1
|
Leddy O, Ibrahim AM, Azam MS, Solomon S, Yu W, Schneewind O, Missiakas D. Screening a library of temperature-sensitive mutants to identify secretion factors in Staphylococcus aureus. J Bacteriol 2025; 207:e0043324. [PMID: 39817767 PMCID: PMC11841065 DOI: 10.1128/jb.00433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism Escherichia coli, but the Sec pathways of other bacteria such as the human pathogen Staphylococcus aureus differ in important ways from this model. Unlike in E. coli, a subset of precursors in S. aureus contains a YSIRK/GXXS (YSIRK) motif in an extended signal peptide. These proteins are secreted into the cross-wall compartment bounded by invaginating septal membranes during cell division. To gain insights into the factor(s) and mechanism(s) enabling protein secretion and spatial specificity in S. aureus, we isolated and screened a collection of temperature-sensitive (ts) mutants. These efforts identified at least one secA(ts) allele as well as mutations in the secG and pepV genes. A SecA pull-down experiment identified SecDF, all ribosomal proteins, several chaperones and proteases, as well as PepV, validating the genetic screen in identifying candidate cofactors of SecA in S. aureus.IMPORTANCEAll organisms use the Sec pathway for protein secretion, and key components of this pathway are essential for viability. The discovery of conditional loss-of-function mutants played an important role in defining the genetic basis of protein secretion in model organisms. In turn, the identification of Sec components facilitated mechanistic studies and revealed general rules for protein secretion but did not answer species-specific intricacies. Gram-positive bacteria, such as Staphylococcus aureus, restrict the secretion of some proteins into the septal membranes that bind their division site at mid-cell. Here, we screen a library of conditional temperature-sensitive mutants to define components of the Sec pathway of S. aureus and factors that may regulate its activity.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Muhammad S. Azam
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Sadie Solomon
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Wenqi Yu
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Njenga RK, Boele J, Drepper F, Sinha K, Marouda E, Huesgen PF, Blaby-Haas C, Koch HG. Ribosome-inactivation by a class of widely distributed C-tail anchored membrane proteins. Structure 2024; 32:2259-2275.e6. [PMID: 39419022 DOI: 10.1016/j.str.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in E. coli, constitute an abundant class of ribosome-hibernating proteins, which are conserved across all proteobacteria and some other bacterial phyla. Our data demonstrate that they inhibit in vitro protein synthesis by interacting with the 50S ribosomal subunit. In vivo cross-linking combined with mass spectrometry revealed their specific interactions with proteins surrounding the ribosomal tunnel exit and even their penetration into the ribosomal tunnel. Thus, YqjD/ElaB/YgaM inhibit translation by blocking the ribosomal tunnel and thus mimic the activity of antimicrobial peptides and macrolide antibiotics.
Collapse
Affiliation(s)
- Robert Karari Njenga
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Julian Boele
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Kasturica Sinha
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Eirini Marouda
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Pitter F Huesgen
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Crysten Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
4
|
Fiedler SM, Graumann PL. B. subtilis Sec and Srp Systems Show Dynamic Adaptations to Different Conditions of Protein Secretion. Cells 2024; 13:377. [PMID: 38474341 PMCID: PMC10930709 DOI: 10.3390/cells13050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
SecA is a widely conserved ATPase that drives the secretion of proteins across the cell membrane via the SecYEG translocon, while the SRP system is a key player in the insertion of membrane proteins via SecYEG. How SecA gains access to substrate proteins in Bacillus subtilis cells and copes with an increase in substrate availability during biotechnologically desired, high-level expression of secreted proteins is poorly understood. Using single molecule tracking, we found that SecA localization closely mimics that of ribosomes, and its molecule dynamics change similarly to those of ribosomes after inhibition of transcription or translation. These data suggest that B. subtilis SecA associates with signal peptides as they are synthesized at the ribosome, similar to the SRP system. In agreement with this, SecA is a largely mobile cytosolic protein; only a subset is statically associated with the cell membrane, i.e., likely with the Sec translocon. SecA dynamics were considerably different during the late exponential, transition, and stationary growth phases, revealing that single molecule dynamics considerably alter during different genetic programs in cells. During overproduction of a secretory protein, AmyE, SecA showed the strongest changes during the transition phase, i.e., where general protein secretion is high. To investigate whether the overproduction of AmyE also has an influence on other proteins that interact with SecYEG, we analyzed the dynamics of SecDF, YidC, and FtsY with and without AmyE overproduction. SecDF and YidC did not reveal considerable differences in single molecule dynamics during overexpression, while the SRP component FtsY changed markedly in its behavior and became more statically engaged. These findings indicate that the SRP pathway becomes involved in protein secretion upon an overload of proteins carrying a signal sequence. Thus, our data reveal high plasticity of the SecA and SRP systems in dealing with different needs for protein secretion.
Collapse
Affiliation(s)
| | - Peter L. Graumann
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany;
| |
Collapse
|
5
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Eismann L, Fijalkowski I, Galmozzi CV, Koubek J, Tippmann F, Van Damme P, Kramer G. Selective ribosome profiling reveals a role for SecB in the co-translational inner membrane protein biogenesis. Cell Rep 2022; 41:111776. [PMID: 36476862 DOI: 10.1016/j.celrep.2022.111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The chaperone SecB has been implicated in de novo protein folding and translocation across the membrane, but it remains unclear which nascent polypeptides SecB binds, when during translation SecB acts, how SecB function is coordinated with other chaperones and targeting factors, and how polypeptide engagement contributes to protein biogenesis. Using selective ribosome profiling, we show that SecB binds many nascent cytoplasmic and translocated proteins generally late during translation and controlled by the chaperone trigger factor. Revealing an uncharted role in co-translational translocation, inner membrane proteins (IMPs) are the most prominent nascent SecB interactors. Unlike other substrates, IMPs are bound early during translation, following the membrane targeting by the signal recognition particle. SecB remains bound until translation is terminated, and contributes to membrane insertion. Our study establishes a role of SecB in the co-translational maturation of proteins from all cellular compartments and functionally implicates cytosolic chaperones in membrane protein biogenesis.
Collapse
Affiliation(s)
- Lena Eismann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Carla Verónica Galmozzi
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013 Seville, Spain
| | - Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Frank Tippmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
SecA2 Associates with Translating Ribosomes and Contributes to the Secretion of Potent IFN-β Inducing RNAs. Int J Mol Sci 2022; 23:ijms232315021. [PMID: 36499346 PMCID: PMC9736482 DOI: 10.3390/ijms232315021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Protein secretion plays a central role in modulating interactions of the human pathogen Listeria monocytogenes with its environment. Recently, secretion of RNA has emerged as an important strategy used by the pathogen to manipulate the host cell response to its advantage. In general, the Sec-dependent translocation pathway is a major route for protein secretion in L. monocytogenes, but mechanistic insights into the secretion of RNA by these pathways are lacking. Apart from the classical SecA1 secretion pathway, L. monocytogenes also encodes for a SecA paralogue (SecA2) which targets the export of a specific subset of proteins, some of which are involved in virulence. Here, we demonstrated that SecA2 co-sediments with translating ribosomes and provided evidence that it associates with a subset of secreted small non-coding RNAs (sRNAs) that induce high levels of IFN-β response in host cells. We found that enolase, which is translocated by a SecA2-dependent mechanism, binds to several sRNAs, suggesting a pathway by which sRNAs are targeted to the supernatant of L. monocytogenes.
Collapse
|
9
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Kaushik S, He H, Dalbey RE. Bacterial Signal Peptides- Navigating the Journey of Proteins. Front Physiol 2022; 13:933153. [PMID: 35957980 PMCID: PMC9360617 DOI: 10.3389/fphys.2022.933153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.
Collapse
|
11
|
Zhu Z, Wang S, Shan SO. Ribosome profiling reveals multiple roles of SecA in cotranslational protein export. Nat Commun 2022; 13:3393. [PMID: 35697696 PMCID: PMC9192764 DOI: 10.1038/s41467-022-31061-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
SecA, an ATPase known to posttranslationally translocate secretory proteins across the bacterial plasma membrane, also binds ribosomes, but the role of SecA’s ribosome interaction has been unclear. Here, we used a combination of ribosome profiling methods to investigate the cotranslational actions of SecA. Our data reveal the widespread accumulation of large periplasmic loops of inner membrane proteins in the cytoplasm during their cotranslational translocation, which are specifically recognized and resolved by SecA in coordination with the proton motive force (PMF). Furthermore, SecA associates with 25% of secretory proteins with highly hydrophobic signal sequences at an early stage of translation and mediates their cotranslational transport. In contrast, the chaperone trigger factor (TF) delays SecA engagement on secretory proteins with weakly hydrophobic signal sequences, thus enforcing a posttranslational mode of their translocation. Our results elucidate the principles of SecA-driven cotranslational protein translocation and reveal a hierarchical network of protein export pathways in bacteria. Using a combination of ribosome profiling methods, Zhu et al. investigate the principles governing the cotranslational interaction of SecA with nascent proteins and reveal a hierarchical organization of protein export pathways in bacteria.
Collapse
Affiliation(s)
- Zikun Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
12
|
Srinivasan K, Banerjee A, Baid P, Dhur A, Sengupta J. Ribosome-membrane crosstalk: Co-translational targeting pathways of proteins across membranes in prokaryotes and eukaryotes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:163-198. [PMID: 35034718 DOI: 10.1016/bs.apcsb.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ribosomes are the molecular machine of living cells designed for decoding mRNA-encoded genetic information into protein. Being sophisticated machinery, both in design and function, the ribosome not only carries out protein synthesis, but also coordinates several other ribosome-associated cellular processes. One such process is the translocation of proteins across or into the membrane depending on their secretory or membrane-associated nature. These proteins comprise a large portion of a cell's proteome and act as key factors for cellular survival as well as several crucial functional pathways. Protein transport to extra- and intra-cytosolic compartments (across the eukaryotic endoplasmic reticulum (ER) or across the prokaryotic plasma membrane) or insertion into membranes majorly occurs through an evolutionarily conserved protein-conducting channel called translocon (eukaryotic Sec61 or prokaryotic SecYEG channels). Targeting proteins to the membrane-bound translocon may occur via post-translational or co-translational modes and it is often mediated by recognition of an N-terminal signal sequence in the newly synthesizes polypeptide chain. Co-translational translocation is coupled to protein synthesis where the ribosome-nascent chain complex (RNC) itself is targeted to the translocon. Here, in the light of recent advances in structural and functional studies, we discuss our current understanding of the mechanistic models of co-translational translocation, coordinated by the actively translating ribosomes, in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Krishnamoorthi Srinivasan
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aneek Banerjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Baid
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ankit Dhur
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jayati Sengupta
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
13
|
Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci 2021; 8:683132. [PMID: 34195228 PMCID: PMC8237284 DOI: 10.3389/fmolb.2021.683132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are the key instruments of bacterial protein homeostasis. Chaperones not only facilitate folding of client proteins, but also transport them, prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite this seemingly large variety, single chaperones can perform several of these functions even on multiple different clients, thus suggesting a single biophysical mechanism underlying. Numerous recently elucidated structures of bacterial chaperone–client complexes show that dynamic interactions between chaperones and their client proteins stabilize conformationally flexible non-native client states, which results in client protein denaturation. Based on these findings, we propose chaotropicity as a suitable biophysical concept to rationalize the generic activity of chaperones. We discuss the consequences of applying this concept in the context of ATP-dependent and -independent chaperones and their functional regulation.
Collapse
|
14
|
Koubek J, Schmitt J, Galmozzi CV, Kramer G. Mechanisms of Cotranslational Protein Maturation in Bacteria. Front Mol Biosci 2021; 8:689755. [PMID: 34113653 PMCID: PMC8185961 DOI: 10.3389/fmolb.2021.689755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Growing cells invest a significant part of their biosynthetic capacity into the production of proteins. To become functional, newly-synthesized proteins must be N-terminally processed, folded and often translocated to other cellular compartments. A general strategy is to integrate these protein maturation processes with translation, by cotranslationally engaging processing enzymes, chaperones and targeting factors with the nascent polypeptide. Precise coordination of all factors involved is critical for the efficiency and accuracy of protein synthesis and cellular homeostasis. This review provides an overview of the current knowledge on cotranslational protein maturation, with a focus on the production of cytosolic proteins in bacteria. We describe the role of the ribosome and the chaperone network in protein folding and how the dynamic interplay of all cotranslationally acting factors guides the sequence of cotranslational events. Finally, we discuss recent data demonstrating the coupling of protein synthesis with the assembly of protein complexes and end with a brief discussion of outstanding questions and emerging concepts in the field of cotranslational protein maturation.
Collapse
Affiliation(s)
- Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jaro Schmitt
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carla Veronica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
15
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Jiang C, Wynne M, Huber D. How Quality Control Systems AID Sec-Dependent Protein Translocation. Front Mol Biosci 2021; 8:669376. [PMID: 33928127 PMCID: PMC8076867 DOI: 10.3389/fmolb.2021.669376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The evolutionarily conserved Sec machinery is responsible for transporting proteins across the cytoplasmic membrane. Protein substrates of the Sec machinery must be in an unfolded conformation in order to be translocated across (or inserted into) the cytoplasmic membrane. In bacteria, the requirement for unfolded proteins is strict: substrate proteins that fold (or misfold) prematurely in the cytoplasm prior to translocation become irreversibly trapped in the cytoplasm. Partially folded Sec substrate proteins and stalled ribosomes containing nascent Sec substrates can also inhibit translocation by blocking (i.e., “jamming”) the membrane-embedded Sec machinery. To avoid these issues, bacteria have evolved a complex network of quality control systems to ensure that Sec substrate proteins do not fold in the cytoplasm. This quality control network can be broken into three branches, for which we have defined the acronym “AID”: (i) avoidance of cytoplasmic intermediates through cotranslationally channeling newly synthesized Sec substrates to the Sec machinery; (ii) inhibition of folding Sec substrate proteins that transiently reside in the cytoplasm by molecular chaperones and the requirement for posttranslational modifications; (iii) destruction of products that could potentially inhibit translocation. In addition, several stress response pathways help to restore protein-folding homeostasis when environmental conditions that inhibit translocation overcome the AID quality control systems.
Collapse
Affiliation(s)
- Chen Jiang
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Max Wynne
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Damon Huber
- School of Biosciences and the Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
18
|
Elfageih R, Karyolaimos A, Kemp G, de Gier J, von Heijne G, Kudva R. Cotranslational folding of alkaline phosphatase in the periplasm of Escherichia coli. Protein Sci 2020; 29:2028-2037. [PMID: 32790204 PMCID: PMC7513700 DOI: 10.1002/pro.3927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Abstract
Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond-containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild-type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding-induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide-stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra-cytosolic compartment, like the periplasm.
Collapse
Affiliation(s)
- Rageia Elfageih
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | | | - Grant Kemp
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Jan‐Willem de Gier
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Gunnar von Heijne
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Science for Life Laboratory Stockholm UniversitySolnaSweden
| | - Renuka Kudva
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| |
Collapse
|
19
|
Lindič N, Loboda J, Usenik A, Vidmar R, Turk D. The Structure of Clostridioides difficile SecA2 ATPase Exposes Regions Responsible for Differential Target Recognition of the SecA1 and SecA2-Dependent Systems. Int J Mol Sci 2020; 21:ijms21176153. [PMID: 32858965 PMCID: PMC7503281 DOI: 10.3390/ijms21176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
SecA protein is a major component of the general bacterial secretory system. It is an ATPase that couples nucleotide hydrolysis to protein translocation. In some Gram-positive pathogens, a second paralogue, SecA2, exports a different set of substrates, usually virulence factors. To identify SecA2 features different from SecA(1)s, we determined the crystal structure of SecA2 from Clostridioides difficile, an important nosocomial pathogen, in apo and ATP-γ-S-bound form. The structure reveals a closed monomer lacking the C-terminal tail (CTT) with an otherwise similar multidomain organization to its SecA(1) homologues and conserved binding of ATP-γ-S. The average in vitro ATPase activity rate of C. difficile SecA2 was 2.6 ± 0.1 µmolPi/min/µmol. Template-based modeling combined with evolutionary conservation analysis supports a model where C. difficile SecA2 in open conformation binds the target protein, ensures its movement through the SecY channel, and enables dimerization through PPXD/HWD cross-interaction of monomers during the process. Both approaches exposed regions with differences between SecA(1) and SecA2 homologues, which are in agreement with the unique adaptation of SecA2 proteins for a specific type of substrate, a role that can be addressed in further studies.
Collapse
Affiliation(s)
- Nataša Lindič
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
| | - Jure Loboda
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
| | - Aleksandra Usenik
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
| | - Dušan Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (N.L.); (J.L.); (A.U.); (R.V.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-477-3857
| |
Collapse
|
20
|
Cranford-Smith T, Jamshad M, Jeeves M, Chandler RA, Yule J, Robinson A, Alam F, Dunne KA, Aponte Angarita EH, Alanazi M, Carter C, Henderson IR, Lovett JE, Winn P, Knowles T, Huber D. Iron is a ligand of SecA-like metal-binding domains in vivo. J Biol Chem 2020; 295:7516-7528. [PMID: 32241912 PMCID: PMC7247292 DOI: 10.1074/jbc.ra120.012611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The ATPase SecA is an essential component of the bacterial Sec machinery, which transports proteins across the cytoplasmic membrane. Most SecA proteins contain a long C-terminal tail (CTT). In Escherichia coli, the CTT contains a structurally flexible linker domain and a small metal-binding domain (MBD). The MBD coordinates zinc via a conserved cysteine-containing motif and binds to SecB and ribosomes. In this study, we screened a high-density transposon library for mutants that affect the susceptibility of E. coli to sodium azide, which inhibits SecA-mediated translocation. Results from sequencing this library suggested that mutations removing the CTT make E. coli less susceptible to sodium azide at subinhibitory concentrations. Copurification experiments suggested that the MBD binds to iron and that azide disrupts iron binding. Azide also disrupted binding of SecA to membranes. Two other E. coli proteins that contain SecA-like MBDs, YecA and YchJ, also copurified with iron, and NMR spectroscopy experiments indicated that YecA binds iron via its MBD. Competition experiments and equilibrium binding measurements indicated that the SecA MBD binds preferentially to iron and that a conserved serine is required for this specificity. Finally, structural modeling suggested a plausible model for the octahedral coordination of iron. Taken together, our results suggest that SecA-like MBDs likely bind to iron in vivo.
Collapse
Affiliation(s)
- Tamar Cranford-Smith
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohammed Jamshad
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rachael A Chandler
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jack Yule
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ashley Robinson
- Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Farhana Alam
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Karl A Dunne
- Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Edwin H Aponte Angarita
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mashael Alanazi
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Biology, College of Science, Jouf University, Saudi Arabia
| | - Cailean Carter
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Janet E Lovett
- SUPA, School of Physics and Astronomy and BSRC, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Peter Winn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Timothy Knowles
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Damon Huber
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
21
|
Nascent SecM chain interacts with outer ribosomal surface to stabilize translation arrest. Biochem J 2020; 477:557-566. [PMID: 31913464 PMCID: PMC6993859 DOI: 10.1042/bcj20190723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
SecM, a bacterial secretion monitor protein, posttranscriptionally regulates downstream gene expression via translation elongation arrest. SecM contains a characteristic amino acid sequence called the arrest sequence at its C-terminus, and this sequence acts within the ribosomal exit tunnel to stop translation. It has been widely assumed that the arrest sequence within the ribosome tunnel is sufficient for translation arrest. We have previously shown that the nascent SecM chain outside the ribosomal exit tunnel stabilizes translation arrest, but the molecular mechanism is unknown. In this study, we found that residues 57–98 of the nascent SecM chain are responsible for stabilizing translation arrest. We performed alanine/serine-scanning mutagenesis of residues 57–98 to identify D79, Y80, W81, H84, R87, I90, R91, and F95 as the key residues responsible for stabilization. The residues were predicted to be located on and near an α-helix-forming segment. A striking feature of the α-helix is the presence of an arginine patch, which interacts with the negatively charged ribosomal surface. A photocross-linking experiment showed that Y80 is adjacent to the ribosomal protein L23, which is located next to the ribosomal exit tunnel when translation is arrested. Thus, the folded nascent SecM chain that emerges from the ribosome exit tunnel interacts with the outer surface of the ribosome to stabilize translation arrest.
Collapse
|
22
|
Abstract
More than a third of all bacterial polypeptides, comprising the 'exportome', are transported to extracytoplasmic locations. Most of the exportome is targeted and inserts into ('membranome') or crosses ('secretome') the plasma membrane. The membranome and secretome use distinct targeting signals and factors, and driving forces, but both use the ubiquitous and essential Sec translocase and its SecYEG protein-conducting channel. Membranome export is co-translational and uses highly hydrophobic N-terminal signal anchor sequences recognized by the signal recognition particle on the ribosome, that also targets C-tail anchor sequences. Translating ribosomes drive movement of these polypeptides through the lateral gate of SecY into the inner membrane. On the other hand, secretome export is post-translational and carries two types of targeting signals: cleavable N-terminal signal peptides and multiple short hydrophobic targeting signals in their mature domains. Secretome proteins remain translocation competent due to occupying loosely folded to completely non-folded states during targeting. This is accomplished mainly by the intrinsic properties of mature domains and assisted by signal peptides and/or chaperones. Secretome proteins bind to the dimeric SecA subunit of the translocase. SecA converts from a dimeric preprotein receptor to a monomeric ATPase motor and drives vectorial crossing of chains through SecY aided by the proton motive force. Signal peptides are removed by signal peptidases and translocated chains fold or follow subsequent trafficking.
Collapse
|
23
|
Yang CI, Hsieh HH, Shan SO. Timing and specificity of cotranslational nascent protein modification in bacteria. Proc Natl Acad Sci U S A 2019; 116:23050-23060. [PMID: 31666319 PMCID: PMC6859321 DOI: 10.1073/pnas.1912264116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nascent polypeptide exit site of the ribosome is a crowded environment where multiple ribosome-associated protein biogenesis factors (RPBs) compete for the nascent polypeptide to influence their localization, folding, or quality control. Here we address how N-terminal methionine excision (NME), a ubiquitous process crucial for the maturation of over 50% of the bacterial proteome, occurs in a timely and selective manner in this crowded environment. In bacteria, NME is mediated by 2 essential enzymes, peptide deformylase (PDF) and methionine aminopeptidase (MAP). We show that the reaction of MAP on ribosome-bound nascent chains approaches diffusion-limited rates, allowing immediate methionine excision of optimal substrates after deformylation. Specificity is achieved by kinetic competition of NME with translation elongation and by regulation from other RPBs, which selectively narrow the processing time window for suboptimal substrates. A mathematical model derived from the data accurately predicts cotranslational NME efficiency in the cytosol. Our results demonstrate how a fundamental enzymatic activity is reshaped by its associated macromolecular environment to optimize both efficiency and selectivity, and provides a platform to study other cotranslational protein biogenesis pathways.
Collapse
Affiliation(s)
- Chien-I Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Hao-Hsuan Hsieh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
24
|
Wang S, Jomaa A, Jaskolowski M, Yang CI, Ban N, Shan SO. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nat Struct Mol Biol 2019; 26:919-929. [PMID: 31570874 PMCID: PMC6858539 DOI: 10.1038/s41594-019-0297-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Cotranslational protein targeting is a conserved process for membrane protein biogenesis. In Escherichia coli, the essential ATPase SecA was found to cotranslationally target a subset of nascent membrane proteins to the SecYEG translocase at the plasma membrane. The molecular mechanism of this pathway remains unclear. Here we use biochemical and cryoelectron microscopy analyses to show that the amino-terminal amphipathic helix of SecA and the ribosomal protein uL23 form a composite binding site for the transmembrane domain (TMD) on the nascent protein. This binding mode further enables recognition of charged residues flanking the nascent TMD and thus explains the specificity of SecA recognition. Finally, we show that membrane-embedded SecYEG promotes handover of the translating ribosome from SecA to the translocase via a concerted mechanism. Our work provides a molecular description of the SecA-mediated cotranslational targeting pathway and demonstrates an unprecedented role of the ribosome in shielding nascent TMDs.
Collapse
Affiliation(s)
- Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Chien-I Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
25
|
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG. Co-translational protein targeting in bacteria. FEMS Microbiol Lett 2019; 365:4966980. [PMID: 29790984 DOI: 10.1093/femsle/fny095] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and have to be transported into or across the cytoplasmic membrane. Bacteria use multiple protein transport systems in parallel, but the majority of proteins engage two distinct targeting systems. One is the co-translational targeting by two universally conserved GTPases, the signal recognition particle (SRP) and its receptor FtsY, which deliver inner membrane proteins to either the SecYEG translocon or the YidC insertase for membrane insertion. The other targeting system depends on the ATPase SecA, which targets secretory proteins, i.e. periplasmic and outer membrane proteins, to SecYEG for their subsequent ATP-dependent translocation. While SRP selects its substrates already very early during their synthesis, the recognition of secretory proteins by SecA is believed to occur primarily after translation termination, i.e. post-translationally. In this review we highlight recent progress on how SRP recognizes its substrates at the ribosome and how the fidelity of the targeting reaction to SecYEG is maintained. We furthermore discuss similarities and differences in the SRP-dependent targeting to either SecYEG or YidC and summarize recent results that suggest that some membrane proteins are co-translationally targeted by SecA.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Lara Knüpffer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany
| | - Rossella Asti
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| |
Collapse
|
26
|
Cranford-Smith T, Huber D. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett 2019; 365:4969678. [PMID: 29790985 PMCID: PMC5963308 DOI: 10.1093/femsle/fny093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
In bacteria, translocation of most soluble secreted proteins (and outer membrane proteins in Gram-negative bacteria) across the cytoplasmic membrane by the Sec machinery is mediated by the essential ATPase SecA. At its core, this machinery consists of SecA and the integral membrane proteins SecYEG, which form a protein conducting channel in the membrane. Proteins are recognised by the Sec machinery by virtue of an internally encoded targeting signal, which usually takes the form of an N-terminal signal sequence. In addition, substrate proteins must be maintained in an unfolded conformation in the cytoplasm, prior to translocation, in order to be competent for translocation through SecYEG. Recognition of substrate proteins occurs via SecA—either through direct recognition by SecA or through secondary recognition by a molecular chaperone that delivers proteins to SecA. Substrate proteins are then screened for the presence of a functional signal sequence by SecYEG. Proteins with functional signal sequences are translocated across the membrane in an ATP-dependent fashion. The current research investigating each of these steps is reviewed here.
Collapse
Affiliation(s)
- Tamar Cranford-Smith
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| | - Damon Huber
- Institute for Microbiology and Infection School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT, UK
| |
Collapse
|
27
|
Abstract
Bacterial protein transport via the conserved SecYEG translocon is generally classified as either cotranslational, i.e., when transport is coupled to translation, or posttranslational, when translation and transport are separated. We show here that the ATPase SecA, which is considered to bind its substrates posttranslationally, already scans the ribosomal tunnel for potential substrates. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the ribosomal surface. This is remarkably similar to the ribosome-binding mode of the signal recognition particle, which mediates cotranslational transport. Our data reveal a striking plasticity of protein transport pathways, which likely enable bacteria to efficiently recognize and transport a large number of highly different substrates within their short generation time. Bacteria execute a variety of protein transport systems for maintaining the proper composition of their different cellular compartments. The SecYEG translocon serves as primary transport channel and is engaged in transporting two different substrate types. Inner membrane proteins are cotranslationally inserted into the membrane after their targeting by the signal recognition particle (SRP). In contrast, secretory proteins are posttranslationally translocated by the ATPase SecA. Recent data indicate that SecA can also bind to ribosomes close to the tunnel exit. We have mapped the interaction of SecA with translating and nontranslating ribosomes and demonstrate that the N terminus and the helical linker domain of SecA bind to an acidic patch on the surface of the ribosomal protein uL23. Intriguingly, both also insert deeply into the ribosomal tunnel to contact the intratunnel loop of uL23, which serves as a nascent chain sensor. This binding pattern is remarkably similar to that of SRP and indicates an identical interaction mode of the two targeting factors with ribosomes. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the surface of uL23. Our data further demonstrate that ribosome and membrane binding of SecA are mutually exclusive, as both events depend on the N terminus of SecA. Our study highlights the enormous plasticity of bacterial protein transport systems and reveals that the discrimination between SRP and SecA substrates is already initiated at the ribosome.
Collapse
|
28
|
Loos MS, Ramakrishnan R, Vranken W, Tsirigotaki A, Tsare EP, Zorzini V, Geyter JD, Yuan B, Tsamardinos I, Klappa M, Schymkowitz J, Rousseau F, Karamanou S, Economou A. Structural Basis of the Subcellular Topology Landscape of Escherichia coli. Front Microbiol 2019; 10:1670. [PMID: 31404336 PMCID: PMC6677119 DOI: 10.3389/fmicb.2019.01670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 11/21/2022] Open
Abstract
Cellular proteomes are distributed in multiple compartments: on DNA, ribosomes, on and inside membranes, or they become secreted. Structural properties that allow polypeptides to occupy subcellular niches, particularly to after crossing membranes, remain unclear. We compared intrinsic and extrinsic features in cytoplasmic and secreted polypeptides of the Escherichia coli K-12 proteome. Structural features between the cytoplasmome and secretome are sharply distinct, such that a signal peptide-agnostic machine learning tool distinguishes cytoplasmic from secreted proteins with 95.5% success. Cytoplasmic polypeptides are enriched in aliphatic, aromatic, charged and hydrophobic residues, unique folds and higher early folding propensities. Secretory polypeptides are enriched in polar/small amino acids, β folds, have higher backbone dynamics, higher disorder and contact order and are more often intrinsically disordered. These non-random distributions and experimental evidence imply that evolutionary pressure selected enhanced secretome flexibility, slow folding and looser structures, placing the secretome in a distinct protein class. These adaptations protect the secretome from premature folding during its cytoplasmic transit, optimize its lipid bilayer crossing and allowed it to acquire cell envelope specific chemistries. The latter may favor promiscuous multi-ligand binding, sensing of stress and cell envelope structure changes. In conclusion, enhanced flexibility, slow folding, looser structures and unique folds differentiate the secretome from the cytoplasmome. These findings have wide implications on the structural diversity and evolution of modern proteomes and the protein folding problem.
Collapse
Affiliation(s)
- Maria S Loos
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Reshmi Ramakrishnan
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium.,VIB Switch Laboratory, Department for Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, Free University of Brussels, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel and Center for Structural Biology, Brussels, Belgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Evrydiki-Pandora Tsare
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Patras, Greece
| | - Valentina Zorzini
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jozefien De Geyter
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Biao Yuan
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ioannis Tsamardinos
- Gnosis Data Analysis PC, Heraklion, Greece.,Department of Computer Science, University of Crete, Heraklion, Greece
| | - Maria Klappa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Patras, Greece
| | - Joost Schymkowitz
- VIB Switch Laboratory, Department for Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Department for Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven, Belgium.,Gnosis Data Analysis PC, Heraklion, Greece
| |
Collapse
|
29
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
30
|
Jamshad M, Knowles TJ, White SA, Ward DG, Mohammed F, Rahman KF, Wynne M, Hughes GW, Kramer G, Bukau B, Huber D. The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity. eLife 2019; 8:48385. [PMID: 31246174 PMCID: PMC6620043 DOI: 10.7554/elife.48385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022] Open
Abstract
In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA binds ribosomes and recognises nascent substrate proteins, but the molecular mechanism of nascent substrate recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.
Collapse
Affiliation(s)
- Mohammed Jamshad
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Knowles
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Scott A White
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Kazi Fahmida Rahman
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Max Wynne
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth W Hughes
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ), ZMBH-DKFZ Alliance, Heidelberg, Germany
| | - Damon Huber
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Kramer G, Shiber A, Bukau B. Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annu Rev Biochem 2019; 88:337-364. [DOI: 10.1146/annurev-biochem-013118-111717] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.
Collapse
Affiliation(s)
- Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Ayala Shiber
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| |
Collapse
|
32
|
Queiroz RML, Smith T, Villanueva E, Marti-Solano M, Monti M, Pizzinga M, Mirea DM, Ramakrishna M, Harvey RF, Dezi V, Thomas GH, Willis AE, Lilley KS. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat Biotechnol 2019; 37:169-178. [PMID: 30607034 DOI: 10.1038/s41587-018-0001-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
Existing high-throughput methods to identify RNA-binding proteins (RBPs) are based on capture of polyadenylated RNAs and cannot recover proteins that interact with nonadenylated RNAs, including long noncoding RNA, pre-mRNAs and bacterial RNAs. We present orthogonal organic phase separation (OOPS), which does not require molecular tagging or capture of polyadenylated RNA, and apply it to recover cross-linked protein-RNA and free protein, or protein-bound RNA and free RNA, in an unbiased way. We validated OOPS in HEK293, U2OS and MCF10A human cell lines, and show that 96% of proteins recovered were bound to RNA. We show that all long RNAs can be cross-linked to proteins, and recovered 1,838 RBPs, including 926 putative novel RBPs. OOPS is approximately 100-fold more efficient than existing methods and can enable analyses of dynamic RNA-protein interactions. We also characterize dynamic changes in RNA-protein interactions in mammalian cells following nocodazole arrest, and present a bacterial RNA-interactome for Escherichia coli. OOPS is compatible with downstream proteomics and RNA sequencing, and can be applied in any organism.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | - Mie Monti
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Dan-Mircea Mirea
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | | | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Vandenberk N, Karamanou S, Portaliou AG, Zorzini V, Hofkens J, Hendrix J, Economou A. The Preprotein Binding Domain of SecA Displays Intrinsic Rotational Dynamics. Structure 2018; 27:90-101.e6. [PMID: 30471924 DOI: 10.1016/j.str.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
Abstract
SecA converts ATP energy to protein translocation work. Together with the membrane-embedded SecY channel it forms the bacterial protein translocase. How secretory proteins bind to SecA and drive conformational cascades to promote their secretion remains unknown. To address this, we focus on the preprotein binding domain (PBD) of SecA. PBD crystalizes in three distinct states, swiveling around its narrow stem. Here, we examined whether PBD displays intrinsic dynamics in solution using single-molecule Förster resonance energy transfer (smFRET). Unique cysteinyl pairs on PBD and apposed domains were labeled with donor/acceptor dyes. Derivatives were analyzed using pulsed interleaved excitation and multi-parameter fluorescence detection. The PBD undergoes significant rotational motions, occupying at least three distinct states in dimeric and four in monomeric soluble SecA. Nucleotides do not affect smFRET-detectable PBD dynamics. These findings lay the foundations for single-molecule dissection of translocase mechanics and suggest models for possible PBD involvement during catalysis.
Collapse
Affiliation(s)
- Niels Vandenberk
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Athina G Portaliou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Valentina Zorzini
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jelle Hendrix
- KU Leuven, Department of Chemistry, Division for Molecular Imaging and Photonics, Laboratory for Photochemistry and Spectroscopy, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Molecular Bacteriology, Herestraat 49, Gasthuisberg Campus, B-3000 Leuven, Belgium.
| |
Collapse
|
34
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
35
|
Knyazev DG, Kuttner R, Zimmermann M, Sobakinskaya E, Pohl P. Driving Forces of Translocation Through Bacterial Translocon SecYEG. J Membr Biol 2018; 251:329-343. [PMID: 29330604 PMCID: PMC6028853 DOI: 10.1007/s00232-017-0012-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022]
Abstract
This review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage. Second we will discuss the power stroke and Brownian ratcheting models of substrate translocation and the role that the two models assign to the putative driving forces: (i) ATP (SecA) and GTP (ribosome) hydrolysis, (ii) interaction with accessory proteins, (iii) membrane partitioning and folding, (iv) proton motive force (PMF), and (v) entropic contributions. Our analysis underlines how important energized membranes are for unravelling the translocation mechanism in future experiments.
Collapse
Affiliation(s)
- Denis G Knyazev
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria.
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | | | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| |
Collapse
|
36
|
Wang S, Yang CI, Shan SO. SecA mediates cotranslational targeting and translocation of an inner membrane protein. J Cell Biol 2017; 216:3639-3653. [PMID: 28928132 PMCID: PMC5674894 DOI: 10.1083/jcb.201704036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 12/02/2022] Open
Abstract
Protein targeting to the bacterial plasma membrane was generally thought to occur via two major pathways: cotranslational targeting by signal recognition particle (SRP) and posttranslational targeting by SecA and SecB. Recently, SecA was found to also bind ribosomes near the nascent polypeptide exit tunnel, but the function of this SecA-ribosome contact remains unclear. In this study, we show that SecA cotranslationally recognizes the nascent chain of an inner membrane protein, RodZ, with high affinity and specificity. In vitro reconstitution and in vivo targeting assays show that SecA is necessary and sufficient to direct the targeting and translocation of RodZ to the bacterial plasma membrane in an obligatorily cotranslational mechanism. Sequence elements upstream and downstream of the RodZ transmembrane domain dictate nascent polypeptide selection by SecA instead of the SRP machinery. These findings identify a new route for the targeting of inner membrane proteins in bacteria and highlight the diversity of targeting pathways that enables an organism to accommodate diverse nascent proteins.
Collapse
Affiliation(s)
- Shuai Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Chien-I Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
37
|
Abstract
The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway.IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.
Collapse
|
38
|
Abstract
We came together in Leeds to commemorate and celebrate the life and achievements of Prof. Stephen Baldwin. For many years we, together with Sheena Radford and Roman Tuma (colleagues also of the University of Leeds), have worked together on the problem of protein translocation through the essential and ubiquitous Sec system. Inspired and helped by Steve we may finally be making progress. My seminar described our latest hypothesis for the molecular mechanism of protein translocation, supported by results collected in Bristol and Leeds on the tractable bacterial secretion process–commonly known as the Sec system; work that will be published elsewhere. Below is a description of the alternative and contested models for protein translocation that we all have been contemplating for many years. This review will consider their pros and cons.
Collapse
|
39
|
Denks K, Sliwinski N, Erichsen V, Borodkina B, Origi A, Koch HG. The signal recognition particle contacts uL23 and scans substrate translation inside the ribosomal tunnel. Nat Microbiol 2017; 2:16265. [PMID: 28134917 DOI: 10.1038/nmicrobiol.2016.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/09/2016] [Indexed: 01/12/2023]
Abstract
The signal recognition particle (SRP) delivers ∼25% of all bacterial proteins to the membrane for cotranslational insertion. However, a comprehensive model on how the low-abundant SRP scans the vast number of translating ribosomes to identify the correct substrates is lacking. Here, we show that the C-terminal helix of the signal-sequence-binding domain of SRP penetrates into the ribosomal tunnel and contacts the intra-tunnel loop of ribosomal protein uL23. This allows SRP to obtain information about the translational status of the ribosome and possibly the character of the approaching nascent chain. Correct substrates reposition the C-terminal helix of SRP, which facilitates stable binding of the signal sequence by the M-domain of SRP. Thus, SRP already surveys translating ribosomes before the signal sequence is surface exposed. This early interaction probably enables the small number of SRP molecules to scan many ribosomes and to initiate efficient targeting of proper substrates.
Collapse
Affiliation(s)
- Kärt Denks
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Nadine Sliwinski
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Veronika Erichsen
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Bogdana Borodkina
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Andrea Origi
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs Universität Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
40
|
Abstract
A paper published in this issue of the Journal of Bacteriology (D. Huber, M. Jamshad, R. Hanmer, D. Schibich, K. Döring, I. Marcomini, G. Kramer, and B. Bukau, J Bacteriol 199:e0622-16, 2017, https://doi.org/10.1128/JB.00622-16) provides us with a timely reminder that all is not as clear as we had previously thought in the general bacterial secretion system. The paper describes a new mode of secretion through the Sec system—“uncoupled cotranslocation”—for the passage of proteins across the bacterial inner membrane and suggests that we might rethink the nature and mechanism of the targeting and transport steps toward protein export.
Collapse
|
41
|
SecA Cotranslationally Interacts with Nascent Substrate Proteins In Vivo. J Bacteriol 2016; 199:JB.00622-16. [PMID: 27795329 PMCID: PMC5198489 DOI: 10.1128/jb.00622-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022] Open
Abstract
SecA is an essential component of the Sec machinery in bacteria, which is responsible for transporting proteins across the cytoplasmic membrane. Recent work from our laboratory indicates that SecA binds to ribosomes. Here, we used two different approaches to demonstrate that SecA also interacts with nascent polypeptides in vivo and that these polypeptides are Sec substrates. First, we photo-cross-linked SecA to ribosomes in vivo and identified mRNAs that copurify with SecA. Microarray analysis of the copurifying mRNAs indicated a strong enrichment for proteins containing Sec-targeting sequences. Second, we used a 2-dimensional (2-D) gel approach to analyze radioactively labeled nascent polypeptides that copurify with SecA, including maltose binding protein, a well-characterized SecA substrate. The interaction of SecA with nascent chains was not strongly affected in cells lacking SecB or trigger factor, both of which also interact with nascent Sec substrates. Indeed, the ability of SecB to interact with nascent chains was disrupted in strains in which the interaction between SecA and the ribosome was defective. Analysis of the interaction of SecA with purified ribosomes containing arrested nascent chains in vitro indicates that SecA can begin to interact with a variety of nascent chains when they reach a length of ∼110 amino acids, which is considerably shorter than the length required for interaction with SecB. Our results suggest that SecA cotranslationally recognizes nascent Sec substrates and that this recognition could be required for the efficient delivery of these proteins to the membrane-embedded Sec machinery. IMPORTANCE SecA is an ATPase that provides the energy for the translocation of proteins across the cytoplasmic membrane by the Sec machinery in bacteria. The translocation of most of these proteins is uncoupled from protein synthesis and is frequently described as “posttranslational.” Here, we show that SecA interacts with nascent Sec substrates. This interaction is not dependent on SecB or trigger factor, which also interact with nascent Sec substrates. Moreover, the interaction of SecB with nascent polypeptides is dependent on the interaction of SecA with the ribosome, suggesting that interaction of the nascent chain with SecA precedes interaction with SecB. Our results suggest that SecA could recognize substrate proteins cotranslationally in order to efficiently target them for uncoupled protein translocation.
Collapse
|
42
|
|
43
|
Ligand-mediated changes in conformational dynamics of NpmA: implications for ribosomal interactions. Sci Rep 2016; 6:37061. [PMID: 27845431 PMCID: PMC5109232 DOI: 10.1038/srep37061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics that bind to the 30S ribosomal subunit (30S) of bacteria and disrupt protein translation. NpmA, a structurally well-characterized methyltransferase identified in an E. coli clinical isolate, catalyzes methylation of 30S at A1408 of the 16S rRNA and confers aminoglycoside resistance. Using sucrose cushion centrifugation and isothermal titration calorimetry, we first confirmed the binding between NpmA and 30S. Next, we performed amide Hydrogen/Deuterium Exchange Mass Spectrometry (HDXMS) of apo NpmA and in the presence and absence of SAM/SAH. We observed that ligand binding resulted in time-dependent differences in deuterium exchange not only at the ligand-binding pocket (D25–D55 and A86–E112) but also in distal regions (F62-F82 and Y113-S144) of NpmA. These results provide insights into methylation group donor cofactor-mediated allostery in NpmA in the ligand-bound states, which could not be observed in the static endpoint crystal structures. We predict that the two distal sites in NpmA form part of the allosteric sites that importantly are part of the main 16S rRNA binding interface. Thus HDXMS helped uncover allosteric communication relays that couple SAM/SAH binding sites with the ribosome-binding site. This highlights how HDXMS together with X-ray crystallography can provide important allosteric insights in protein-ligand complexes.
Collapse
|
44
|
Lange S, Franks WT, Rajagopalan N, Döring K, Geiger MA, Linden A, van Rossum BJ, Kramer G, Bukau B, Oschkinat H. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. SCIENCE ADVANCES 2016; 2:e1600379. [PMID: 27551685 PMCID: PMC4991931 DOI: 10.1126/sciadv.1600379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023]
Abstract
Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA-adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure.
Collapse
Affiliation(s)
- Sascha Lange
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
| | - W. Trent Franks
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
| | - Nandhakishore Rajagopalan
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Kristina Döring
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Michel A. Geiger
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
| | - Arne Linden
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
| | - Barth-Jan van Rossum
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Hartmut Oschkinat
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
- Corresponding author.
| |
Collapse
|
45
|
Collinson I, Corey RA, Allen WJ. Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0025. [PMID: 26370937 PMCID: PMC4632601 DOI: 10.1098/rstb.2015.0025] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation—the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins.
Collapse
Affiliation(s)
- Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
46
|
Shasmal M, Dey S, Shaikh TR, Bhakta S, Sengupta J. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed. Sci Rep 2016; 6:19936. [PMID: 26822933 PMCID: PMC4731797 DOI: 10.1038/srep19936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022] Open
Abstract
It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome.
Collapse
Affiliation(s)
- Manidip Shasmal
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Sandip Dey
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Tanvir R Shaikh
- Structural Biology Programme, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sayan Bhakta
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Jayati Sengupta
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| |
Collapse
|
47
|
Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Proc Natl Acad Sci U S A 2015; 112:E3169-78. [PMID: 26056263 DOI: 10.1073/pnas.1422594112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosome exit site is a crowded environment where numerous factors contact nascent polypeptides to influence their folding, localization, and quality control. Timely and accurate selection of nascent polypeptides into the correct pathway is essential for proper protein biogenesis. To understand how this is accomplished, we probe the mechanism by which nascent polypeptides are accurately sorted between the major cotranslational chaperone trigger factor (TF) and the essential cotranslational targeting machinery, signal recognition particle (SRP). We show that TF regulates SRP function at three distinct stages, including binding of the translating ribosome, membrane targeting via recruitment of the SRP receptor, and rejection of ribosome-bound nascent polypeptides beyond a critical length. Together, these mechanisms enhance the specificity of substrate selection into both pathways. Our results reveal a multilayered mechanism of molecular interplay at the ribosome exit site, and provide a conceptual framework to understand how proteins are selected among distinct biogenesis machineries in this crowded environment.
Collapse
|
48
|
Taubert J, Hou B, Risselada HJ, Mehner D, Lünsdorf H, Grubmüller H, Brüser T. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency. PLoS One 2015; 10:e0119761. [PMID: 25774531 PMCID: PMC4361764 DOI: 10.1371/journal.pone.0119761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
The Tat system can transport folded, signal peptide-containing proteins (Tat substrates) across energized membranes of prokaryotes and plant plastids. A twin-arginine motif in the signal peptide of Tat substrates is recognized by TatC-containing complexes, and TatA permits the membrane passage. Often, as in the model Tat systems of Escherichia coli and plant plastids, a third component - TatB - is involved that resembles TatA but has a higher affinity to TatC. It is not known why most TatA dissociates from TatBC complexes in vivo and distributes more evenly in the membrane. Here we show a TatBC-independent substrate-binding to TatA from Escherichia coli, and we provide evidence that this binding enhances Tat transport. First hints came from in vivo cross-linking data, which could be confirmed by affinity co-purification of TatA with the natural Tat substrates HiPIP and NrfC. Two positions on the surface of HiPIP could be identified that are important for the TatA interaction and transport efficiency, indicating physiological relevance of the interaction. Distributed TatA thus may serve to accompany membrane-interacting Tat substrates to the few TatBC spots in the cells.
Collapse
Affiliation(s)
- Johannes Taubert
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Bo Hou
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Denise Mehner
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Heinrich Lünsdorf
- Helmholtz Centre of Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
- * E-mail:
| |
Collapse
|
49
|
Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. Proc Natl Acad Sci U S A 2015; 112:E1678-87. [PMID: 25775549 DOI: 10.1073/pnas.1424655112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes encode ∼ 37 proteins that integrate into the thylakoid membrane. The mechanisms that target these proteins to the membrane are largely unexplored. We used ribosome profiling to provide a comprehensive, high-resolution map of ribosome positions on chloroplast mRNAs in separated membrane and soluble fractions in maize seedlings. The results show that translation invariably initiates off the thylakoid membrane and that ribosomes synthesizing a subset of membrane proteins subsequently become attached to the membrane in a nuclease-resistant fashion. The transition from soluble to membrane-attached ribosomes occurs shortly after the first transmembrane segment in the nascent peptide has emerged from the ribosome. Membrane proteins whose translation terminates before emergence of a transmembrane segment are translated in the stroma and targeted to the membrane posttranslationally. These results indicate that the first transmembrane segment generally comprises the signal that links ribosomes to thylakoid membranes for cotranslational integration. The sole exception is cytochrome f, whose cleavable N-terminal cpSecA-dependent signal sequence engages the thylakoid membrane cotranslationally. The distinct behavior of ribosomes synthesizing the inner envelope protein CemA indicates that sorting signals for the thylakoid and envelope membranes are distinguished cotranslationally. In addition, the fractionation behavior of ribosomes in polycistronic transcription units encoding both membrane and soluble proteins adds to the evidence that the removal of upstream ORFs by RNA processing is not typically required for the translation of internal genes in polycistronic chloroplast mRNAs.
Collapse
|
50
|
Rawat S, Zhu L, Lindner E, Dalbey RE, White SH. SecA drives transmembrane insertion of RodZ, an unusual single-span membrane protein. J Mol Biol 2015; 427:1023-37. [PMID: 24846669 PMCID: PMC4233018 DOI: 10.1016/j.jmb.2014.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/16/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
The transmembrane (TM) helices of most type II single-span membrane proteins (S-SMPs) of Escherichia coli occur near the N-terminus, where the cell's targeting mechanisms can readily identify it as it emerges from the ribosome. However, the TM helices of a few S-SMPs, such as RodZ, occur a hundred or more residues downstream from the N-terminus, which raises fundamental questions about targeting and assembly. Because of RodZ's novelty and potential usefulness for understanding TM helix insertion in vivo, we examined its membrane targeting and assembly. We used RodZ constructs containing immunotags before the TM domain to assess membrane insertion using proteinase K digestion. We confirmed the N(in)-C(out) (type II) topology of RodZ and established the absence of a targeting signal other than the TM domain. RodZ was not inserted into the membrane under SecA depletion conditions or in the presence of sodium azide, which is known to inhibit SecA. Insertion failed when the TM proton gradient was abolished with Carbonyl cyanide m-chlorophenyl hydrazone. Insertion also failed when RodZ was expressed in SecE-depleted E. coli, indicating that the SecYEG translocon is required for RodZ assembly. Protease accessibility assays of RodZ in other E. coli depletion strains revealed that insertion is independent of SecB, YidC, and SecD/F. Insertion was found to be only weakly dependent on the signal recognition particle pathway: insertion was weakly dependent on the Ffh but independent of FtsY. We conclude that membrane insertion of RodZ requires only the SecYEG translocon, the SecA ATPase motor, and the TM proton motive force.
Collapse
Affiliation(s)
- Swati Rawat
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA
| | - Lu Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Lindner
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA.
| |
Collapse
|