1
|
Zhao D, Wu X, Rapoport TA. Initiation of ERAD by the bifunctional complex of Mnl1/Htm1 mannosidase and protein disulfide isomerase. Nat Struct Mol Biol 2025:10.1038/s41594-025-01491-y. [PMID: 39930008 DOI: 10.1038/s41594-025-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/15/2025] [Indexed: 02/19/2025]
Abstract
Misfolded glycoproteins in the endoplasmic reticulum (ER) lumen are translocated into the cytosol and degraded by the proteasome, a conserved process called ER-associated protein degradation (ERAD). In Saccharomyces cerevisiae, the glycan of these proteins is trimmed by the luminal mannosidase Mnl1 (Htm1) to generate a degradation signal. Interestingly, Mnl1 is associated with protein disulfide isomerase (Pdi1). Here we used cryo-electron microscopy, biochemical and in vivo experiments to elucidate how this complex initiates ERAD. The Mnl1-Pdi1 complex first demannosylates misfolded, globular proteins that are recognized through the C-terminal domain (CTD) of Mnl1; Pdi1 causes the CTD to ignore completely unfolded polypeptides. The disulfides of these globular proteins are then reduced by the Pdi1 component of the complex. Mnl1 blocks the canonical oxidative function of Pdi1, allowing it to function as a disulfide reductase in ERAD. The generated unfolded polypeptides can then be translocated across the membrane into the cytosol.
Collapse
Affiliation(s)
- Dan Zhao
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xudong Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
3
|
Zhao D, Wu X, Rapoport TA. Initiation of ERAD by the bifunctional complex of Mnl1 mannosidase and protein disulfide isomerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618908. [PMID: 39464000 PMCID: PMC11507893 DOI: 10.1101/2024.10.17.618908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Misfolded glycoproteins in the endoplasmic reticulum (ER) lumen are translocated into the cytosol and degraded by the proteasome, a conserved process called ER-associated protein degradation (ERAD). In S. cerevisiae, the glycan of these proteins is trimmed by the luminal mannosidase Mnl1 (Htm1) to generate a signal that triggers degradation. Curiously, Mnl1 is permanently associated with protein disulfide isomerase (Pdi1). Here, we have used cryo-electron microscopy, biochemical, and in vivo experiments to clarify how this complex initiates ERAD. The Mnl1-Pdi1 complex first de-mannosylates misfolded, globular proteins that are recognized through a C-terminal domain (CTD) of Mnl1; Pdi1 causes the CTD to ignore completely unfolded polypeptides. The disulfides of these globular proteins are then reduced by the Pdi1 component of the complex, generating unfolded polypeptides that can be translocated across the membrane. Mnl1 blocks the canonical oxidative function of Pdi1, but allows it to function as the elusive disulfide reductase in ERAD.
Collapse
Affiliation(s)
- Dan Zhao
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xudong Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 PMCID: PMC12015986 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
5
|
Borthakur G. Stressing the stem cell in acute myeloid leukemia. Haematologica 2024; 109:715. [PMID: 37794806 PMCID: PMC10905064 DOI: 10.3324/haematol.2023.283919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
|
6
|
Li M, Wu X, Chen M, Hao S, Yu Y, Li X, Zhao E, Xu M, Yu Z, Wang Z, Xu N, Jin C, Yin Y. DNAJC10 maintains survival and self-renewal of leukemia stem cells through PERK branch of the unfolded protein response. Haematologica 2024; 109:751-764. [PMID: 37496439 PMCID: PMC10905105 DOI: 10.3324/haematol.2023.282691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Leukemia stem cells (LSC) require frequent adaptation to maintain their self-renewal ability in the face of longer exposure to cell-intrinsic and cell-extrinsic stresses. However, the mechanisms by which LSC maintain their leukemogenic activities, and how individual LSC respond to stress, remain poorly understood. Here, we found that DNAJC10, a member of HSP40 family, was frequently up-regulated in various types of acute myeloid leukemia (AML) and in LSC-enriched cells. Deficiency of DNAJC10 leads to a dramatic increase in the apoptosis of both human leukemia cell lines and LSC-enriched populations. Although DNAJC10 is not required for normal hematopoiesis, deficiency of Dnajc10 significantly abrogated AML development and suppressed self-renewal of LSC in the MLL-AF9-induced murine leukemia model. Mechanistically, inhibition of DNAJC10 specifically induces endoplasmic reticulum stress and promotes activation of PERK-EIF2α-ATF4 branch of unfolded protein response (UPR). Blocking PERK by GSK2606414 (PERKi) or shRNA rescued the loss of function of DNAJC10 both in vitro and in vivo. Importantly, deficiency of DNAJC10 increased sensitivity of AML cells to daunorubicin (DNR) and cytarabine (Ara-C). These data revealed that DNAJC10 functions as an oncogene in MLL-AF9-induced AML via regulation of the PERK branch of the UPR. DNAJC10 may be an ideal therapeutic target for eliminating LSC, and improving the effectiveness of DNR and Ara-C.
Collapse
Affiliation(s)
- Minjing Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003
| | - Xingli Wu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China; Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Meiyang Chen
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Shiyu Hao
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Yue Yu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China; Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Xiang Li
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China; Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Erdi Zhao
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Ming Xu
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Zhenhai Yu
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Zhiqiang Wang
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100
| | - Changzhu Jin
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Human Anatomy, School of Basic Medicine, Qilu Medicine University, Zibo, 255300.
| | - Yancun Yin
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003.
| |
Collapse
|
7
|
Palma A, Rettenbacher LA, Moilanen A, Saaranen M, Gasser B, Ruddock LW. Komagataella phaffii Erp41 is a protein disulfide isomerase with unprecedented disulfide bond catalyzing activity when coupled to glutathione. J Biol Chem 2024; 300:105746. [PMID: 38354787 PMCID: PMC10938136 DOI: 10.1016/j.jbc.2024.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
In the methylotrophic yeast Komagataella phaffii, we identified an endoplasmic reticulum-resident protein disulfide isomerase (PDI) family member, Erp41, with a peculiar combination of active site motifs. Like fungal ERp38, it has two thioredoxin-like domains which contain active site motifs (a and a'), followed by an alpha-helical ERp29c C-terminal domain (c domain). However, while the a domain has a typical PDI-like active site motif (CGHC), the a' domain instead has CGYC, a glutaredoxin-like motif which confers to the protein an exceptional affinity for GSH/GSSG. This combination of active site motifs has so far been unreported in PDI-family members. Homology searches revealed ERp41 is present in the genome of some plants, fungal parasites, and a few nonconventional yeasts, among which are Komagataella spp. and Yarrowia lipolytica. These yeasts are both used for the production of secreted recombinant proteins. Here, we analyzed the activity of K. phaffii Erp41. We report that it is nonessential in K. phaffii, and that it can catalyze disulfide bond formation in partnership with the sulfhydryl oxidase Ero1 in vitro with higher turnover rates than the canonical PDI from K. phaffii, Pdi1, but slower activation times. We show how Erp41 has unusually fast glutathione-coupled oxidation activity and relate it to its unusual combination of active sites in its thioredoxin-like domains. We further describe how this determines its unusually efficient catalysis of dithiol oxidation in peptide and protein substrates.
Collapse
Affiliation(s)
- Arianna Palma
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Lukas A Rettenbacher
- School of Biosciences, University of Kent, Canterbury, UK; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Antti Moilanen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mirva Saaranen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Canniff NP, Graham JB, Guay KP, Lubicki DA, Eyles SJ, Rauch JN, Hebert DN. TTC17 is an endoplasmic reticulum resident TPR-containing adaptor protein. J Biol Chem 2023; 299:105450. [PMID: 37949225 PMCID: PMC10783571 DOI: 10.1016/j.jbc.2023.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
Protein folding, quality control, maturation, and trafficking are essential processes for proper cellular homeostasis. Around one-third of the human proteome is targeted to the endoplasmic reticulum (ER), the organelle that serves as entrance into the secretory pathway. Successful protein trafficking is paramount for proper cellular function and to that end there are many ER resident proteins that ensure efficient secretion. Here, biochemical and cell biological analysis was used to determine that TTC17 is a large, soluble, ER-localized protein that plays an important role in secretory trafficking. Transcriptional analysis identified the predominantly expressed protein isoform of TTC17 in various cell lines. Further, TTC17 localizes to the ER and interacts with a wide variety of chaperones and cochaperones normally associated with ER protein folding, quality control, and maturation processes. TTC17 was found to be significantly upregulated by ER stress and through the creation and use of TTC17-/- cell lines, quantitative mass spectrometry identified secretory pathway wide trafficking defects in the absence of TTC17. Notably, trafficking of insulin-like growth factor type 1 receptor, glycoprotein nonmetastatic melanoma protein B, clusterin, and UDP-glucose:glycoprotein glucosyltransferase 1 were significantly altered in H4 neuroglioma cells. This study defines a novel ER trafficking factor and provides insight into the protein-protein assisted trafficking in the early secretory pathway.
Collapse
Affiliation(s)
- Nathan P Canniff
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Jill B Graham
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Kevin P Guay
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Daniel A Lubicki
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA
| | - Stephen J Eyles
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA; Institute for Applied Life Sciences, Mass Spectrometry Center, University of Massachusetts Amherst, USA
| | - Jennifer N Rauch
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA
| | - Daniel N Hebert
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA.
| |
Collapse
|
9
|
Xia Y, Zhao K, Liu D, Zhou X, Zhang G. Multi-domain and complex protein structure prediction using inter-domain interactions from deep learning. Commun Biol 2023; 6:1221. [PMID: 38040847 PMCID: PMC10692239 DOI: 10.1038/s42003-023-05610-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Accurately capturing domain-domain interactions is key to understanding protein function and designing structure-based drugs. Although AlphaFold2 has made a breakthrough on single domain, it should be noted that the structure modeling for multi-domain protein and complex remains a challenge. In this study, we developed a multi-domain and complex structure assembly protocol, named DeepAssembly, based on domain segmentation and single domain modeling algorithms. Firstly, DeepAssembly uses a population-based evolutionary algorithm to assemble multi-domain proteins by inter-domain interactions inferred from a developed deep learning network. Secondly, protein complexes are assembled by means of domains rather than chains using DeepAssembly. Experimental results show that on 219 multi-domain proteins, the average inter-domain distance precision by DeepAssembly is 22.7% higher than that of AlphaFold2. Moreover, DeepAssembly improves accuracy by 13.1% for 164 multi-domain structures with low confidence deposited in AlphaFold database. We apply DeepAssembly for the prediction of 247 heterodimers. We find that DeepAssembly successfully predicts the interface (DockQ ≥ 0.23) for 32.4% of the dimers, suggesting a lighter way to assemble complex structures by treating domains as assembly units and using inter-domain interactions learned from monomer structures.
Collapse
Affiliation(s)
- Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Dong Liu
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
10
|
Cai X, Ito S, Noi K, Inoue M, Ushioda R, Kato Y, Nagata K, Inaba K. Mechanistic characterization of disulfide bond reduction of an ERAD substrate mediated by cooperation between ERdj5 and BiP. J Biol Chem 2023; 299:105274. [PMID: 37739037 PMCID: PMC10591012 DOI: 10.1016/j.jbc.2023.105274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality control process that eliminates misfolded proteins from the ER. DnaJ homolog subfamily C member 10 (ERdj5) is a protein disulfide isomerase family member that accelerates ERAD by reducing disulfide bonds of aberrant proteins with the help of an ER-resident chaperone BiP. However, the detailed mechanisms by which ERdj5 acts in concert with BiP are poorly understood. In this study, we reconstituted an in vitro system that monitors ERdj5-mediated reduction of disulfide-linked J-chain oligomers, known to be physiological ERAD substrates. Biochemical analyses using purified proteins revealed that J-chain oligomers were reduced to monomers by ERdj5 in a stepwise manner via trimeric and dimeric intermediates, and BiP synergistically enhanced this action in an ATP-dependent manner. Single-molecule observations of ERdj5-catalyzed J-chain disaggregation using high-speed atomic force microscopy, demonstrated the stochastic release of small J-chain oligomers through repeated actions of ERdj5 on peripheral and flexible regions of large J-chain aggregates. Using systematic mutational analyses, ERAD substrate disaggregation mediated by ERdj5 and BiP was dissected at the molecular level.
Collapse
Affiliation(s)
- Xiaohan Cai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Shogo Ito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Noi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yukinari Kato
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| |
Collapse
|
11
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Uegaki K, Tokunaga Y, Inoue M, Takashima S, Inaba K, Takeuchi K, Ushioda R, Nagata K. The oxidative folding of nascent polypeptides provides electrons for reductive reactions in the ER. Cell Rep 2023; 42:112742. [PMID: 37421625 DOI: 10.1016/j.celrep.2023.112742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
The endoplasmic reticulum (ER) maintains an oxidative redox environment that is advantageous for the oxidative folding of nascent polypeptides entering the ER. Reductive reactions within the ER are also crucial for maintaining ER homeostasis. However, the mechanism by which electrons are supplied for the reductase activity within the ER remains unknown. Here, we identify ER oxidoreductin-1α (Ero1α) as an electron donor for ERdj5, an ER-resident disulfide reductase. During oxidative folding, Ero1α catalyzes disulfide formation in nascent polypeptides through protein disulfide isomerase (PDI) and then transfers the electrons to molecular oxygen via flavin adenine dinucleotide (FAD), ultimately yielding hydrogen peroxide (H2O2). Besides this canonical electron pathway, we reveal that ERdj5 accepts electrons from specific cysteine pairs in Ero1α, demonstrating that the oxidative folding of nascent polypeptides provides electrons for reductive reactions in the ER. Moreover, this electron transfer pathway also contributes to maintaining ER homeostasis by reducing H2O2 production in the ER.
Collapse
Affiliation(s)
- Kaiku Uegaki
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yuji Tokunaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo 113-0033, Japan
| | - Michio Inoue
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi 980-8577, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kenji Inaba
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi 980-8577, Japan
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo 113-0033, Japan
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; JT Biohistory Research Hall, Murasaki Town 1-1, Takatsuki City, Osaka 569-1125, Japan.
| |
Collapse
|
13
|
Robinson PJ, Pringle MA, Fleming B, Bulleid NJ. Distinct role of ERp57 and ERdj5 as a disulfide isomerase and reductase during ER protein folding. J Cell Sci 2023; 136:286707. [PMID: 36655611 PMCID: PMC10022741 DOI: 10.1242/jcs.260656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Proteins entering the secretory pathway need to attain native disulfide pairings to fold correctly. For proteins with complex disulfides, this process requires the reduction and isomerisation of non-native disulfides. Two key members of the protein disulfide isomerase (PDI) family, ERp57 and ERdj5 (also known as PDIA3 and DNAJC10, respectively), are thought to be required for correct disulfide formation but it is unknown whether they act as a reductase, an isomerase or both. In addition, it is unclear how reducing equivalents are channelled through PDI family members to substrate proteins. Here, we show that neither enzyme is required for disulfide formation, but ERp57 is required for isomerisation of non-native disulfides within glycoproteins. In addition, alternative PDIs compensate for the absence of ERp57 to isomerise glycoprotein disulfides, but only in the presence of a robust reductive pathway. ERdj5 is required for this alternative pathway to function efficiently indicating its role as a reductase. Our results define the essential cellular functions of two PDIs, highlighting a distinction between formation, reduction and isomerisation of disulfide bonds.
Collapse
Affiliation(s)
- Philip John Robinson
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marie Anne Pringle
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bethany Fleming
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil John Bulleid
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Melnyk A, Lang S, Sicking M, Zimmermann R, Jung M. Co-chaperones of the Human Endoplasmic Reticulum: An Update. Subcell Biochem 2023; 101:247-291. [PMID: 36520310 DOI: 10.1007/978-3-031-14740-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Armin Melnyk
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany.
| | - Martin Jung
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
15
|
Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. J Biol Chem 2022; 298:102061. [PMID: 35609712 PMCID: PMC9218512 DOI: 10.1016/j.jbc.2022.102061] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
The concentration of Ca2+ in the endoplasmic reticulum (ER) is critically important for maintaining its oxidizing environment as well as for maintaining luminal ATP levels required for chaperone activity. Therefore, local luminal Ca2+ concentrations and the dynamic Ca2+ flux between the different subcellular compartments are tightly controlled. Influx of Ca2+ into the ER is enabled by a reductive shift, which opens the sarcoendoplasmic reticulum calcium transport ATPase pump, building the Ca2+ gradient across the ER membrane required for ATP import. Meanwhile, Ca2+ leakage from the ER has been reported to occur via the Sec61 translocon following protein translocation. In this review, we provide an overview of the complex regulation of Ca2+ homeostasis, Ca2+ flux between subcellular compartments, and the cellular stress response (the unfolded protein response) induced upon dysregulated luminal Ca2+ metabolism. We also provide insight into the structure and gating mechanism at the Sec61 translocon and examine the role of ER-resident cochaperones in assisting the central ER-resident chaperone BiP in the control of luminal Ca2+ concentrations.
Collapse
|
16
|
Regulation of Translation, Translocation, and Degradation of Proteins at the Membrane of the Endoplasmic Reticulum. Int J Mol Sci 2022; 23:ijms23105576. [PMID: 35628387 PMCID: PMC9147092 DOI: 10.3390/ijms23105576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum (ER) of mammalian cells is the central organelle for the maturation and folding of transmembrane proteins and for proteins destined to be secreted into the extracellular space. The proper folding of target proteins is achieved and supervised by a complex endogenous chaperone machinery. BiP, a member of the Hsp70 protein family, is the central chaperone in the ER. The chaperoning activity of BiP is assisted by ER-resident DnaJ (ERdj) proteins due to their ability to stimulate the low, intrinsic ATPase activity of BiP. Besides their co-chaperoning activity, ERdj proteins also regulate and tightly control the translation, translocation, and degradation of proteins. Disturbances in the luminal homeostasis result in the accumulation of unfolded proteins, thereby eliciting a stress response, the so-called unfolded protein response (UPR). Accumulated proteins are either deleterious due to the functional loss of the respective protein and/or due to their deposition as intra- or extracellular protein aggregates. A variety of metabolic diseases are known to date, which are associated with the dysfunction of components of the chaperone machinery. In this review, we will delineate the impact of ERdj proteins in controlling protein synthesis and translocation under physiological and under stress conditions. A second aspect of this review is dedicated to the role of ERdj proteins in the ER-associated degradation pathway, by which unfolded or misfolded proteins are discharged from the ER. We will refer to some of the most prominent diseases known to be based on the dysfunction of ERdj proteins.
Collapse
|
17
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
18
|
Hong DG, Song GY, Eom CB, Ahn JH, Kim SM, Shim A, Han YH, Roh YS, Han CY, Bae EJ, Ko HJ, Yang YM. Loss of ERdj5 exacerbates oxidative stress in mice with alcoholic liver disease via suppressing Nrf2. Free Radic Biol Med 2022; 184:42-52. [PMID: 35390453 DOI: 10.1016/j.freeradbiomed.2022.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Alcoholic liver disease is the major cause of chronic liver diseases. Excessive alcohol intake results in endoplasmic reticulum (ER) stress. ERdj5, a member of DNAJ family, is an ER-resident chaperone protein, whose role in alcoholic liver disease remains to be investigated. In this study, we aim to address the effect of ERdj5 on alcoholic liver disease and the underlying mechanism. Hepatic Dnajc10 (ERdj5) mRNA expression was elevated in both human and mouse alcoholic hepatitis. In mice subjected to chronic and binge ethanol feeding, ERdj5 levels were also markedly increased. Hepatic Dnajc10 correlated with Xbp1s mRNA. Tunicamycin, an ER stress inducer, increased ERdj5 levels. Dnajc10 knockout mice exhibited exacerbated alcohol-induced liver injury and hepatic steatosis. However, the macrophage numbers and chemokine levels were similar to those in wild-type mice. Depletion of Dnajc10 promoted oxidative stress. Ethanol feeding increased hepatic H2O2 levels, and these were further increased in Dnajc10 knockout mice. Additionally, Dnajc10-deficient hepatocytes produced large amounts of reactive oxygen species. Notably, Nrf2, a central regulator of oxidative stress, was decreased by depletion of Dnajc10 in the nuclear fraction of ethanol-treated mouse liver. Consistently, liver tissues from ethanol-fed Dnajc10 knockout mice had reduced expression of downstream antioxidant genes. Furthermore, hepatic glutathione content in the liver of knockout mice declined compared to wild-type mice. In conclusion, our results demonstrate that ethanol-induced ERdj5 may regulate the Nrf2 pathway and glutathione contents, and have protective effects on liver damage and alcohol-mediated oxidative stress in mice. These suggest that ERdj5 has the potential to protect against alcoholic liver disease.
Collapse
Affiliation(s)
- Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ga Yeon Song
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Bin Eom
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sun Myoung Kim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aeri Shim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong-Hyun Han
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
19
|
Yamashita R, Fujii S, Ushioda R, Nagata K. Ca 2+ imbalance caused by ERdj5 deletion affects mitochondrial fragmentation. Sci Rep 2021; 11:20772. [PMID: 34728782 PMCID: PMC8563984 DOI: 10.1038/s41598-021-99980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
The endoplasmic reticulum (ER) is the organelle responsible for the folding of secretory/membrane proteins and acts as a dynamic calcium ion (Ca2+) store involved in various cellular signalling pathways. Previously, we reported that the ER-resident disulfide reductase ERdj5 is involved in the ER-associated degradation (ERAD) of misfolded proteins in the ER and the activation of SERCA2b, a Ca2+ pump on the ER membrane. These results highlighted the importance of the regulation of redox activity in both Ca2+ and protein homeostasis in the ER. Here, we show that the deletion of ERdj5 causes an imbalance in intracellular Ca2+ homeostasis, the activation of Drp1, a cytosolic GTPase involved in mitochondrial fission, and finally the aberrant fragmentation of mitochondria, which affects cell viability as well as phenotype with features of cellular senescence. Thus, ERdj5-mediated regulation of intracellular Ca2+ is essential for the maintenance of mitochondrial homeostasis involved in cellular senescence.
Collapse
Affiliation(s)
- Riyuji Yamashita
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Shohei Fujii
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Ryo Ushioda
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 605-8555, Japan.
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 605-8555, Japan. .,JT Biohistory Research Hall, Murasaki Town 1-1, Takatsuki City, Osaka, 569-1125, Japan.
| |
Collapse
|
20
|
Dual topology of co-chaperones at the membrane of the endoplasmic reticulum. Cell Death Discov 2021; 7:203. [PMID: 34354047 PMCID: PMC8342575 DOI: 10.1038/s41420-021-00594-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Dual topologies of proteins at the ER membrane are known for a variety of proteins allowing the same protein to exert different functions according to the topology adopted. A dual topology of the co-chaperone ERdj4, which resides in the endoplasmic reticulum (ER), was proposed recently, a thesis that we found to align all published data and existing controversies into one whole picture. The aim of this review is to reassess all primary data available in the literature on ER-resident Hsp40 co-chaperones with respect to their topology. After careful and critical analyses of all experimental data published so far, we identified, next to ERdj4, two other co-chaperones, ERdj3 and ERdj6, that also display features of a dual topology at the ER membrane. We assume that during cellular stress subpools of some ER-resident J protein can alter their topology so that these proteins can exert different functions in order to adapt to cellular stress.
Collapse
|
21
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
22
|
Oku Y, Kariya M, Fujimura T, Hoseki J, Sakai Y. Homeostasis of the ER redox state subsequent to proteasome inhibition. Sci Rep 2021; 11:8655. [PMID: 33883613 PMCID: PMC8060268 DOI: 10.1038/s41598-021-87944-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) maintains within, an oxidative redox state suitable for disulfide bond formation. We monitored the ER redox dynamics subsequent to proteasome inhibition using an ER redox probe ERroGFP S4. Proteasomal inhibition initially led to oxidation of the ER, but gradually the normal redox state was recovered that further led to a reductive state. These events were found to be concomitant with the increase in the both oxidized and reduced glutathione in the microsomal fraction, with a decrease of total intracellular glutathione. The ER reduction was suppressed by pretreatment of a glutathione synthesis inhibitor or by knockdown of ATF4, which induces glutathione-related genes. These results suggested cellular adaptation of ER redox homeostasis: (1) inhibition of proteasome led to accumulation of misfolded proteins and oxidative state in the ER, and (2) the oxidative ER was then reduced by ATF4 activation, followed by influx of glutathione into the ER.
Collapse
Affiliation(s)
- Yuki Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.,Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, 606-8306, Japan
| | - Masahiro Kariya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takaaki Fujimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Jun Hoseki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. .,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8502, Japan. .,Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan.
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.,Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, 606-8306, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
23
|
Adams BM, Canniff NP, Guay KP, Hebert DN. The Role of Endoplasmic Reticulum Chaperones in Protein Folding and Quality Control. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:27-50. [PMID: 34050861 PMCID: PMC9185992 DOI: 10.1007/978-3-030-67696-4_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular chaperones assist the folding of nascent chains in the cell. Chaperones also aid in quality control decisions as persistent chaperone binding can help to sort terminal misfolded proteins for degradation. There are two major molecular chaperone families in the endoplasmic reticulum (ER) that assist proteins in reaching their native structure and evaluating the fidelity of the maturation process. The ER Hsp70 chaperone, BiP, supports adenine nucleotide-regulated binding to non-native proteins that possess exposed hydrophobic regions. In contrast, the carbohydrate-dependent chaperone system involving the membrane protein calnexin and its soluble paralogue calreticulin recognize a specific glycoform of an exposed hydrophilic protein modification for which the composition is controlled by a series of glycosidases and transferases. Here, we compare and contrast the properties, mechanisms of action and functions of these different chaperones systems that work in parallel, as well as together, to assist a large variety of substrates that traverse the eukaryotic secretory pathway.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Nathan P Canniff
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Kevin P Guay
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
24
|
Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:97-123. [PMID: 34569022 DOI: 10.1007/978-3-030-78397-6_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.
Collapse
|
25
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
26
|
Kanemura S, Matsusaki M, Inaba K, Okumura M. PDI Family Members as Guides for Client Folding and Assembly. Int J Mol Sci 2020; 21:ijms21249351. [PMID: 33302492 PMCID: PMC7763558 DOI: 10.3390/ijms21249351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
Complicated and sophisticated protein homeostasis (proteostasis) networks in the endoplasmic reticulum (ER), comprising disulfide catalysts, molecular chaperones, and their regulators, help to maintain cell viability. Newly synthesized proteins inserted into the ER need to fold and assemble into unique native structures to fulfill their physiological functions, and this is assisted by protein disulfide isomerase (PDI) family. Herein, we focus on recent advances in understanding the detailed mechanisms of PDI family members as guides for client folding and assembly to ensure the efficient production of secretory proteins.
Collapse
Affiliation(s)
- Shingo Kanemura
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan;
| | - Motonori Matsusaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Correspondence: ; Tel.: +81-22-217-5628
| |
Collapse
|
27
|
Okumura M, Noi K, Inaba K. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Curr Opin Struct Biol 2020; 66:49-57. [PMID: 33176263 DOI: 10.1016/j.sbi.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Time-resolved single-molecule observations by high-speed atomic force microscopy (HS-AFM), have greatly advanced our understanding of how proteins operate to fulfill their unique functions. Using this device, we succeeded in visualizing two members of the protein disulfide isomerase family (PDIs) that act to catalyze oxidative folding and reductive unfolding in the endoplasmic reticulum (ER). ERdj5, an ER-resident disulfide reductase that promotes ER-associated degradation, reduces nonnative disulfide bonds of misfolded proteins utilizing the dynamics of its N-terminal and C-terminal clusters. With unfolded substrates, canonical PDI assembles to form a face-to-face dimer with a central hydrophobic cavity and multiple redox-active sites to accelerate oxidative folding inside the cavity. Altogether, PDIs exert highly dynamic mechanisms to ensure the protein quality control in the ER.
Collapse
Affiliation(s)
- Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Kentaro Noi
- Institute of Nanoscience Design, Osaka University, Machikaneyamatyou 1-3, Toyonaka 560-8531, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
28
|
Patel C, Saad H, Shenkman M, Lederkremer GZ. Oxidoreductases in Glycoprotein Glycosylation, Folding, and ERAD. Cells 2020; 9:cells9092138. [PMID: 32971745 PMCID: PMC7563561 DOI: 10.3390/cells9092138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
N-linked glycosylation and sugar chain processing, as well as disulfide bond formation, are among the most common post-translational protein modifications taking place in the endoplasmic reticulum (ER). They are essential modifications that are required for membrane and secretory proteins to achieve their correct folding and native structure. Several oxidoreductases responsible for disulfide bond formation, isomerization, and reduction have been shown to form stable, functional complexes with enzymes and chaperones that are involved in the initial addition of an N-glycan and in folding and quality control of the glycoproteins. Some of these oxidoreductases are selenoproteins. Recent studies also implicate glycan machinery–oxidoreductase complexes in the recognition and processing of misfolded glycoproteins and their reduction and targeting to ER-associated degradation. This review focuses on the intriguing cooperation between the glycoprotein-specific cell machineries and ER oxidoreductases, and highlights open questions regarding the functions of many members of this large family.
Collapse
Affiliation(s)
- Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
29
|
Kanemura S, Sofia EF, Hirai N, Okumura M, Kadokura H, Inaba K. Characterization of the endoplasmic reticulum-resident peroxidases GPx7 and GPx8 shows the higher oxidative activity of GPx7 and its linkage to oxidative protein folding. J Biol Chem 2020; 295:12772-12785. [PMID: 32719007 DOI: 10.1074/jbc.ra120.013607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative protein folding occurs primarily in the mammalian endoplasmic reticulum, enabled by a diverse network comprising more than 20 members of the protein disulfide isomerase (PDI) family and more than five PDI oxidases. Although the canonical disulfide bond formation pathway involving Ero1α and PDI has been well-studied so far, the physiological roles of the newly identified PDI oxidases, glutathione peroxidase-7 (GPx7) and -8 (GPx8), are only poorly understood. We here demonstrated that human GPx7 has much higher reactivity with H2O2 and hence greater PDI oxidation activity than human GPx8. The high reactivity of GPx7 is due to the presence of a catalytic tetrad at the redox-active site, which stabilizes the sulfenylated species generated upon the reaction with H2O2 Although it was previously postulated that GPx7 catalysis involved a highly reactive peroxidatic cysteine that can be sulfenylated by H2O2, we revealed that a resolving cysteine instead regulates the PDI oxidation activity of GPx7. We also determined that GPx7 formed complexes preferentially with PDI and P5 in H2O2-treated cells. Altogether, these results suggest that human GPx7 functions as an H2O2-dependent PDI oxidase in cells, whereas PDI oxidation may not be the central physiological role of human GPx8.
Collapse
Affiliation(s)
- Shingo Kanemura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan.,School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki, Aza, Aoba-ku, Sendai, Miyagi, Japan
| | - Elza Firdiani Sofia
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoya Hirai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki, Aza, Aoba-ku, Sendai, Miyagi, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
30
|
Kanuka M, Ouchi F, Kato N, Katsuki R, Ito S, Miura K, Hikida M, Tamura T. Endoplasmic Reticulum Associated Degradation of Spinocerebellar Ataxia-Related CD10 Cysteine Mutant. Int J Mol Sci 2020; 21:ijms21124237. [PMID: 32545905 PMCID: PMC7352294 DOI: 10.3390/ijms21124237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is one of the most severe neurodegenerative diseases and is often associated with misfolded protein aggregates derived from the genetic mutation of related genes. Recently, mutations in CD10 such as C143Y have been identified as SCA type 43. CD10, also known as neprilysin or neuroendopeptidase, digests functional neuropeptides, such as amyloid beta, in the extracellular region. In this study, we explored the cellular behavior of CD10 C143Y to gain an insight into the functional relationship of the mutation and SCA pathology. We found that wild-type CD10 is expressed on the plasma membrane and exhibits endopeptidase activity in a cultured cell line. CD10 C143Y, however, forms a disulfide bond-mediated oligomer that does not appear by the wild-type CD10. Furthermore, the CD10 C143Y mutant was retained in the endoplasmic reticulum (ER) by the molecular chaperone BiP and was degraded through the ER-associated degradation (ERAD) process, in which representative ERAD factors including EDEM1, SEL1L, and Hrd1 participate in the degradation. Suppression of CD10 C143Y ERAD recovers intracellular transport but not enzymatic activity. Our results indicate that the C143Y mutation in CD10 negatively affects protein maturation and results in ER retention and following ERAD. These findings provide beneficial insight into SCA type 43 pathology.
Collapse
Affiliation(s)
- Mai Kanuka
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Fuka Ouchi
- Department of Life Science, Faculty of Engineering Science, Akita University, Akita 010-8502, Japan;
| | - Nagisa Kato
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Riko Katsuki
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Saori Ito
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Kohta Miura
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
| | - Masaki Hikida
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
- Department of Life Science, Faculty of Engineering Science, Akita University, Akita 010-8502, Japan;
| | - Taku Tamura
- Department of Life Science, Graduate school of Engineering and Resource, Akita University, Akita 010-8502, Japan; (M.K.); (N.K.); (R.K.); (S.I.); (K.M.); (M.H.)
- Department of Life Science, Faculty of Engineering Science, Akita University, Akita 010-8502, Japan;
- Correspondence: ; Tel.: +81-18-889-2377
| |
Collapse
|
31
|
Silva-Palacios A, Zazueta C, Pedraza-Chaverri J. ER membranes associated with mitochondria: Possible therapeutic targets in heart-associated diseases. Pharmacol Res 2020; 156:104758. [PMID: 32200027 DOI: 10.1016/j.phrs.2020.104758] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular system cell biology is tightly regulated and mitochondria play a relevant role in maintaining heart function. In recent decades, associations between such organelles and the sarco/endoplasmic reticulum (SR) have been raised great interest. Formally identified as mitochondria-associated SR membranes (MAMs), these structures regulate different cellular functions, including calcium management, lipid metabolism, autophagy, oxidative stress, and management of unfolded proteins. In this review, we highlight MAMs' alterations mainly in cardiomyocytes, linked with cardiovascular diseases, such as cardiac ischemia-reperfusion, heart failure, and dilated cardiomyopathy. We also describe proteins that are part of the MAMs' machinery, as the FUN14 domain containing 1 (FUNDC1), the sigma 1 receptor (Sig-1R) and others, which might be new molecular targets to preserve the function and structure of the heart in such diseases. Understanding the machinery of MAMs and its function demands our attention, as such knowledge might contribute to strengthen the role of these relative novel structures in heart diseases.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Circuito Exterior S/N, C. U., 04510, Mexico City, Mexico.
| |
Collapse
|
32
|
Aguilà M, Bellingham J, Athanasiou D, Bevilacqua D, Duran Y, Maswood R, Parfitt DA, Iwawaki T, Spyrou G, Smith AJ, Ali RR, Cheetham ME. AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity. Hum Mol Genet 2020; 29:1310-1318. [PMID: 32196553 PMCID: PMC7254845 DOI: 10.1093/hmg/ddaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5-/- and P23H+/-:Erdj5-/- mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.
Collapse
Affiliation(s)
| | | | | | | | - Yanai Duran
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea Maswood
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, 920-0293, Japan
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | |
Collapse
|
33
|
Cao X, Lilla S, Cao Z, Pringle MA, Oka OBV, Robinson PJ, Szmaja T, van Lith M, Zanivan S, Bulleid NJ. The mammalian cytosolic thioredoxin reductase pathway acts via a membrane protein to reduce ER-localised proteins. J Cell Sci 2020; 133:jcs241976. [PMID: 32184267 PMCID: PMC7197872 DOI: 10.1242/jcs.241976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 01/21/2023] Open
Abstract
Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is crucial for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the crucial role of the cytosol in regulating ER redox homeostasis, ensuring correct protein folding and facilitating the degradation of misfolded ER proteins.
Collapse
Affiliation(s)
- Xiaofei Cao
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Zhenbo Cao
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marie Anne Pringle
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ojore B V Oka
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Philip J Robinson
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tomasz Szmaja
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marcel van Lith
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
34
|
Acun T, Senses KM. Downregulation of DNAJC10 (ERDJ5) is associated with poor survival in breast cancer. Breast Cancer 2020; 27:483-489. [PMID: 31902119 DOI: 10.1007/s12282-019-01042-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND DNAJC10 (ERDJ5), a member of HSP40 family, was considered as an anti-oncogenic gene in neuroblastoma, prostate and colon cancers. But, the role and importance of DNAJC10 gene in breast cancer is currently unknown. In this study, in vitro/in vivo expression, biomarker potential and genetic/epigenetic alterations of DNAJC10 were analyzed in breast cancer. METHODS Real-time qRT-PCR and immunohistochemistry methods were used to determine the expression level of DNAJC10 gene in breast cancer cell lines and clinical samples. The Kaplan-Meier plotter was used to evaluate the survival prognostic value of DNAJC10 mRNA expression in breast cancer patients. Mutation screening software and methylation-specific PCR were used to screen genetic alterations and methylation status of DNAJC10 promoter regions, respectively. RESULTS DNAJC10 mRNA expression was significantly reduced in 3 out of 4 breast cancer cell lines compared to the nontumorigenic mammary epithelial cell line (MCF 10A). DNAJC10 protein expression was significantly less frequent in invasive ductal carcinoma samples (n = 121) compared with adjacent normal breast tissues (n = 32) (p < 0.0001). Downregulation of DNAJC10 mRNA was associated with poor overall survival (OS) (n = 626) (p = 0.0096) and relapse-free survival (n = 1764) (p = 5.3e-12). According to the COSMIC and cBioPortal databases, point mutations and copy number variations of DNAJC10 were very rare in breast cancer samples. Besides, no genetic alterations on the experimentally validated promoter regions were found in breast cell lines. CpG island located in the promoter regions of DNAJC10 gene was found to be frequently hypomethylated in breast cell lines. CONCLUSIONS In the light of previous knowledge regarding the role of DNAJC10 in carcinogenesis, findings of this study suggest that DNAJC10 is a potential diagnostic/prognostic biomarker and tumor suppressor candidate for breast cancer. Epigenetic factors other than promoter methylation could contribute to the downregulation of DNAJC10 expression.
Collapse
Affiliation(s)
- Tolga Acun
- Department of Molecular Biology and Genetics, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey.
| | - Kerem Mert Senses
- Department of Molecular Biology and Genetics, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
35
|
Tu W, Yao J, Mei Z, Jiang X, Shi Y. Microarray Data of Lacrimal Gland Implicates Dysregulated Protein Processing in Endoplasmic Reticulum in Graves' Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:571151. [PMID: 33613444 PMCID: PMC7888479 DOI: 10.3389/fendo.2020.571151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Graves' ophthalmopathy (GO) has become one of the most common orbital diseases. Although some evidences announced the potential mechanism of pathological changes in extraocular muscle and orbital adipose tissue, little is known about that in lacrimal enlargement of GO patients. Thus, gene expression profiles of lacrimal gland derived from GO patients and normal controls were investigated using the microarray datasets of GSE105149 and GSE58331. The raw data and annotation files of GSE105149 and GSE58331 were downloaded from Gene Expression Omnibus (GEO) database. Bioinformatics including differentially expressed genes (DEGs), Gene Ontology, Kyoto Encyclopedia of Gene and Genome (KEGG) pathway, protein-protein interaction (PPI) network construction, hub gene identification, and gene set variation analysis (GSVA) were successively performed. A total of 173 overlapping DEGs in GSE105149 and GSE58331 were screened out, including 20 up-regulated and 153 down-regulated genes. Gene Ontology, KEGG and GSVA analyses of these DEGs showed that the most significant mechanism was closely associated with endoplasmic reticulum (ER). Moreover, we identified 40 module genes and 13 hub genes which were also enriched in the ER-associated terms and pathways. Among the hub genes, five genes including HSP90AA1, HSP90B1, DNAJC10, HSPA5, and CANX may be involved in the dysfunction of protein processing in ER. Taken together, our observations revealed a dysregulated gene network which is essential for protein processing in ER in GO patients. These findings provided a potential mechanism in the progression of lacrimal enlargement in GO patients, as a new insight into GO pathogenesis.
Collapse
Affiliation(s)
- Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Jia Yao
- Research and Development Center, Chengdu SuAn Technology Co., Ltd, Chengdu, China
| | - Zhanjun Mei
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Xue Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Yuhong Shi,
| |
Collapse
|
36
|
Chen FF, Chien CY, Cho CC, Chang YY, Hsu CH. C-terminal Redox Domain of Arabidopsis APR1 is a Non-Canonical Thioredoxin Domain with Glutaredoxin Function. Antioxidants (Basel) 2019; 8:antiox8100461. [PMID: 31597378 PMCID: PMC6827007 DOI: 10.3390/antiox8100461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Sulfur is an essential nutrient that can be converted into utilizable metabolic forms to produce sulfur-containing metabolites in plant. Adenosine 5'-phosphosulfate (APS) reductase (APR) plays a vital role in catalyzing the reduction of activated sulfate to sulfite, which requires glutathione. Previous studies have shown that the C-terminal domain of APR acts as a glutathione-dependent reductase. The crystal structure of the C-terminal redox domain of Arabidopsis APR1 (AtAPR1) shows a conserved α/β thioredoxin fold, but not a glutaredoxin fold. Further biochemical studies of the redox domain from AtAPR1 provided evidence to support the structural observation. Collectively, our results provide structural and biochemical information to explain how the thioredoxin fold exerts the glutaredoxin function in APR.
Collapse
Affiliation(s)
- Fang-Fang Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
| | - Chao-Cheng Cho
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan;
| | - Yu-Yung Chang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, (F.-F.C.); (C.-Y.C.); (Y.-Y.C.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan;
- Correspondence: ; Tel.: +886-2-33664468
| |
Collapse
|
37
|
Roosen DA, Blauwendraat C, Cookson MR, Lewis PA. DNAJC
proteins and pathways to parkinsonism. FEBS J 2019; 286:3080-3094. [DOI: 10.1111/febs.14936] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Dorien A. Roosen
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
- School of Pharmacy University of Reading UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Mark R. Cookson
- Laboratory of Neurogenetics National Institute on AgingNational Institutes of Health Bethesda MD USA
| | - Patrick A. Lewis
- School of Pharmacy University of Reading UK
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
| |
Collapse
|
38
|
Kim MS, Yi EJ, Kim YI, Kim SH, Jung YS, Kim SR, Iwawaki T, Ko HJ, Chang SY. ERdj5 in Innate Immune Cells Is a Crucial Factor for the Mucosal Adjuvanticity of Cholera Toxin. Front Immunol 2019; 10:1249. [PMID: 31275300 PMCID: PMC6593289 DOI: 10.3389/fimmu.2019.01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
Cholera toxin (CT) is one of most strong mucosal adjuvants, but it cannot be clinically used owing to its toxicity. The cytosolic A1 subunit of CT (CTA1) is the molecule responsible for its immunostimulatory activity, which increases the concentration of cyclic AMP and causes the induction of pro-inflammatory cytokines in innate immune cells. However, the importance of endoplasmic reticulum (ER) molecules involved in CTA1 retro-translocation to induce immune responses remained to be investigated. ERdj5 is an ER protein which is expected to transfer CTA1 to the Hrd1 complex for the retro-translocation of CTA1. In this study, we investigated the physiological relevance of ERdj5 in immune stimulation by CT. ERdj5-knockout (ERdj5 KO) mice had decreased production of antigen-specific IgG in the serum and IgA in the mucosal secretion after intranasal immunization with Ag and CT. Especially, IgG2c isotypes were specifically reduced in the absence of ERdj5. ERdj5 KO dendritic cells (DCs) failed to full activation with decreased expression of costimulatory molecules, such as MHC class II, CD80, and CD 86. In ERdj5 KO DCs, secretion of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, was reduced. The cytokine signatures of several helper T cells were reduced in ERdj5 KO mice following intranasal CT immunization. The absence of ERdj5 affects the immunostimulatory properties of CT but does not affect the response to the CTB pentamer, the response to alum, total antibody production, or cytokine release from DCs exposed to CpG. Interestingly, CT enhanced the expression of ER stress proteins in ERdj5 KO innate immune cells. These results suggested that ERdj5 contributed as a decisive factor to the immunostimulatory capacity of CT via CTA1 retro-translocation.
Collapse
Affiliation(s)
- Mee-Sun Kim
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Eun-Je Yi
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Young-In Kim
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - So Hee Kim
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Yi-Sook Jung
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Sun-Young Chang
- College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon-si, South Korea
| |
Collapse
|
39
|
Ushioda R, Nagata K. Redox-Mediated Regulatory Mechanisms of Endoplasmic Reticulum Homeostasis. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033910. [PMID: 30396882 DOI: 10.1101/cshperspect.a033910] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions in eukaryotic cells. Proper redox conditions in the ER are necessary for the functions of many luminal pathways and the maintenance of homeostasis. The redox environment in the ER is oxidative compared with that of the cytosol, and a network of oxidoreductases centering on the protein disulfide isomerase (PDI)-Ero1α hub complex is constructed for efficient electron transfer. Although these oxidizing environments are advantageous for oxidative folding for protein maturation, electron transfer is strictly controlled by Ero1α structurally and spatially. The ER redox environment shifts to a reductive environment under certain stress conditions. In this review, we focus on the reducing reactions that maintain ER homeostasis and introduce their significance in an oxidative ER environment.
Collapse
Affiliation(s)
- Ryo Ushioda
- Laboratory of Molecular and Cellular Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
40
|
Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, Okumura M. The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1864:129338. [PMID: 30986509 DOI: 10.1016/j.bbagen.2019.04.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
41
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
42
|
Fujimoto T, Inaba K, Kadokura H. Methods to identify the substrates of thiol-disulfide oxidoreductases. Protein Sci 2018; 28:30-40. [PMID: 30341785 DOI: 10.1002/pro.3530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Abstract
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol-disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active-site motif embedded in their thioredoxin-like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol-disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram-negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.
Collapse
Affiliation(s)
- Takushi Fujimoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
43
|
Shenkman M, Ron E, Yehuda R, Benyair R, Khalaila I, Lederkremer GZ. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun Biol 2018; 1:172. [PMID: 30374462 PMCID: PMC6194124 DOI: 10.1038/s42003-018-0174-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Collapse
Affiliation(s)
- Marina Shenkman
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Efrat Ron
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rivka Yehuda
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ron Benyair
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Isam Khalaila
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
44
|
Fujimoto T, Nakamura O, Saito M, Tsuru A, Matsumoto M, Kohno K, Inaba K, Kadokura H. Identification of the physiological substrates of PDIp, a pancreas-specific protein-disulfide isomerase family member. J Biol Chem 2018; 293:18421-18433. [PMID: 30315102 DOI: 10.1074/jbc.ra118.003694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/10/2018] [Indexed: 11/06/2022] Open
Abstract
About 20 members of the protein-disulfide isomerase (PDI) family are present in the endoplasmic reticulum of mammalian cells. They are thought to catalyze thiol-disulfide exchange reactions within secretory or membrane proteins to assist in their folding or to regulate their functions. PDIp is a PDI family member highly expressed in the pancreas and known to bind estrogen in vivo and in vitro However, the physiological functions of PDIp remained unclear. In this study, we set out to identify its physiological substrates. By combining acid quenching and thiol alkylation, we stabilized and purified the complexes formed between endogenous PDIp and its target proteins from the mouse pancreas. MS analysis of these complexes helped identify the disulfide-linked PDIp targets in vivo, revealing that PDIp interacts directly with a number of pancreatic digestive enzymes. Interestingly, when pancreatic elastase, one of the identified proteins, was expressed alone in cultured cells, its proenzyme formed disulfide-linked aggregates within cells. However, when pancreatic elastase was co-expressed with PDIp, the latter prevented the formation of these aggregates and enhanced the production and secretion of proelastase in a form that could be converted to an active enzyme upon trypsin treatment. These findings indicate that the main targets of PDIp are digestive enzymes and that PDIp plays an important role in the biosynthesis of a digestive enzyme by assisting with the proper folding of the proenzyme within cells.
Collapse
Affiliation(s)
- Takushi Fujimoto
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Orie Nakamura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Michiko Saito
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Bio-science Research Center, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
| | - Akio Tsuru
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Masaki Matsumoto
- the Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Kohno
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan, and
| | - Kenji Inaba
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Hiroshi Kadokura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan,
| |
Collapse
|
45
|
Alasiri G, Fan LYN, Zona S, Goldsbrough IG, Ke HL, Auner HW, Lam EWF. ER stress and cancer: The FOXO forkhead transcription factor link. Mol Cell Endocrinol 2018; 462:67-81. [PMID: 28572047 DOI: 10.1016/j.mce.2017.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Hui-Ling Ke
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holger Werner Auner
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
46
|
Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci 2018; 43:32-43. [PMID: 29153511 PMCID: PMC5751730 DOI: 10.1016/j.tibs.2017.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-2703, USA.
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
47
|
Arai K, Ueno H, Asano Y, Chakrabarty G, Shimodaira S, Mugesh G, Iwaoka M. Protein Folding in the Presence of Water-Soluble Cyclic Diselenides with Novel Oxidoreductase and Isomerase Activities. Chembiochem 2017; 19:207-211. [PMID: 29197144 DOI: 10.1002/cbic.201700624] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 01/29/2023]
Abstract
The protein disulfide isomerase (PDI) family, found in the endoplasmic reticulum (ER) of the eukaryotic cell, catalyzes the formation and cleavage of disulfide bonds and thereby helps in protein folding. A decrease in PDI activity under ER stress conditions leads to protein misfolding, which is responsible for the progression of various human diseases, such as Alzheimer's, Parkinson's, diabetes mellitus, and atherosclerosis. Here we report that water-soluble cyclic diselenides mimic the multifunctional activity of the PDI family by facilitating oxidative folding, disulfide formation/reduction, and repair of the scrambled disulfide bonds in misfolded proteins.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Haruhito Ueno
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Yuki Asano
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Gaurango Chakrabarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Shingo Shimodaira
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
48
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
49
|
Xiao Y, Han J, Wang Q, Mao Y, Wei M, Jia W, Wei L. A Novel Interacting Protein SERP1 Regulates the N‐Linked Glycosylation and Function of GLP‐1 Receptor in the Liver. J Cell Biochem 2017; 118:3616-3626. [DOI: 10.1002/jcb.26207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Yuanyuan Xiao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Qianqian Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Yueqin Mao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| |
Collapse
|
50
|
Maegawa KI, Watanabe S, Noi K, Okumura M, Amagai Y, Inoue M, Ushioda R, Nagata K, Ogura T, Inaba K. The Highly Dynamic Nature of ERdj5 Is Key to Efficient Elimination of Aberrant Protein Oligomers through ER-Associated Degradation. Structure 2017; 25:846-857.e4. [PMID: 28479060 DOI: 10.1016/j.str.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/08/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
ERdj5, composed of an N-terminal J domain followed by six thioredoxin-like domains, is the largest protein disulfide isomerase family member and functions as an ER-localized disulfide reductase that enhances ER-associated degradation (ERAD). Our previous studies indicated that ERdj5 comprises two regions, the N- and C-terminal clusters, separated by a linker loop and with distinct functional roles in ERAD. We here present a new crystal structure of ERdj5 with a largely different cluster arrangement relative to that in the original crystal structure. Single-molecule observation by high-speed atomic force microscopy visualized rapid cluster movement around the flexible linker loop, indicating the highly dynamic nature of ERdj5 in solution. ERdj5 mutants with a fixed-cluster orientation compromised the ERAD enhancement activity, likely because of less-efficient reduction of aberrantly formed disulfide bonds and prevented substrate transfer in the ERdj5-mediated ERAD pathway. We propose a significant role of ERdj5 conformational dynamics in ERAD of disulfide-linked oligomers.
Collapse
Affiliation(s)
- Ken-Ichi Maegawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Kentaro Noi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; CREST, JST, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Ryo Ushioda
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8455, Japan; CREST, JST, Japan
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8455, Japan; CREST, JST, Japan
| | - Teru Ogura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; CREST, JST, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan.
| |
Collapse
|