cellular processes. Spn1 is an essential, highly conserved histone chaperone that functions in transcription initiation and elongation in a chromatin context. Here we demonstrate that Spn1 binds H3-H4 with low nanomolar affinity, residues 85-99 within the acidic N-terminal region of Spn1 are required for H3-H4 binding, and Spn1 binding to H3-H4 dimers does not impede (H3-H4)2 tetramer formation. Previous work has shown the central region of Spn1 (residues 141-305) is important for interaction with Spt6, another conserved and essential histone chaperone. We show that the C-terminal region of Spn1 also contributes to Spt6 binding and is critical for Spn1 binding to nucleosomes. We also show Spt6 preferentially binds H3-H4 tetramers and Spt6 competes with nucleosomes for Spn1 binding. Combined with previous results, this indicates the Spn1-Spt6 complex does not bind nucleosomes. In contrast to nucleosome binding, we found that the Spn1-Spt6 complex can bind H3-H4 dimers and tetramers and H2A-H2B to form ternary complexes. These important results provide new information about the functions of Spn1, Spt6, and the Spn1-Spt6 complex, two essential and highly conserved histone chaperones.
Collapse
Affiliation(s)
- Sha Li
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA; Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Garrett Edwards
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| |
Collapse
|
24
|
Jeronimo C, Robert F. The histone chaperone FACT: a guardian of chromatin structure integrity. Transcription 2022; 13:16-38. [PMID: 35485711 PMCID: PMC9467567 DOI: 10.1080/21541264.2022.2069995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specificregulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancerstrategy.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Elagamey E, Abellatef MA, Arafat MY. Proteomic insights of chitosan mediated inhibition of Fusarium oxysporum f. sp. cucumerinum. J Proteomics 2022; 260:104560. [DOI: 10.1016/j.jprot.2022.104560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
|
26
|
Connell Z, Parnell TJ, McCullough LL, Hill CP, Formosa T. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II. Nucleic Acids Res 2021; 50:784-802. [PMID: 34967414 PMCID: PMC8789061 DOI: 10.1093/nar/gkab1262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.
Collapse
Affiliation(s)
- Zaily Connell
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Laura L McCullough
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Christopher P Hill
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Tim Formosa
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Cermakova K, Demeulemeester J, Lux V, Nedomova M, Goldman SR, Smith EA, Srb P, Hexnerova R, Fabry M, Madlikova M, Horejsi M, De Rijck J, Debyser Z, Adelman K, Hodges HC, Veverka V. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 2021; 374:1113-1121. [PMID: 34822292 PMCID: PMC8943916 DOI: 10.1126/science.abe2913] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.
Collapse
Affiliation(s)
- Katerina Cermakova
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | | | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric A. Smith
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Rozalie Hexnerova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Fabry
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Marcela Madlikova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Horejsi
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Karen Adelman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - H. Courtney Hodges
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD
Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX,
USA
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles
University, Prague, Czech Republic
| |
Collapse
|
28
|
Gopalakrishnan R, Winston F. The histone chaperone Spt6 is required for normal recruitment of the capping enzyme Abd1 to transcribed regions. J Biol Chem 2021; 297:101205. [PMID: 34543624 PMCID: PMC8511950 DOI: 10.1016/j.jbc.2021.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 10/29/2022] Open
Abstract
The histone chaperone Spt6 is involved in promoting elongation of RNA polymerase II (RNAPII), maintaining chromatin structure, regulating cotranscriptional histone modifications, and controlling mRNA processing. These diverse functions of Spt6 are partly mediated through its interactions with RNAPII and other factors in the transcription elongation complex. In this study, we used mass spectrometry to characterize the differences in RNAPII-interacting factors between wildtype cells and those depleted for Spt6, leading to the identification of proteins that depend on Spt6 for their interaction with RNAPII. The altered association of some of these factors could be attributed to changes in steady-state protein levels. However, Abd1, the mRNA cap methyltransferase, had decreased association with RNAPII after Spt6 depletion despite unchanged Abd1 protein levels, showing a requirement for Spt6 in mediating the Abd1-RNAPII interaction. Genome-wide studies showed that Spt6 is required for maintaining the level of Abd1 over transcribed regions, as well as the level of Spt5, another protein known to recruit Abd1 to chromatin. Abd1 levels were particularly decreased at the 5' ends of genes after Spt6 depletion, suggesting a greater need for Spt6 in Abd1 recruitment over these regions. Together, our results show that Spt6 is important in regulating the composition of the transcription elongation complex and reveal a previously unknown function for Spt6 in the recruitment of Abd1.
Collapse
Affiliation(s)
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Viktorovskaya O, Chuang J, Jain D, Reim NI, López-Rivera F, Murawska M, Spatt D, Churchman LS, Park PJ, Winston F. Essential histone chaperones collaborate to regulate transcription and chromatin integrity. Genes Dev 2021; 35:698-712. [PMID: 33888559 PMCID: PMC8091981 DOI: 10.1101/gad.348431.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.
Collapse
Affiliation(s)
- Olga Viktorovskaya
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - James Chuang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Natalia I Reim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Francheska López-Rivera
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Magdalena Murawska
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dan Spatt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Reim NI, Chuang J, Jain D, Alver BH, Park PJ, Winston F. The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae. Nucleic Acids Res 2020; 48:10241-10258. [PMID: 32941642 PMCID: PMC7544207 DOI: 10.1093/nar/gkaa745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Spn1/Iws1 is a conserved protein involved in transcription and chromatin dynamics, yet its general in vivo requirement for these functions is unknown. Using a Spn1 depletion system in Saccharomyces cerevisiae, we demonstrate that Spn1 broadly influences several aspects of gene expression on a genome-wide scale. We show that Spn1 is globally required for normal mRNA levels and for normal splicing of ribosomal protein transcripts. Furthermore, Spn1 maintains the localization of H3K36 and H3K4 methylation across the genome and is required for normal histone levels at highly expressed genes. Finally, we show that the association of Spn1 with the transcription machinery is strongly dependent on its binding partner, Spt6, while the association of Spt6 and Set2 with transcribed regions is partially dependent on Spn1. Taken together, our results show that Spn1 affects multiple aspects of gene expression and provide additional evidence that it functions as a histone chaperone in vivo.
Collapse
Affiliation(s)
- Natalia I Reim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Chuang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Bobkov GOM, Huang A, van den Berg SJW, Mitra S, Anselm E, Lazou V, Schunter S, Feederle R, Imhof A, Lusser A, Jansen LET, Heun P. Spt6 is a maintenance factor for centromeric CENP-A. Nat Commun 2020; 11:2919. [PMID: 32522980 PMCID: PMC7287101 DOI: 10.1038/s41467-020-16695-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Replication and transcription of genomic DNA requires partial disassembly of nucleosomes to allow progression of polymerases. This presents both an opportunity to remodel the underlying chromatin and a danger of losing epigenetic information. Centromeric transcription is required for stable incorporation of the centromere-specific histone dCENP-A in M/G1 phase, which depends on the eviction of previously deposited H3/H3.3-placeholder nucleosomes. Here we demonstrate that the histone chaperone and transcription elongation factor Spt6 spatially and temporarily coincides with centromeric transcription and prevents the loss of old CENP-A nucleosomes in both Drosophila and human cells. Spt6 binds directly to dCENP-A and dCENP-A mutants carrying phosphomimetic residues alleviate this association. Retention of phosphomimetic dCENP-A mutants is reduced relative to wildtype, while non-phosphorylatable dCENP-A retention is increased and accumulates at the centromere. We conclude that Spt6 acts as a conserved CENP-A maintenance factor that ensures long-term stability of epigenetic centromere identity during transcription-mediated chromatin remodeling.
Collapse
Affiliation(s)
- Georg O M Bobkov
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
- Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Sebastiaan J W van den Berg
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sreyoshi Mitra
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Eduard Anselm
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Vasiliki Lazou
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sarah Schunter
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, LMU, Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Axel Imhof
- BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Patrick Heun
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
32
|
Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro. J Mol Biol 2020; 432:4092-4107. [PMID: 32439331 PMCID: PMC7327521 DOI: 10.1016/j.jmb.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
Transcription elongation factor Spt6 associates with RNA polymerase II (RNAP II) via a tandem SH2 (tSH2) domain. The mechanism and significance of the RNAP II–Spt6 interaction is still unclear. Recently, it was proposed that Spt6-tSH2 is recruited via a newly described phosphorylated linker between the Rpb1 core and its C-terminal domain (CTD). Here, we report binding studies with isolated tSH2 of Spt6 (Spt6-tSH2) and Spt6 lacking the first unstructured 297 residues (Spt6ΔN) with a minimal CTD substrate of two repetitive heptads phosphorylated at different sites. The data demonstrate that Spt6 also binds the phosphorylated CTD, a site that was originally proposed as a recognition epitope. We also show that an extended CTD substrate harboring 13 repetitive heptads of the tyrosine-phosphorylated CTD binds Spt6-tSH2 and Spt6ΔN with tighter affinity than the minimal CTD substrate. The enhanced binding is achieved by avidity originating from multiple phosphorylation marks present in the CTD. Interestingly, we found that the steric effects of additional domains in the Spt6ΔN construct partially obscure the binding of the tSH2 domain to the multivalent ligand. We show that Spt6-tSH2 binds various phosphorylation patterns in the CTD and found that the studied combinations of phospho-CTD marks (1,2; 1,5; 2,4; and 2,7) all facilitate the interaction of CTD with Spt6. Our structural studies reveal a plasticity of the tSH2 binding pockets that enables the accommodation of CTDs with phosphorylation marks in different registers. High-affinity Pol II CTD-binding by Spt6 is achieved by avidity originating from multiple phosphorylation marks presented in the CTD, suggesting how phosphorylation levels fine-tune the CTD interactome. Structure of RNAP II CTD bound with tandem SH2 domain of Spt6 reveals how phosphorylated CTD is recognized. Isolated tSH2 of Spt6 binds the extended CTD substrate with tighter affinity than nearly full-length Spt6, suggesting that the steric effects of additional domains in Spt6 influence the binding of the tSH2 domain to the multivalent CTD ligand.
Collapse
|
33
|
Dronamraju R, Kerschner JL, Peck SA, Hepperla AJ, Adams AT, Hughes KD, Aslam S, Yoblinski AR, Davis IJ, Mosley AL, Strahl BD. Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction. Cell Rep 2019; 25:3476-3489.e5. [PMID: 30566871 PMCID: PMC6347388 DOI: 10.1016/j.celrep.2018.11.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Spt6 is a histone chaperone that associates with RNA polymerase II and deposits nucleosomes in the wake of transcription. Although Spt6 has an essential function in nucleosome deposition, it is not known whether this function is influenced by post-translational modification. Here, we report that casein kinase II (CKII) phosphorylation of Spt6 is required for nucleosome occupancy at the 5′ ends of genes to prevent aberrant antisense transcription and enforce transcriptional directionality. Mechanistically, we show that CKII phosphorylation of Spt6 promotes the interaction of Spt6 with Spn1, a binding partner required for chromatin reassembly and full recruitment of Spt6 to genes. Our study defines a function for CKII phosphorylation in transcription and highlights the importance of post-translational modification in histone chaperone function. Dronamraju et al. show that the N terminus of Spt6 is phosphorylated by casein kinase II, which is required for proper Spt6-Spn1 interaction. CKII phosphorylation of Spt6 is pivotal to maintain nucleosome occupancy at the 5′ ends of genes, suppression of antisense transcription from the 5′ ends, and resistance to genotoxic agents.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jenny L Kerschner
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sadia Aslam
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Gopalakrishnan R, Marr SK, Kingston RE, Winston F. A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation. Nucleic Acids Res 2019; 47:3888-3903. [PMID: 30793188 PMCID: PMC6486648 DOI: 10.1093/nar/gkz119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
The transcription elongation factor Spt6 and the H3K36 methyltransferase Set2 are both required for H3K36 methylation and transcriptional fidelity in Saccharomyces cerevisiae. However, the nature of the requirement for Spt6 has remained elusive. By selecting for suppressors of a transcriptional defect in an spt6 mutant, we have isolated several highly clustered, dominant SET2 mutations (SET2sup mutations) in a region encoding a proposed autoinhibitory domain. SET2sup mutations suppress the H3K36 methylation defect in the spt6 mutant, as well as in other mutants that impair H3K36 methylation. We also show that SET2sup mutations overcome the requirement for certain Set2 domains for H3K36 methylation. In vivo, SET2sup mutants have elevated levels of H3K36 methylation and the purified Set2sup mutant protein has greater enzymatic activityin vitro. ChIP-seq studies demonstrate that the H3K36 methylation defect in the spt6 mutant, as well as its suppression by a SET2sup mutation, occurs at a step following the recruitment of Set2 to chromatin. Other experiments show that a similar genetic relationship between Spt6 and Set2 exists in Schizosaccharomyces pombe. Taken together, our results suggest a conserved mechanism by which the Set2 autoinhibitory domain requires multiple Set2 interactions to ensure that H3K36 methylation occurs specifically on actively transcribed chromatin.
Collapse
Affiliation(s)
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert E Kingston
- Department of Genetics, Harvard Medical School, Boston, MA, USA 02115.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
35
|
Deryusheva EI, Machulin AV, Matyunin MA, Galzitskaya OV. Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure. Molecules 2019; 24:E3681. [PMID: 31614904 PMCID: PMC6832287 DOI: 10.3390/molecules24203681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
S1 domain, a structural variant of one of the "oldest" OB-folds (oligonucleotide/oligosaccharide-binding fold), is widespread in various proteins in three domains of life: Bacteria, Eukaryotes, and Archaea. In this study, it was shown that S1 domains of bacterial, eukaryotic, and archaeal proteins have a low percentage of identity, which indicates the uniqueness of the scaffold and is associated with protein functions. Assessment of the predisposition of tertiary flexibility of S1 domains using computational and statistical tools showed similar structural features and revealed functional flexible regions that are potentially involved in the interaction of natural binding partners. In addition, we analyzed the relative number and distribution of S1 domains in all domains of life and established specific features based on sequences and structures associated with molecular functions. The results correlate with the presence of repeats of the S1 domain in proteins containing the S1 domain in the range from one (bacterial and archaeal) to 15 (eukaryotic) and, apparently, are associated with the need for individual proteins to increase the affinity and specificity of protein binding to ligands.
Collapse
Affiliation(s)
- Evgenia I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Maxim A Matyunin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
36
|
Li S, Almeida AR, Radebaugh CA, Zhang L, Chen X, Huang L, Thurston AK, Kalashnikova AA, Hansen JC, Luger K, Stargell LA. The elongation factor Spn1 is a multi-functional chromatin binding protein. Nucleic Acids Res 2019; 46:2321-2334. [PMID: 29300974 PMCID: PMC5861400 DOI: 10.1093/nar/gkx1305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
The process of transcriptional elongation by RNA polymerase II (RNAPII) in a chromatin context involves a large number of crucial factors. Spn1 is a highly conserved protein encoded by an essential gene and is known to interact with RNAPII and the histone chaperone Spt6. Spn1 negatively regulates the ability of Spt6 to interact with nucleosomes, but the chromatin binding properties of Spn1 are largely unknown. Here, we demonstrate that full length Spn1 (amino acids 1–410) binds DNA, histones H3–H4, mononucleosomes and nucleosomal arrays, and has weak nucleosome assembly activity. The core domain of Spn1 (amino acids 141–305), which is necessary and sufficient in Saccharomyces cerevisiae for growth under ideal growth conditions, is unable to optimally interact with histones, nucleosomes and/or DNA and fails to assemble nucleosomes in vitro. Although competent for binding with Spt6 and RNAPII, the core domain derivative is not stably recruited to the CYC1 promoter, indicating chromatin interactions are an important aspect of normal Spn1 functions in vivo. Moreover, strong synthetic genetic interactions are observed with Spn1 mutants and deletions of histone chaperone genes. Taken together, these results indicate that Spn1 is a histone binding factor with histone chaperone functions.
Collapse
Affiliation(s)
- Sha Li
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Adam R Almeida
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Liangqun Huang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Alison K Thurston
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA.,Howard Hughes Medical Institute
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
37
|
Dronamraju R, Hepperla AJ, Shibata Y, Adams AT, Magnuson T, Davis IJ, Strahl BD. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription. Mol Cell 2019; 70:1054-1066.e4. [PMID: 29932900 DOI: 10.1016/j.molcel.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Abstract
Spt6 is an essential histone chaperone that mediates nucleosome reassembly during gene transcription. Spt6 also associates with RNA polymerase II (RNAPII) via a tandem Src2 homology domain. However, the significance of Spt6-RNAPII interaction is not well understood. Here, we show that Spt6 recruitment to genes and the nucleosome reassembly functions of Spt6 can still occur in the absence of its association with RNAPII. Surprisingly, we found that Spt6-RNAPII association is required for efficient recruitment of the Ccr4-Not de-adenylation complex to transcribed genes for essential degradation of a range of mRNAs, including mRNAs required for cell-cycle progression. These findings reveal an unexpected control mechanism for mRNA turnover during transcription facilitated by a histone chaperone.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yoichiro Shibata
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
38
|
Ehara H, Kujirai T, Fujino Y, Shirouzu M, Kurumizaka H, Sekine SI. Structural insight into nucleosome transcription by RNA polymerase II with elongation factors. Science 2019; 363:744-747. [DOI: 10.1126/science.aav8912] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022]
Abstract
RNA polymerase II (RNAPII) transcribes chromosomal DNA that contains multiple nucleosomes. The nucleosome forms transcriptional barriers, and nucleosomal transcription requires several additional factors in vivo. We demonstrate that the transcription elongation factors Elf1 and Spt4/5 cooperatively lower the barriers and increase the RNAPII processivity in the nucleosome. The cryo–electron microscopy structures of the nucleosome-transcribing RNAPII elongation complexes (ECs) reveal that Elf1 and Spt4/5 reshape the EC downstream edge and intervene between RNAPII and the nucleosome. They facilitate RNAPII progression through superhelical location SHL(–1) by adjusting the nucleosome in favor of the forward progression. They suppress pausing at SHL(–5) by preventing the stable RNAPII-nucleosome interaction. Thus, the EC overcomes the nucleosomal barriers while providing a platform for various chromatin functions.
Collapse
|
39
|
Doris SM, Chuang J, Viktorovskaya O, Murawska M, Spatt D, Churchman LS, Winston F. Spt6 Is Required for the Fidelity of Promoter Selection. Mol Cell 2018; 72:687-699.e6. [PMID: 30318445 DOI: 10.1016/j.molcel.2018.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 01/06/2023]
Abstract
Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.
Collapse
Affiliation(s)
- Stephen M Doris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Chuang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | - Dan Spatt
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 in Saccharomyces cerevisiae. Genetics 2018; 210:1227-1237. [PMID: 30301740 DOI: 10.1534/genetics.118.301600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.
Collapse
|
41
|
Orlacchio A, Stark AE, Foray C, Amari F, Sheetz T, Reese E, Tessari A, La Perle K, Palmieri D, Tsichlis PN, Coppola V. Genetic ablation of interacting with Spt6 (Iws1) causes early embryonic lethality. PLoS One 2018; 13:e0201030. [PMID: 30208029 PMCID: PMC6135376 DOI: 10.1371/journal.pone.0201030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
IWS1 is an RNA-polymerase II (RNAPII)-associated transcription elongation factor whose biological functions are poorly characterized. To shed some light on the function of this protein at the organismal level, we performed a systematic tissue analysis of its expression and generated Iws1-deficient mice. A thorough immunohistochemical characterization shows that IWS1 protein is present in the nucleus of all cells in most of the examined tissues, with few notable exceptions. We also report that ablation of Iws1 consistently causes lethality at the pre-implantation stage with high expression of the gene in fertilized oocytes. In summary, we are providing evidence that Iws1 is expressed in all adult organs and it is an essential gene for mouse embryonic development.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Aaron E. Stark
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, Ohio, United States of America
| | - Claudia Foray
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Foued Amari
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, Ohio, United States of America
| | - Tyler Sheetz
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Erika Reese
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Krista La Perle
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comparative Pathology & Mouse Phenotyping Shared Resource, Columbus, Ohio, United States of America
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Philip N. Tsichlis
- Molecular Oncology Research Institute, Tufts Medical School, Boston, MA, United States of America
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Sharma S, Čermáková K, De Rijck J, Demeulemeester J, Fábry M, El Ashkar S, Van Belle S, Lepšík M, Tesina P, Duchoslav V, Novák P, Hubálek M, Srb P, Christ F, Řezáčová P, Hodges HC, Debyser Z, Veverka V. Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7053-E7062. [PMID: 29997176 PMCID: PMC6065015 DOI: 10.1073/pnas.1803909115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lens epithelium-derived growth factor/p75 (LEDGF/p75, or PSIP1) is a transcriptional coactivator that tethers other proteins to gene bodies. The chromatin tethering function of LEDGF/p75 is hijacked by HIV integrase to ensure viral integration at sites of active transcription. LEDGF/p75 is also important for the development of mixed-lineage leukemia (MLL), where it tethers the MLL1 fusion complex at aberrant MLL targets, inducing malignant transformation. However, little is known about how the LEDGF/p75 protein interaction network is regulated. Here, we obtained solution structures of the complete interfaces between the LEDGF/p75 integrase binding domain (IBD) and its cellular binding partners and validated another binding partner, Mediator subunit 1 (MED1). We reveal that structurally conserved IBD-binding motifs (IBMs) on known LEDGF/p75 binding partners can be regulated by phosphorylation, permitting switching between low- and high-affinity states. Finally, we show that elimination of IBM phosphorylation sites on MLL1 disrupts the oncogenic potential of primary MLL1-rearranged leukemic cells. Our results demonstrate that kinase-dependent phosphorylation of MLL1 represents a previously unknown oncogenic dependency that may be harnessed in the treatment of MLL-rearranged leukemia.
Collapse
Affiliation(s)
| | - Kateřina Čermáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jan De Rijck
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium;
| | | | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Sara El Ashkar
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Siska Van Belle
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Vojtěch Duchoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Frauke Christ
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - H Courtney Hodges
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium;
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic;
- Department of Cell Biology, Faculty of Science, Charles University, 116 36 Prague 1, Czech Republic
| |
Collapse
|
43
|
H3K4 Methylation Dependent and Independent Chromatin Regulation by JHD2 and SET1 in Budding Yeast. G3-GENES GENOMES GENETICS 2018; 8:1829-1839. [PMID: 29599176 PMCID: PMC5940172 DOI: 10.1534/g3.118.200151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Set1 and Jhd2 regulate the methylation state of histone H3 lysine-4 (H3K4me) through their opposing methyltransferase and demethylase activities in the budding yeast Saccharomyces cerevisiae. H3K4me associates with actively transcribed genes and, like both SET1 and JHD2 themselves, is known to regulate gene expression diversely. It remains unclear, however, if Set1 and Jhd2 act solely through H3K4me. Relevantly, Set1 methylates lysine residues in the kinetochore protein Dam1 while genetic studies of the S. pombe SET1 ortholog suggest the existence of non-H3K4 Set1 targets relevant to gene regulation. We interrogated genetic interactions of JHD2 and SET1 with essential genes involved in varied aspects of the transcription cycle. Our findings implicate JHD2 in genetic inhibition of the histone chaperone complexes Spt16-Pob3 (FACT) and Spt6-Spn1. This targeted screen also revealed that JHD2 inhibits the Nrd1-Nab3-Sen1 (NNS) transcription termination complex. We find that while Jhd2’s impact on these transcription regulatory complexes likely acts via H3K4me, Set1 governs the roles of FACT and NNS through opposing H3K4-dependent and -independent functions. We also identify diametrically opposing consequences for mutation of H3K4 to alanine or arginine, illuminating that caution must be taken in interpreting histone mutation studies. Unlike FACT and NNS, detailed genetic studies suggest an H3K4me-centric mode of Spt6-Spn1 regulation by JHD2 and SET1. Chromatin immunoprecipitation and transcript quantification experiments show that Jhd2 opposes the positioning of a Spt6-deposited nucleosome near the transcription start site of SER3, a Spt6-Spn1 regulated gene, leading to hyper-induction of SER3. In addition to confirming and extending an emerging role for Jhd2 in the control of nucleosome occupancy near transcription start sites, our findings suggest some of the chromatin regulatory functions of Set1 are independent of H3K4 methylation.
Collapse
|
44
|
Gómez-Herreros F, Margaritis T, Rodríguez-Galán O, Pelechano V, Begley V, Millán-Zambrano G, Morillo-Huesca M, Muñoz-Centeno MC, Pérez-Ortín JE, de la Cruz J, Holstege FCP, Chávez S. The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 2017. [PMID: 28637236 PMCID: PMC5737610 DOI: 10.1093/nar/gkx529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion conditions, Spt6 was physically targeted to the up-regulated genes, where it helped maintain their chromatin integrity and the synthesis of properly stable mRNAs. The mRNA profiles of a large set of ribosome biogenesis mutants confirmed the existence of a feedback regulatory network among ribosome assembly genes. The transcriptional response in this network depended on both the specific malfunction and the role of the regulated gene. In accordance with our screening, Spt6 positively contributed to the optimal operation of this global network. On the whole, this work uncovers a feedback control of ribosome biogenesis by fine-tuning transcription elongation in ribosome assembly factor-coding genes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Thanasis Margaritis
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Vicent Pelechano
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Macarena Morillo-Huesca
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed. Facultad de Biológicas, Universitat de València. Burjassot, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
45
|
Sdano MA, Fulcher JM, Palani S, Chandrasekharan MB, Parnell TJ, Whitby FG, Formosa T, Hill CP. A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. eLife 2017; 6:28723. [PMID: 28826505 PMCID: PMC5599234 DOI: 10.7554/elife.28723] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
We determined that the tandem SH2 domain of S. cerevisiae Spt6 binds the linker region of the RNA polymerase II subunit Rpb1 rather than the expected sites in its heptad repeat domain. The 4 nM binding affinity requires phosphorylation at Rpb1 S1493 and either T1471 or Y1473. Crystal structures showed that pT1471 binds the canonical SH2 pY site while pS1493 binds an unanticipated pocket 70 Å distant. Remarkably, the pT1471 phosphate occupies the phosphate-binding site of a canonical pY complex, while Y1473 occupies the position of a canonical pY side chain, with the combination of pT and Y mimicking a pY moiety. Biochemical data and modeling indicate that pY1473 can form an equivalent interaction, and we find that pT1471/pS1493 and pY1473/pS1493 combinations occur in vivo. ChIP-seq and genetic analyses demonstrate the importance of these interactions for recruitment of Spt6 to sites of transcription and for the maintenance of repressive chromatin.
Collapse
Affiliation(s)
- Matthew A Sdano
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - James M Fulcher
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Timothy J Parnell
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Frank G Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
46
|
Hainer SJ, Martens JA. Regulation of chaperone binding and nucleosome dynamics by key residues within the globular domain of histone H3. Epigenetics Chromatin 2016; 9:17. [PMID: 27134679 PMCID: PMC4851828 DOI: 10.1186/s13072-016-0066-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Nucleosomes have an important role in modulating access of DNA by regulatory factors. The role specific histone residues have in this process has been shown to be an important mechanism of transcription regulation. Previously, we identified eight amino acids in histones H3 and H4 that are required for nucleosome occupancy over highly transcribed regions of the genome. RESULTS We investigate the mechanism through which three of these previously identified histone H3 amino acids regulate nucleosome architecture. We find that histone H3 K122, Q120, and R49 are required for Spt2, Spt6, and Spt16 occupancies at genomic locations where transcription rates are high, but not over regions of low transcription rates. Furthermore, substitution at one residue, K122, located on the dyad axis of the nucleosome, results in improper reassembly and disassembly of nucleosomes, likely accounting for the transcription rate-dependent regulation by these mutant histones. CONCLUSIONS These data show that when specific amino acids of histone proteins are substituted, Spt2, Spt6, and Spt16 occupancies are reduced and nucleosome dynamics are altered. Therefore, these data support a mechanism for histone chaperone binding where these factors interact with histone proteins to promote their activities during transcription.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, LRB 560D, Worcester, MA 01604 USA ; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Joseph A Martens
- Shady Side Academy Senior School, 423 Fox Chapel Road, Pittsburgh, PA 15238 USA ; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
47
|
Gérard A, Ségéral E, Naughtin M, Abdouni A, Charmeteau B, Cheynier R, Rain JC, Emiliani S. The integrase cofactor LEDGF/p75 associates with Iws1 and Spt6 for postintegration silencing of HIV-1 gene expression in latently infected cells. Cell Host Microbe 2015; 17:107-17. [PMID: 25590759 DOI: 10.1016/j.chom.2014.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
The persistence of a latent reservoir containing transcriptionally silent, but replication-competent, integrated provirus is a serious challenge to HIV eradication. HIV integration is under the control of LEDGF/p75, the cellular cofactor of viral integrase. Investigating possible postintegration roles for LEDGF/p75, we find that LEDGF/p75 represses HIV expression in latently infected cells. LEDGF/p75 associated with two proteins involved in the control of gene expression and chromatin structure, Spt6 and Iws1, to form a stable complex. Iws1 plays a role in the establishment of latent infection, whereas Spt6 functions to recruit Iws1 and LEDGF/p75 to the silenced provirus and maintains histone occupancy at the HIV promoter. In latently infected cells, depletion of the complex results in reactivation of HIV expression Altogether, our results indicate that a complex containing LEDGF/p75, Iws1, and Spt6 participates in regulating postintegration steps of HIV latency.
Collapse
Affiliation(s)
- Annabelle Gérard
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France.
| | - Emmanuel Ségéral
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Monica Naughtin
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Ahmed Abdouni
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Bénédicte Charmeteau
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Rémi Cheynier
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | | | - Stéphane Emiliani
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France.
| |
Collapse
|
48
|
The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae. Genetics 2015; 201:1031-45. [PMID: 26416482 DOI: 10.1534/genetics.115.180794] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/20/2015] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Spt6 protein is a conserved chromatin factor with several distinct functional domains, including a natively unstructured 30-residue N-terminal region that binds competitively with Spn1 or nucleosomes. To uncover physiological roles of these interactions, we isolated histone mutations that suppress defects caused by weakening Spt6:Spn1 binding with the spt6-F249K mutation. The strongest suppressor was H2A-N39K, which perturbs the point of contact between the two H2A-H2B dimers in an assembled nucleosome. Substantial suppression also was observed when the H2A-H2B interface with H3-H4 was altered, and many members of this class of mutations also suppressed a defect in another essential histone chaperone, FACT. Spt6 is best known as an H3-H4 chaperone, but we found that it binds with similar affinity to H2A-H2B or H3-H4. Like FACT, Spt6 is therefore capable of binding each of the individual components of a nucleosome, but unlike FACT, Spt6 did not produce endonuclease-sensitive reorganized nucleosomes and did not displace H2A-H2B dimers from nucleosomes. Spt6 and FACT therefore have distinct activities, but defects can be suppressed by overlapping histone mutations. We also found that Spt6 and FACT together are nearly as abundant as nucleosomes, with ∼24,000 Spt6 molecules, ∼42,000 FACT molecules, and ∼75,000 nucleosomes per cell. Histone mutations that destabilize interfaces within nucleosomes therefore reveal multiple spatial regions that have both common and distinct roles in the functions of these two essential and abundant histone chaperones. We discuss these observations in terms of different potential roles for chaperones in both promoting the assembly of nucleosomes and monitoring their quality.
Collapse
|
49
|
Tesina P, Čermáková K, Hořejší M, Procházková K, Fábry M, Sharma S, Christ F, Demeulemeester J, Debyser Z, Rijck JD, Veverka V, Řezáčová P. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat Commun 2015; 6:7968. [PMID: 26245978 DOI: 10.1038/ncomms8968] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.
Collapse
Affiliation(s)
- Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Čermáková
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Magdalena Hořejší
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Procházková
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Subhalakshmi Sharma
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Frauke Christ
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jonas Demeulemeester
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
50
|
The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations. Mol Cell 2015; 58:1113-23. [PMID: 25959393 DOI: 10.1016/j.molcel.2015.03.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022]
Abstract
H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here we provide genomic and biochemical evidence that the RNA polymerase II (RNA Pol II) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Therefore, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters that otherwise may license or promote cryptic transcription.
Collapse
|