1
|
Raghavan AR, May K, Subramanian VV, Blitzblau HG, Patel NJ, Houseley J, Hochwagen A. Distinct chromatin regulators downmodulate meiotic axis formation and DNA break induction at chromosome ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640173. [PMID: 40093131 PMCID: PMC11908166 DOI: 10.1101/2025.02.27.640173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In many organisms, meiotic crossover recombination is suppressed near the extreme ends of chromosomes. Here, we identified two chromatin modifiers, the histone methyltransferase Dot1 and the Sir silencing complex, as regulators of this process in Saccharomyces cerevisiae. We show that the recombination-promoting axis proteins Red1 and Hop1, but not the axis-associated cohesin Rec8, are significantly reduced within 20 kb of telomeres compared to the chromosome interior. Dot1, which preferentially methylates histones in the chromosome interior, is required for this pattern by directing Red1 binding toward the chromosome interior. In parallel, the Sir complex suppresses the induction of meiotic DNA double-strand breaks (DSBs) at chromosome ends. Sir-dependent DSB suppression is independent of axis deposition and occurs in a chromosome end-specific manner that mirrors the spreading and transcriptional silencing activity of the complex, suggesting that the Sir complex suppresses DSB formation by limiting the openness of promoters, the preferred sites of meiotic DSB formation. We conclude that multiple chromatin-based mechanisms collaborate to achieve a robust reduction of meiotic recombination near chromosome ends.
Collapse
Affiliation(s)
| | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Vijayalakshmi V Subramanian
- Department of Biology, New York University, New York, USA
- Department of Biology, IISER Tirupati, Tirupati, India
| | | | - Neem J Patel
- Department of Biology, New York University, New York, USA
| | | | | |
Collapse
|
2
|
Bousquet L, Fainsod S, Decelle J, Murik O, Chevalier F, Gallet B, Templin R, Schwab Y, Avrahami Y, Koplovitz G, Ku C, Frada MJ. Life cycle and morphogenetic differentiation in heteromorphic cell types of a cosmopolitan marine microalga. THE NEW PHYTOLOGIST 2025; 245:1969-1984. [PMID: 39721990 PMCID: PMC11798906 DOI: 10.1111/nph.20360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid. Here, we investigated the fate of decoupled cells during culture observations and we compared the transcriptome profiles and the cellular ultrastructure of the three life cycle cell types. We found that decoupled cells can revert to the calcified form in the absence of viral pressure, revealing the ability of G. huxleyi to modulate cell differentiation as a function of external conditions. Ultrastructural analyses showed distinct nuclear organization with variations in chromatin volume. Transcriptomic analyses revealed gene expression patterns specific to each life phase. These included multiple regulatory functions in chromatin remodeling, broader epigenetic mechanisms and life cycling, likely contributing to cell differentiation. Finally, analyses of available host-virus transcriptomes support life cycle transition during viral infection. This study provides cellular and molecular foundations for nuclear remodeling and cell differentiation in coccolithophores and the identification of gene markers for studying coccolithophore life cycles in natural populations.
Collapse
Affiliation(s)
- Laurie Bousquet
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Shai Fainsod
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Johan Decelle
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG‐LPCVGrenoble38054France
| | - Omer Murik
- Translation Genomics Lab and Medical Genetics InstituteShaare Zedek Medical CenterJerusalem93722Israel
| | - Fabien Chevalier
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG‐LPCVGrenoble38054France
| | - Benoit Gallet
- Université Grenoble Alpes, CNRS, CEA, IRIG‐IBSGrenoble38044France
| | - Rachel Templin
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelberg69117Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelberg69117Germany
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryHeidelberg69117Germany
| | - Yoav Avrahami
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Gil Koplovitz
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Miguel J. Frada
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| |
Collapse
|
3
|
Hu Y, Ye S, Kong J, Zhou Q, Wang Z, Zhang Y, Yan H, Wang Y, Li T, Xie Y, Chen B, Zhao Y, Zhang T, Zheng X, Niu J, Hu B, Wang S, Chen Z, Zheng C. DOT1L protects against podocyte injury in diabetic kidney disease through phospholipase C-like 1. Cell Commun Signal 2024; 22:519. [PMID: 39456056 PMCID: PMC11515305 DOI: 10.1186/s12964-024-01895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Podocyte injury causes proteinuria and accelerates glomerular sclerosis during diabetic kidney disease (DKD). Disruptor of telomeric silencing 1-like (DOT1L), an evolutionarily conserved histone methyltransferase, has been reported in preventing kidney fibrosis in chronic kidney disease models. However, whether DOT1L exerts beneficial effects in diabetes induced podocyte injury and the underlying molecular mechanisms need further exploration. METHODS The expression of DOT1L was confirmed by Western blotting in MPC-5 cells and cortex of kidney from db/db mice, as well as immunofluorescence staining in human renal biopsy samples. The effect of DOT1L on podocyte injury was obtained using MPC-5 cells and db/db mice. The potential target genes regulated by DOT1L was measured by RNA-sequencing. Then, a series of molecular biological experiments was performed to investigate the regulation of PLCL1 by DOT1L in MCP-5 cells and db/db mice. Lipid accumulation was assessed by UPLC-MS/MS analysis and Oil Red O staining. RESULTS DOT1L expression was significantly declined in high glucose (HG)-treated MPC-5 cells, podocyte regions of kidney tissues from db/db mice and human renal biopsy samples. Subsequent investigations revealed that upregulation of DOT1L ameliorated HG-induced cell apoptosis in MPC-5 cells as well as primary podocytes. Furthermore, podocyte-specific DOT1L overexpression inhibited diabetic podocyte injury in db/db mice. Mechanistically, we revealed that DOT1L upregulated phospholipase C-like 1 (PLCL1) expression by mediating H3K79me2 at its promoter and PLCL1 silencing suppressed the protective role of DOT1L on podocyte injury. Moreover, DOT1L improved diabetes induced abnormal fatty acid metabolism in podocytes and PLCL1 knockdown reversed its protective effects. CONCLUSIONS Taken together, our results indicate that DOT1L protects podocyte injury via PLCL1-mediated fatty acid metabolism and provides new insights into the therapeutic target of DKD.
Collapse
Affiliation(s)
- Yepeng Hu
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Shu Ye
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Jing Kong
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Zhe Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yikai Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yaqiong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Tiekun Li
- Nanjing Kingmed Center for Clinical Laboratory Co., Ltd., 11 Yaogu Avenue, Nanjing, Jiangsu, China
| | - Yi Xie
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Bingbing Chen
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Tianyue Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xianan Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Junjia Niu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Bibi Hu
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Zhida Chen
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Woo H, Oh J, Cho YJ, Oh GT, Kim SY, Dan K, Han D, Lee JS, Kim T. N-terminal acetylation of Set1-COMPASS fine-tunes H3K4 methylation patterns. SCIENCE ADVANCES 2024; 10:eadl6280. [PMID: 38996018 PMCID: PMC11244526 DOI: 10.1126/sciadv.adl6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.
Collapse
Affiliation(s)
- Hyeonju Woo
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03082, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Yeom S, Oh J, Kim D, Lee JS. The 80 th Threonine Residue of Histone H3 Is Important for Maintaining HM Silencing in Saccharomyces cerevisiae. J Microbiol Biotechnol 2024; 34:39-46. [PMID: 37957109 PMCID: PMC10840469 DOI: 10.4014/jmb.2310.10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Gene expression in eukaryotic cells is intricately regulated by chromatin structure and various factors, including histone proteins. In Saccharomyces cerevisiae, transcriptionally silenced regions, such as telomeres and homothallic mating (HM) loci, are essential for genome stability and proper cellular function. We firstly observed the defective HM silencing in alanine substitution mutant of 80th threonine residue of histone H3 (H3T80A). To identify which properties in the H3T80 residue are important for the HM silencing, we created several substitution mutants of H3T80 residue by considering the changed states of charge, polarity, and structural similarity. This study reveals that the structural similarity of the 80th position of H3 to the threonine residue, not the polarity and charges, is the most important thing for the transcriptional silencing in the HM loci.
Collapse
Affiliation(s)
- Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Donghyun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Shaban K, Dolson A, Fisher A, Lessard E, Sauty SM, Yankulov K. TOF1 and RRM3 reveal a link between gene silencing and the pausing of replication forks. Curr Genet 2023; 69:235-249. [PMID: 37347284 DOI: 10.1007/s00294-023-01273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Eukaryotic DNA replication is accompanied by the disassembly and reassembly of nucleosomes and the transmission of epigenetic marks to the newly assembled chromatids. Several histone chaperones, including CAF-1 and Asf1p, are central to these processes. On the other hand, replication forks pause at numerous positions throughout the genome, but it is not known if and how this pausing affects the reassembly and maintenance of chromatin structures. Here, we applied drug-free gene silencing assays to analyze the genetic interactions between CAC1, ASF1, and two genes that regulate the stability of the paused replisome (TOF1) and the resumption of elongation (RRM3). Our results show that TOF1 and RRM3 differentially interact with CAF-1 and ASF1 and that the deletions of TOF1 and RRM3 lead to reduced silencing and increased frequency of epigenetic conversions at three loci in the genome of S. cerevisiae. Our study adds details to the known activities of CAF-1 and Asf1p and suggests that the pausing of the replication fork can lead to epigenetic instability.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Emma Lessard
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
7
|
Sauty SM, Yankulov K. Analyses of POL30 (PCNA) reveal positional effects in transient repression or bi-modal active/silent state at the sub-telomeres of S. cerevisiae. Epigenetics Chromatin 2023; 16:40. [PMID: 37858268 PMCID: PMC10585736 DOI: 10.1186/s13072-023-00513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Classical studies on position effect variegation in Drosophila have demonstrated the existence of bi-modal Active/Silent state of the genes juxtaposed to heterochromatin. Later studies with irreversible methods for the detection of gene repression have revealed a similar phenomenon at the telomeres of Saccharomyces cerevisiae and other species. In this study, we used dual reporter constructs and a combination of reversible and non-reversible methods to present evidence for the different roles of PCNA and histone chaperones in the stability and the propagation of repressed states at the sub-telomeres of S. cerevisiae. RESULTS We show position dependent transient repression or bi-modal expression of reporter genes at the VIIL sub-telomere. We also show that mutations in the replicative clamp POL30 (PCNA) or the deletion of the histone chaperone CAF1 or the RRM3 helicase lead to transient de-repression, while the deletion of the histone chaperone ASF1 causes a shift from transient de-repression to a bi-modal state of repression. We analyze the physical interaction of CAF1 and RRM3 with PCNA and discuss the implications of these findings for our understanding of the stability and transmission of the epigenetic state of the genes. CONCLUSIONS There are distinct modes of gene silencing, bi-modal and transient, at the sub-telomeres of S. cerevisiae. We characterise the roles of CAF1, RRM3 and ASF1 in these modes of gene repression. We suggest that the interpretations of past and future studies should consider the existence of the dissimilar states of gene silencing.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
8
|
Zhu Z, Qi J, Liu Y, Sui Z. The H3K79 methylase DOT1, unreported in photosynthetic plants, exists in Alexandrium pacificum and participates in its growth regulation. MARINE POLLUTION BULLETIN 2023; 190:114867. [PMID: 37011538 DOI: 10.1016/j.marpolbul.2023.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Alexandrium pacificum is one of the typical toxic dinoflagellate species leading to harmful algal blooms (HABs). Histone modifications play key roles in many cellular events, but little is known about the mechanism of regulating A. pacificum growth. In this study, a total of 30 proteins containing the DOT1 domain were identified and analyzed. Some ApDOT1 gene expression levels were significantly influenced by light intensity and nitrogen by expression analysis and RT-qPCR validation. The enrichment of H3K79 methylation also showed a similar trend. In addition, ApDOT1.9 protein was proved to have the function of catalyzing the methylation of H3K79 by homology analysis and in vitro methylation. The results suggested that ApDOT1 proteins and H3K79 methylation were involved in responding to harmful algal blooms-inducing conditions (high light intensity, and high nitrogen), which provided basic information for further exploration of the regulatory mechanism of histone methylation in A. pacificum rapid growth.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Juan Qi
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Wei W, Zhao Y, Chai Y, Shou S, Jin H. A novel role of DOT1L in kidney diseases. Mol Biol Rep 2023; 50:5415-5423. [PMID: 37085741 DOI: 10.1007/s11033-023-08415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND We systematically summarized the structure and biological function of DOT1L in detail, and further discussed the role of DOT1L in kidney diseases through different mechanisms. METHODS AND RESULTS We first described the role of DOT1L in various kidney diseases including AKI, CKD, DN and kidney tumor diseases. CONCLUSIONS A better understanding of DOT1L as a histone methylase based on characteristics of regulating telomere silencing, transcriptional extension, DNA damage repair and cell cycle could lead to the development of new therapeutic targets for various kidney diseases, thereby improving the prognosis of kidney disease patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yibo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
10
|
Shaban K, Sauty SM, Fisher A, Cheng A, Yankulov K. Evaluation of drug-free methods for the detection of gene silencing in Saccharomyces cerevisiae. Biochem Cell Biol 2023; 101:125-130. [PMID: 36661263 DOI: 10.1139/bcb-2022-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple studies in Saccharomyces cerevisiae have measured the levels of gene silencing by inserting the URA3 gene at various loci and selecting against URA3-expressing cells by 5-flouroorotic acid (5-FOA). However, 5-FOA affects the cellular pools of dNTPs and can produce side effects. To circumvent this issue, we and others have introduced drug-free techniques to detect silent and active gene states. In this study, we compared three drug-free methods based on the expression of fluorescent reporters in the VIIL telomere of S. cerevisiae. Our results point out that only one of these methods is suitable for large-scale drug-free analyses of gene silencing.
Collapse
Affiliation(s)
- Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashley Fisher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Gu X, Hua Y, Yu J, Yang L, Ge S, Jia R, Chai P, Zhuang A, Fan X. Epigenetic drug library screening reveals targeting DOT1L abrogates NAD + synthesis by reprogramming H3K79 methylation in uveal melanoma. J Pharm Anal 2023; 13:24-38. [PMID: 36820078 PMCID: PMC9937798 DOI: 10.1016/j.jpha.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Uveal melanoma (UM) is the most frequent and life-threatening ocular malignancy in adults. Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis. However, a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic. Herein, using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers, we observed that disruptor of telomeric silencing-1-like (DOT1L), a methyltransferase of histone H3 lysine 79 (H3K79), was activated in UM, especially in the high-risk group. Concordantly, a systematic epi-drug library screening revealed that DOT1L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells, both in vitro and in vivo. Combining Cleavage Under Targets and Tagmentation (CUT&Tag), RNA sequencing (RNA-seq), and bioinformatics analysis, we identified that DOT1L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase (NAPRT) and epigenetically activated its expression. Importantly, NAPRT served as an oncogenic accelerator by enhancing nicotinamide adenine dinucleotide (NAD+) synthesis. Therapeutically, DOT1L inhibition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79 (H3K79me2) in the NAPRT promoter, thereby inhibiting the malignant behaviors of UM. Conclusively, our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.
Collapse
|
12
|
He F, Yu Q, Wang M, Wang R, Gong X, Ge F, Yu X, Li S. SESAME-catalyzed H3T11 phosphorylation inhibits Dot1-catalyzed H3K79me3 to regulate autophagy and telomere silencing. Nat Commun 2022; 13:7526. [PMID: 36473858 PMCID: PMC9726891 DOI: 10.1038/s41467-022-35182-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact mechanism of action for H3pT11 is poorly understood. Here, we report that H3pT11 directly inhibits Dot1-catalyzed H3K79 tri-methylation (H3K79me3) and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they work together to promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
Collapse
Affiliation(s)
- Fei He
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Qi Yu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Min Wang
- grid.9227.e0000000119573309Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Rongsha Wang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Xuanyunjing Gong
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Feng Ge
- grid.9227.e0000000119573309Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Xilan Yu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Shanshan Li
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| |
Collapse
|
13
|
Ai H, Sun M, Liu A, Sun Z, Liu T, Cao L, Liang L, Qu Q, Li Z, Deng Z, Tong Z, Chu G, Tian X, Deng H, Zhao S, Li JB, Lou Z, Liu L. H2B Lys34 Ubiquitination Induces Nucleosome Distortion to Stimulate Dot1L Activity. Nat Chem Biol 2022; 18:972-980. [PMID: 35739357 DOI: 10.1038/s41589-022-01067-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
Ubiquitination-dependent histone crosstalk plays critical roles in chromatin-associated processes and is highly associated with human diseases. Mechanism studies of the crosstalk have been of the central focus. Here our study on the crosstalk between H2BK34ub and Dot1L-catalyzed H3K79me suggests a novel mechanism of ubiquitination-induced nucleosome distortion to stimulate the activity of an enzyme. We determined the cryo-electron microscopy structures of Dot1L-H2BK34ub nucleosome complex and the H2BK34ub nucleosome alone. The structures reveal that H2BK34ub induces an almost identical orientation and binding pattern of Dot1L on nucleosome as H2BK120ub, which positions Dot1L for the productive conformation through direct ubiquitin-enzyme contacts. However, H2BK34-anchored ubiquitin does not directly interact with Dot1L as occurs in the case of H2BK120ub, but rather induces DNA and histone distortion around the modified site. Our findings establish the structural framework for understanding the H2BK34ub-H3K79me trans-crosstalk and highlight the diversity of mechanisms for histone ubiquitination to activate chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Huasong Ai
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Maoshen Sun
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Aijun Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zixian Sun
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Tingting Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lin Cao
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
| | - Lujun Liang
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Qian Qu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zichen Li
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zebin Tong
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Guochao Chu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.
| | - Lei Liu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Meng S, Huang S, Liu J, Gai Y, Li M, Duan S, Zhang S, Sun X, Yang Q, Wang Y, Xu K, Ma H. Histone Methylation Is Required for Virulence, Conidiation, and Multi-Stress Resistance of Alternaria alternata. Front Microbiol 2022; 13:924476. [PMID: 35783406 PMCID: PMC9245015 DOI: 10.3389/fmicb.2022.924476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Histone methylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs). This study determined the function of 5 HMTs (AaDot1, AaHMT1, AaHnrnp, AaSet1, and AaSet2) and 1 HDMs (AaGhd2) in the phytopathogenic fungus Alternaria alternata by analyzing targeted gene deletion mutants. The vegetative growth, conidiation, and pathogenicity of ∆AaSet1 and ∆AaSet2 were severely inhibited indicating that AaSet1 and AaSet2 play critical roles in cell development in A. alternata. Multiple stresses analysis revealed that both AaSet1 and AaSet2 were involved in the adaptation to cell wall interference agents and osmotic stress. Meanwhile, ∆AaSet1 and ∆AaSet2 displayed serious vegetative growth defects in sole carbon source medium, indicating that AaSet1 and AaSet2 play an important role in carbon source utilization. In addition, ∆AaSet2 colony displayed white in color, while the wild-type colony was dark brown, indicating AaSet2 is an essential gene for melanin biosynthesis in A. alternata. AaSet2 was required for the resistance to oxidative stress. On the other hand, all of ∆AaDot1, ∆AaHMT1, and ∆AaGhd2 mutants displayed wild-type phenotype in vegetative growth, multi-stress resistance, pathogenicity, carbon source utilization, and melanin biosynthesis. To explore the regulatory mechanism of AaSet1 and AaSet2, RNA-seq of these mutants and wild-type strain was performed. Phenotypes mentioned above correlated well with the differentially expressed genes in ∆AaSet1 and ∆AaSet2 according to the KEGG and GO enrichment results. Overall, our study provides genetic evidence that defines the central role of HMTs and HDMs in the pathological and biological functions of A. alternata.
Collapse
Affiliation(s)
- Shuai Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jinhua Liu
- Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Min Li
- China-USA Citrus Huanglongbing Joint Laboratory (GNU-UF Joint Lab), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory (GNU-UF Joint Lab), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuting Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Qi Yang
- Linyi Inspection and Testing Center, Linyi, China
| | - Yuchun Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
15
|
Yeom S, Oh J, Lee JS. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Genes Genomics 2022; 44:359-367. [PMID: 35034281 DOI: 10.1007/s13258-021-01203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the budding yeast Saccharomyces cerevisiae, a silent chromatin structure is formed at three distinct loci, including telomeres, rDNA, and mating-type loci, which silence the expression of genes within their structures. Sir2 is the only common factor, regulating the three silent chromatin regions. S. cerevisiae has 32 telomeres, but studies on gene silencing in budding yeast have been performed using some reporter genes, artificially inserted in the telomeric regions. Therefore, insights into the global landscape of Sir-dependent silencing of genes within the silent chromatin regions are required. OBJECTIVE This study aimed to obtain global insights into Sir2-dependent gene silencing on all silent chromatin regions in budding yeast. METHODS RNA-sequencing was performed to identify genes that are silenced by Sir2. By comparing with the chromatin immunoprecipitation-sequencing (ChIP-seq) of Sir2 in the wild-type strain, we confirmed Sir2-regulated genes. RESULTS Using Sir2 ChIP-seq data, we identified that the Sir2 binding domain length caused by Sir2 spreading from the chromosomal end is different in each telomere in budding yeast. Expression of most subtelomeric genes increased in the ∆sir2 strain. Some Sir2-regulated subtelomeric genes were positioned within the telomeric Sir2-binding domain, while the others were outside the Sir2-binding domain. In addition, Sir2 was bound to the mating-type loci and rDNA region, and gene expression increased in the ∆sir2 strain. CONCLUSION We concluded that S. cerevisiae has two modes of Sir2-mediated gene silencing: one is dependent on chromatin binding and spreading of Sir2, and the other is independent of spreading of Sir2.
Collapse
Affiliation(s)
- Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
16
|
Ai H, Peng S, Li JB. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. J Pept Sci 2021; 28:e3381. [PMID: 34811838 DOI: 10.1002/psc.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022]
Abstract
The reversible and dynamic post-translational modifications (PTMs) of histones in eukaryotic chromatin are intimately connected to cell development and gene function, and abnormal regulation of PTMs can result in cancer and neurodegenerative diseases. Specific combinations of these modifications are mediated by a series of chromatin proteins that write, erase, and read the "histone codes," but mechanistic studies of the precise biochemical and structural relationships between different sets of modifications and their effects on chromatin function constitute a unique challenge to canonical biochemical approaches. In the past decade, the development and application of chemical methods for investigating histone PTM crosstalks has received considerable attention in the field of chemical biology. In this review, taking the functional crosstalk between H2B ubiquitylation at Lys120 (H2BK120ub) and H3 methylation at Lys79 (H3K79me) as a typical example, we survey recent developments of different chemical methods, in particular, protein synthetic chemistry and protein-based chemical probes, for studying the mechanism of the functional crosstalks of histone PTMs.
Collapse
Affiliation(s)
- Huasong Ai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuai Peng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Loïodice I, Garnier M, Nikolov I, Taddei A. An Inducible System for Silencing Establishment Reveals a Stepwise Mechanism in Which Anchoring at the Nuclear Periphery Precedes Heterochromatin Formation. Cells 2021; 10:cells10112810. [PMID: 34831033 PMCID: PMC8616196 DOI: 10.3390/cells10112810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
In eukaryotic cells, silent chromatin is mainly found at the nuclear periphery forming subnuclear compartments that favor silencing establishment. Here, we set up an inducible system to monitor silencing establishment at an ectopic locus in relation with its subnuclear localization in budding yeast. We previously showed that introducing LacI bound lacO arrays in proximity to gene flanked by HML silencers favors the recruitment of the yeast silencing complex SIR at this locus, leading to its silencing and anchoring at the nuclear periphery. Using an inducible version of this system, we show that silencing establishment is a stepwise process occurring over several cell cycles, with the progressive recruitment of the SIR complex. In contrast, we observed a rapid, SIR-independent perinuclear anchoring, induced by the high amount of LacI binding at the lacO array leading to nucleosome eviction at this array and to the phosphorylation of H2A in the neighboring nucleosomes by Mec1 kinase. While the initial phosphorylation of H2A (H2A-P) and perinuclear anchoring are independent of the SIR complex, its latter recruitment stabilizes H2A-P and reinforces the perinuclear anchoring. Finally, we showed that Sir3 spreading stabilizes nucleosomes and limits the access of specific DNA-binding protein to DNA.
Collapse
Affiliation(s)
- Isabelle Loïodice
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Mickael Garnier
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Ivaylo Nikolov
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Angela Taddei
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
- Cogitamus Laboratory, F-75005 Paris, France
- Correspondence:
| |
Collapse
|
18
|
Valencia-Sánchez MI, De Ioannes P, Wang M, Truong DM, Lee R, Armache JP, Boeke JD, Armache KJ. Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science 2021; 371:371/6527/eabc6663. [PMID: 33479126 DOI: 10.1126/science.abc6663] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state.
Collapse
Affiliation(s)
- Marco Igor Valencia-Sánchez
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Miao Wang
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David M Truong
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA
| | - Rachel Lee
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jef D Boeke
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
19
|
Ruault M, Scolari VF, Lazar-Stefanita L, Hocher A, Loïodice I, Koszul R, Taddei A. Sir3 mediates long-range chromosome interactions in budding yeast. Genome Res 2021; 31:411-425. [PMID: 33579753 PMCID: PMC7919453 DOI: 10.1101/gr.267872.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022]
Abstract
Physical contacts between distant loci contribute to regulate genome function. However, the molecular mechanisms responsible for settling and maintaining such interactions remain poorly understood. Here, we investigate the well-conserved interactions between heterochromatin loci. In budding yeast, the 32 telomeres cluster in 3–5 foci in exponentially growing cells. This clustering is functionally linked to the formation of heterochromatin in subtelomeric regions through the recruitment of the silencing SIR complex composed of Sir2/3/4. Combining microscopy and Hi-C on strains expressing different alleles of SIR3, we show that the binding of Sir3 directly promotes long-range contacts between distant regions, including the rDNA, telomeres, and internal Sir3-bound sites. Furthermore, we unveil a new property of Sir3 in promoting rDNA compaction. Finally, using a synthetic approach, we demonstrate that Sir3 can bond loci belonging to different chromosomes together, when targeted to these loci, independently of its interaction with its known partners (Rap1, Sir4), Sir2 activity, or chromosome context. Altogether, these data suggest that Sir3 acts as a molecular bridge that stabilizes long-range interactions.
Collapse
Affiliation(s)
- Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Vittore F Scolari
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.,Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France
| | - Luciana Lazar-Stefanita
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France.,Sorbonne Université, collège Doctoral, F-75005 Paris, France
| | - Antoine Hocher
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Isabelle Loïodice
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, C3BI USR 3756, F-75015 Paris, France.,Cogitamus Laboratory, F-75005 Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.,Cogitamus Laboratory, F-75005 Paris, France
| |
Collapse
|
20
|
Zhang S, Yu X, Zhang Y, Xue X, Yu Q, Zha Z, Gogol M, Workman JL, Li S. Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation. Nat Commun 2021; 12:594. [PMID: 33500413 PMCID: PMC7838282 DOI: 10.1038/s41467-020-20711-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeres are organized into a heterochromatin structure and maintenance of silent heterochromatin is required for chromosome stability. How telomere heterochromatin is dynamically regulated in response to stimuli remains unknown. Pyruvate kinase Pyk1 forms a complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex) to regulate gene expression by phosphorylating histone H3T11 (H3pT11). Here, we identify a function of SESAME in regulating telomere heterochromatin structure. SESAME phosphorylates H3T11 at telomeres, which maintains SIR (silent information regulator) complex occupancy at telomeres and protects Sir2 from degradation by autophagy. Moreover, SESAME-catalyzed H3pT11 directly represses autophagy-related gene expression to further prevent autophagy-mediated Sir2 degradation. By promoting H3pT11, serine increases Sir2 protein levels and enhances telomere silencing. Loss of H3pT11 leads to reduced Sir2 and compromised telomere silencing during chronological aging. Together, our study provides insights into dynamic regulation of silent heterochromatin by histone modifications and autophagy in response to cell metabolism and aging.
Collapse
Affiliation(s)
- Shihao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiangyan Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
21
|
Abstract
A battery of chromatin modifying enzymes play essential roles in remodeling the epigenome in the zygote and cleavage stage embryos, when the maternal genome is the sole contributor. Here we identify an exemption. DOT1L methylates lysine 79 in the globular domain of histone H3 (H3K79). Dot1l is an essential gene, as homozygous null mutant mouse embryos exhibit multiple developmental abnormalities and die before 11.5 days of gestation. To test if maternally deposited DOT1L is required for embryo development, we carried out a conditional Dot1l knockout in growing oocytes using the Zona pellucida 3-Cre (Zp3-Cre) transgenic mice. We found that the resulting maternal mutant Dot1lmat−/+ offspring displayed normal development and fertility, suggesting that the expression of the paternally inherited copy of Dot1l in the embryo is sufficient to support development. In addition, Dot1l maternal deletion did not affect the parental allele-specific expression of imprinted genes, indicating that DOT1L is not needed for imprint establishment in the oocyte or imprint protection in the zygote. In summary, uniquely and as opposed to other histone methyltransferases and histone marks, maternal DOT1L deposition and H3K79 methylation in the zygote and in the preimplantation stage embryo is dispensable for mouse development.
Collapse
|
22
|
Ridenour JB, Möller M, Freitag M. Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes (Basel) 2020; 11:E638. [PMID: 32527036 PMCID: PMC7348808 DOI: 10.3390/genes11060638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genome integrity is essential to maintain cellular function and viability. Consequently, genome instability is frequently associated with dysfunction in cells and associated with plant, animal, and human diseases. One consequence of relaxed genome maintenance that may be less appreciated is an increased potential for rapid adaptation to changing environments in all organisms. Here, we discuss evidence for the control and function of facultative heterochromatin, which is delineated by methylation of histone H3 lysine 27 (H3K27me) in many fungi. Aside from its relatively well understood role in transcriptional repression, accumulating evidence suggests that H3K27 methylation has an important role in controlling the balance between maintenance and generation of novelty in fungal genomes. We present a working model for a minimal repressive network mediated by H3K27 methylation in fungi and outline challenges for future research.
Collapse
Affiliation(s)
| | | | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR 97331, USA; (J.B.R.); (M.M.)
| |
Collapse
|
23
|
Hocher A, Taddei A. Subtelomeres as Specialized Chromatin Domains. Bioessays 2020; 42:e1900205. [PMID: 32181520 DOI: 10.1002/bies.201900205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Specificities associated with chromosomal linearity are not restricted to telomeres. Here, recent results obtained on fission and budding yeast are summarized and an attempt is made to define subtelomeres using chromatin features extending beyond the heterochromatin emanating from telomeres. Subtelomeres, the chromosome domains adjacent to telomeres, differ from the rest of the genome by their gene content, rapid evolution, and chromatin features that together contribute to organism adaptation. However, current definitions of subtelomeres are generally based on synteny and are largely gene-centered. Taking into consideration both the peculiar gene content and dynamics as well as the chromatin properties of those domains, it is discussed how chromatin features can contribute to subtelomeric properties and functions, and play a pivotal role in the emergence of subtelomeres.
Collapse
Affiliation(s)
- Antoine Hocher
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, UMR3664, Paris, F-75005, France.,Sorbonne Université, UPMC University Paris 06, CNRS, UMR3664, Paris, F-75005, France
| |
Collapse
|
24
|
Sarno F, Nebbioso A, Altucci L. DOT1L: a key target in normal chromatin remodelling and in mixed-lineage leukaemia treatment. Epigenetics 2019; 15:439-453. [PMID: 31790636 PMCID: PMC7188393 DOI: 10.1080/15592294.2019.1699991] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methylation of histone 3 at lysine 79 (H3K79) is one of the principal mechanisms involved in gene expression. The histone methyltransferase DOT1L, which mono-, di- and trimethylates H3K79 using S-adenosyl-L-methionine as a co-factor, is involved in cell development, cell cycle progression, and DNA damage repair. However, changes in normal expression levels of this enzyme are found in prostate, breast, and ovarian cancer. High levels of H3K79me are also detected in acute myeloid leukaemia patients bearing MLL rearrangements (MLL-r). MLL translocations are found in approximately 80% of paediatric patients, leading to poor prognosis. DOT1L is recruited on DNA and induces hyperexpression of HOXA9 and MEIS1. Based on these findings, selective drugs have been developed to induce apoptosis in MLL-r leukaemia cells by specifically inhibiting DOT1L. The most potent DOT1L inhibitor pinometostat has been investigated in Phase I clinical trials for treatment of paediatric and adult patients with MLL-driven leukaemia, showing promising results.
Collapse
Affiliation(s)
- Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" Napoli, Napoli, Italy
| |
Collapse
|
25
|
Li Y, Hu Y, Zhao K, Pan Y, Qu Y, Zhao J, Qin Y. The Indispensable Role of Histone Methyltransferase PoDot1 in Extracellular Glycoside Hydrolase Biosynthesis of Penicillium oxalicum. Front Microbiol 2019; 10:2566. [PMID: 31787956 PMCID: PMC6853848 DOI: 10.3389/fmicb.2019.02566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Histone methylation is associated with transcription regulation, but its role for glycoside hydrolase (GH) biosynthesis is still poorly understood. We identified the histone H3 lysine 79 (H3K79)-specific methyltransferase PoDot1 in Penicillium oxalicum. PoDot1 affects conidiation by regulating the transcription of key regulators (BrlA, FlbC, and StuA) of asexual development and is required in normal hyphae septum and branch formation by regulating the transcription of five septin-encoding genes, namely, aspA, aspB, aspC, aspD, and aspE. Tandem affinity purification/mass spectrometry showed that PoDot1 has no direct interaction with transcription machinery, but it affects the expressions of extracellular GH genes extensively. The expression of genes (amy15A, amy13A, cel7A/cbh1, cel61A, chi18A, cel3A/bgl1, xyn10A, cel7B/eg1, cel5B/eg2, and cel6A/cbh2) that encode the top 10 GHs was remarkably downregulated by Podot1 deletion (ΔPodot1). Consistent with the decrease in gene transcription level, the activities of amylases and cellulases were significantly decreased in ΔPodot1 mutants in agar (solid) and fermentation (liquid) media. The repression of GH gene expressions caused by PoDot1 deletion was not mediated by key transcription factors, such as AmyR, ClrB, CreA, and XlnR, but was accompanied by defects in global demethylated H3K79 (H3K79me2) and trimethylated H3K79 (H3K79me3). The impairment of H3K79me2 on specific GH gene loci was observed due to PoDot1 deletion. The results implies that defects of H3K79 methylation is the key reason of the downregulated transcription level of GH-encoding genes and reveals the indispensable role of PoDot1 in extracellular GH biosynthesis.
Collapse
Affiliation(s)
- Yanan Li
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yueyan Hu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Kaili Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yunjun Pan
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jian Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
26
|
Brothers M, Rine J. Mutations in the PCNA DNA Polymerase Clamp of Saccharomyces cerevisiae Reveal Complexities of the Cell Cycle and Ploidy on Heterochromatin Assembly. Genetics 2019; 213:449-463. [PMID: 31451562 PMCID: PMC6781887 DOI: 10.1534/genetics.119.302452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023] Open
Abstract
In Saccharomyces cerevisiae, transcriptional silencing at HML and HMR maintains mating-type identity. The repressive chromatin structure at these loci is replicated every cell cycle and must be re-established quickly to prevent transcription of the genes at these loci. Mutations in a component of the replisome, the proliferating cell nuclear antigen (PCNA), encoded by POL30, cause a loss of transcriptional silencing at HMR We used an assay that captures transient losses of silencing at HML and HMR to perform extended genetic analyses of the pol30-6, pol30-8, and pol30-79 alleles. All three alleles destabilized silencing only transiently and only in cycling cells. Whereas pol30-8 caused loss of silencing by disrupting the function of Chromatin Assembly Factor 1, pol30-6 and pol30-79 acted through a separate genetic pathway, but one still dependent on histone chaperones. Surprisingly, the silencing-loss phenotypes of pol30-6 and pol30-79 depended on ploidy, but not on POL30 dosage or mating-type identity. Separately from silencing loss, the pol30-6 and pol30-79 alleles also displayed high levels of mitotic recombination in diploids. These results established that histone trafficking involving PCNA at replication forks is crucial to the maintenance of chromatin state and genome stability during DNA replication. They also raised the possibility that increased ploidy may protect chromatin states when the replisome is perturbed.
Collapse
Affiliation(s)
- Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
27
|
Worden EJ, Hoffmann NA, Hicks CW, Wolberger C. Mechanism of Cross-talk between H2B Ubiquitination and H3 Methylation by Dot1L. Cell 2019; 176:1490-1501.e12. [PMID: 30765112 PMCID: PMC6498860 DOI: 10.1016/j.cell.2019.02.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Methylation of histone H3 K79 by Dot1L is a hallmark of actively transcribed genes that depends on monoubiquitination of H2B K120 (H2B-Ub) and is an example of histone modification cross-talk that is conserved from yeast to humans. We report here cryo-EM structures of Dot1L bound to ubiquitinated nucleosome that show how H2B-Ub stimulates Dot1L activity and reveal a role for the histone H4 tail in positioning Dot1L. We find that contacts mediated by Dot1L and the H4 tail induce a conformational change in the globular core of histone H3 that reorients K79 from an inaccessible position, thus enabling this side chain to insert into the active site in a position primed for catalysis. Our study provides a comprehensive mechanism of cross-talk between histone ubiquitination and methylation and reveals structural plasticity in histones that makes it possible for histone-modifying enzymes to access residues within the nucleosome core.
Collapse
Affiliation(s)
- Evan J Worden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niklas A Hoffmann
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chad W Hicks
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Jezek M, Green EM. Histone Modifications and the Maintenance of Telomere Integrity. Cells 2019; 8:E199. [PMID: 30823596 PMCID: PMC6407025 DOI: 10.3390/cells8020199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/09/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Telomeres, the nucleoprotein structures at the ends of eukaryotic chromosomes, play an integral role in protecting linear DNA from degradation. Dysregulation of telomeres can result in genomic instability and has been implicated in increased rates of cellular senescence and many diseases, including cancer. The integrity of telomeres is maintained by a coordinated network of proteins and RNAs, such as the telomerase holoenzyme and protective proteins that prevent the recognition of the telomere ends as a DNA double-strand breaks. The structure of chromatin at telomeres and within adjacent subtelomeres has been implicated in telomere maintenance pathways in model systems and humans. Specific post-translational modifications of histones, including methylation, acetylation, and ubiquitination, have been shown to be necessary for maintaining a chromatin environment that promotes telomere integrity. Here we review the current knowledge regarding the role of histone modifications in maintaining telomeric and subtelomeric chromatin, discuss the implications of histone modification marks as they relate to human disease, and highlight key areas for future research.
Collapse
Affiliation(s)
- Meagan Jezek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
29
|
Hocher A, Ruault M, Kaferle P, Descrimes M, Garnier M, Morillon A, Taddei A. Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions. Genome Res 2018; 28:1867-1881. [PMID: 30355601 PMCID: PMC6280759 DOI: 10.1101/gr.236554.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast, fly, and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at varying levels in yeast and found that Sir3 spreads into extended silent domains (ESDs), eventually reaching saturation at subtelomeres. We observed the spread of Sir3 into subtelomeric domains associated with specific histone marks in wild-type cells, and stopping at zones of histone mark transitions including H3K79 trimethylation levels. Our study shows that the conserved H3K79 methyltransferase Dot1 is essential in restricting Sir3 spread beyond ESDs, thus ensuring viability upon overexpression of Sir3. Last, our analyses of published data demonstrate how ESDs unveil uncharacterized discrete domains isolating structural and functional subtelomeric features from the rest of the genome. Our work offers a new approach on how to separate subtelomeres from the core chromosome.
Collapse
Affiliation(s)
- Antoine Hocher
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Myriam Ruault
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Petra Kaferle
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Marc Descrimes
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Mickaël Garnier
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Antonin Morillon
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| |
Collapse
|
30
|
Cheng L, Liu CX, Jiang S, Hou S, Huang JG, Chen ZQ, Sun YY, Qi H, Jiang HW, Wang JF, Zhou YM, Czajkowsky DM, Dai J, Tao SC. Cell Lysate Microarray for Mapping the Network of Genetic Regulators for Histone Marks. Mol Cell Proteomics 2018; 17:1720-1736. [PMID: 29871872 DOI: 10.1074/mcp.ra117.000550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/22/2018] [Indexed: 11/06/2022] Open
Abstract
Proteins, as the major executer for cell progresses and functions, its abundance and the level of post-translational modifications, are tightly monitored by regulators. Genetic perturbation could help us to understand the relationships between genes and protein functions. Herein, to explore the impact of the genome-wide interruption on certain protein, we developed a cell lysate microarray on kilo-conditions (CLICK) with 4837 knockout (YKO) and 322 temperature-sensitive (ts) mutant strains of yeast (Saccharomyces cerevisiae). Taking histone marks as examples, a general workflow was established for the global identification of upstream regulators. Through a single CLICK array test, we obtained a series of regulators for H3K4me3, which covers most of the known regulators in S. cerevisiae We also noted that several group of proteins are involved in negatively regulation of H3K4me3. Further, we discovered that Cab4p and Cab5p, two key enzymes of CoA biosynthesis, play central roles in histone acylation. Because of its general applicability, CLICK array could be easily adopted to rapid and global identification of upstream protein/enzyme(s) that regulate/modify the level of a protein or the posttranslational modification of a non-histone protein.
Collapse
Affiliation(s)
- Li Cheng
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China.,§Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Cheng-Xi Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shuangying Jiang
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Sha Hou
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Jin-Guo Huang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zi-Qing Chen
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang-Yang Sun
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Huan Qi
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - He-Wei Jiang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing-Fang Wang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yi-Ming Zhou
- ¶Beijing NeoAntigen Biotechnology Co. Ltd, Beijing, 102206, PR China
| | - Daniel M Czajkowsky
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junbiao Dai
- §Centre for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China;
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education); School of Biomedical Engineering; and State Key Laboratory of Oncogenes and Related Genes; Shanghai Jiao Tong University, Shanghai 200240, PR China;
| |
Collapse
|
31
|
Wanat JJ, Logsdon GA, Driskill JH, Deng Z, Lieberman PM, Johnson FB. TERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeast. PLoS One 2018; 13:e0195698. [PMID: 29649255 PMCID: PMC5896980 DOI: 10.1371/journal.pone.0195698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/27/2018] [Indexed: 01/27/2023] Open
Abstract
The events underlying senescence induced by critical telomere shortening are not fully understood. Here we provide evidence that TERRA, a non-coding RNA transcribed from subtelomeres, contributes to senescence in yeast lacking telomerase (tlc1Δ). Levels of TERRA expressed from multiple telomere ends appear elevated at senescence, and expression of an artificial RNA complementary to TERRA (anti-TERRA) binds TERRA in vivo and delays senescence. Anti-TERRA acts independently from several other mechanisms known to delay senescence, including those elicited by deletions of EXO1, TEL1, SAS2, and genes encoding RNase H enzymes. Further, it acts independently of the senescence delay provided by RAD52-dependent recombination. However, anti-TERRA delays senescence in a fashion epistatic to inactivation of the conserved histone methyltransferase Dot1. Dot1 associates with TERRA, and anti-TERRA disrupts this interaction in vitro and in vivo. Surprisingly, the anti-TERRA delay is independent of the C-terminal methyltransferase domain of Dot1 and instead requires only its N-terminus, which was previously found to facilitate release of telomeres from the nuclear periphery. Together, these data suggest that TERRA and Dot1 cooperate to drive senescence.
Collapse
Affiliation(s)
- Jennifer J. Wanat
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- Washington College, Department of Biology, Chestertown, Maryland, United States of America
| | - Glennis A. Logsdon
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jordan H. Driskill
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhong Deng
- The Wistar Institute, Gene Expression and Regulation, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Gene Expression and Regulation, Philadelphia, Pennsylvania, United States of America
| | - F. Brad Johnson
- University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Wood K, Tellier M, Murphy S. DOT1L and H3K79 Methylation in Transcription and Genomic Stability. Biomolecules 2018; 8:E11. [PMID: 29495487 PMCID: PMC5871980 DOI: 10.3390/biom8010011] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.
Collapse
Affiliation(s)
- Katherine Wood
- Department of Biochemistry, University of Oxford, Oxford OX1 3RE, UK.
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
33
|
Zhou Z, Liu YT, Ma L, Gong T, Hu YN, Li HT, Cai C, Zhang LL, Wei G, Zhou JQ. Independent manipulation of histone H3 modifications in individual nucleosomes reveals the contributions of sister histones to transcription. eLife 2017; 6:30178. [PMID: 29027902 PMCID: PMC5677365 DOI: 10.7554/elife.30178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
Histone tail modifications can greatly influence chromatin-associated processes. Asymmetrically modified nucleosomes exist in multiple cell types, but whether modifications on both sister histones contribute equally to chromatin dynamics remains elusive. Here, we devised a bivalent nucleosome system that allowed for the constitutive assembly of asymmetrically modified sister histone H3s in nucleosomes in Saccharomyces cerevisiae. The sister H3K36 methylations independently affected cryptic transcription in gene coding regions, whereas sister H3K79 methylation had cooperative effects on gene silencing near telomeres. H3K4 methylation on sister histones played an independent role in suppressing the recruitment of Gal4 activator to the GAL1 promoter and in inhibiting GAL1 transcription. Under starvation stress, sister H3K4 methylations acted cooperatively, independently or redundantly to regulate transcription. Thus, we provide a unique tool for comparing symmetrical and asymmetrical modifications of sister histone H3s in vivo. Inside each human cell, about two meters of DNA is wrapped around millions of proteins called histones, forming structures known as nucleosomes. Each nucleosome contains 147 letters of DNA code and two copies of four different histones – H2A, H2B, H3 and H4 – meaning eight proteins in total. The two copies of each histone protein found in a nucleosome are referred to as “sister” histones and are identical. Histone proteins have long tails that the cell can edit by adding chemical groups at specific positions. This changes the way the cell copies, uses and repairs its DNA. Previous studies show that identical sister histones can end up with different modifications. But, it was not clear what effect this had. To adress this issue, there are two questions to answer. What do asymmetric sister histones do in living cells? And, does a modification to one histone affect its sister? Gene editing could help scientists to understand the effect of asymmetrical tail modification by forcing cells to make non-identical sister histones. However, this is challenging because most animals studied in the laboratory have many copies of the genes for histones. Fruit flies, for example, have 23 copies of their histone genes. The single-celled yeast Saccharomyces cerevisiae has only two copies of its histone genes. Yet, even if one of these genes was replaced with a mutant gene and the other left unedited or “wild-type”, there would be nothing to stop the cell from forming nucleosomes in which both sister histones were still identical – that is to say, mutant with mutant or wild-type with wild-type. Now, Zhou, Liu et al. report a new method that allowed them to edit the tail sequence of one H3 histone but not its sister. First, they searched for, and found, a pair of mutant H3 genes, which encode two extremely similar but different H3 proteins that could bind to each other but not to themselves. As a result, yeast cells with the genes for these proteins could only form nucleosomes in which the sister H3 histones were non-identical. Next, Zhou et al. made a small change to the tail of one of the H3 sisters which meant it could not be modified. The resulting nucleosomes contain one H3 histone with a wild-type tail and one with a mutant tail. The cell could only modify one of them, mimicking natural asymmetrical modifications. The new technique revealed that modification of one sister does not affect the the other. It also revealed that modifications to sister histones can work both alone and together. In some cases, the cell needs only edit one tail to affect the use of a gene. Other times, it must edit both tails for greatest effect. This new tool is the first step in understanding the contribution of the tails of sister histones in living cells. In future, it should help to uncover the effect of different combinations of modifications. This could shed light on how cells control the use of different genes.
Collapse
Affiliation(s)
- Zhen Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Ting Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Ma
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Gong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ya-Nan Hu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Tao Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ling-Li Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
34
|
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
35
|
Mulla WA, Seidel CW, Zhu J, Tsai HJ, Smith SE, Singh P, Bradford WD, McCroskey S, Nelliat AR, Conkright J, Peak A, Malanowski KE, Perera AG, Li R. Aneuploidy as a cause of impaired chromatin silencing and mating-type specification in budding yeast. eLife 2017; 6:27991. [PMID: 28841138 PMCID: PMC5779231 DOI: 10.7554/elife.27991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023] Open
Abstract
Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as indicated by a lack of growth response to pheromone. The silencing defect was not limited to cryptic mating type loci and was associated with broad changes in histone modifications and chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can be partially recapitulated by an extra copy of several genes on chromosome X. These results suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.
Collapse
Affiliation(s)
- Wahid A Mulla
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Missouri, United States
| | - Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Missouri, United States
| | - Pushpendra Singh
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Scott McCroskey
- Stowers Institute for Medical Research, Missouri, United States
| | - Anjali R Nelliat
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Allison Peak
- Stowers Institute for Medical Research, Missouri, United States
| | | | - Anoja G Perera
- Stowers Institute for Medical Research, Missouri, United States
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
36
|
Li W, Yi J, Agbu P, Zhou Z, Kelley RL, Kallgren S, Jia S, He X. Replication stress affects the fidelity of nucleosome-mediated epigenetic inheritance. PLoS Genet 2017; 13:e1006900. [PMID: 28749973 PMCID: PMC5549764 DOI: 10.1371/journal.pgen.1006900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/08/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
The fidelity of epigenetic inheritance or, the precision by which epigenetic information is passed along, is an essential parameter for measuring the effectiveness of the process. How the precision of the process is achieved or modulated, however, remains largely elusive. We have performed quantitative measurement of epigenetic fidelity, using position effect variegation (PEV) in Schizosaccharomyces pombe as readout, to explore whether replication perturbation affects nucleosome-mediated epigenetic inheritance. We show that replication stresses, due to either hydroxyurea treatment or various forms of genetic lesions of the replication machinery, reduce the inheritance accuracy of CENP-A/Cnp1 nucleosome positioning within centromere. Mechanistically, we demonstrate that excessive formation of single-stranded DNA, a common molecular abnormality under these conditions, might have correlation with the reduction in fidelity of centromeric chromatin duplication. Furthermore, we show that replication stress broadly changes chromatin structure at various loci in the genome, such as telomere heterochromatin expanding and mating type locus heterochromatin spreading out of the boundaries. Interestingly, the levels of inheritable expanding at sub-telomeric heterochromatin regions are highly variable among independent cell populations. Finally, we show that HU treatment of the multi-cellular organisms C. elegans and D. melanogaster affects epigenetically programmed development and PEV, illustrating the evolutionary conservation of the phenomenon. Replication stress, in addition to its demonstrated role in genetic instability, promotes variable epigenetic instability throughout the epigenome. In this study, we found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Using Position Effect Variegation (PEV) in centromere as an indicator of chromatin epigenetic stability, we quantified the precision of nucleosomal inheritance and found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Further analysis of genome-wide heterochromatin distribution showed that replication stresses affect chromatin structure by expanding of heterochromatin with locus specificity. Mechanistically, we provide evidence suggesting that excessive formation of single-stranded DNA might have correlation with the reduction in fidelity of centromeric chromatin duplication. Finally, we demonstrated replication stress perturb the development process by reducing the fidelity of chromatin organization duplication in fruit fly and worm, illustrating the broadness and the evolutionary conservation of the phenomenon. Together, our results shed light on the importance of replication stresses cause epigenetic instability in addition to genetic stability.
Collapse
Affiliation(s)
- Wenzhu Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pamela Agbu
- Department of Biochemistry and Molecular Biology
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology
| | - Richard L. Kelley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Scott Kallgren
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
37
|
Liang L, Liu Y, Yang K, Lin G, Xu Z, Lan H, Wang X, Wang S. The Putative Histone Methyltransferase DOT1 Regulates Aflatoxin and Pathogenicity Attributes in Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9070232. [PMID: 28737735 PMCID: PMC5535179 DOI: 10.3390/toxins9070232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Lysine methyltransferases transfer methyl groups in specific lysine sites, which regulates a variety of important biological processes in eukaryotes. In this study, we characterized a novel homolog of the yeast methyltransferase DOT1 in A. flavus, and observed the roles of dot1 in A. flavus. Deletion of dot1 showed a significant decrease in conidiation, but an increase in sclerotia formation. A change in viability to multiple stresses was also found in the Δdot1 mutant. Additionally, aflatoxin (AF) production was found severely impaired in the Δdot1 mutant. Further analysis by qRT-PCR revealed that the transcription of AF structural genes and their regulator gene aflS were prominently suppressed in the Δdot1 mutant. Furthermore, our data revealed that Dot1 is important for colonizing maize seeds in A. flavus. Our research indicates that Dot1 is involved in fungal development, aflatoxin biosynthesis and fungal virulence in A. flavus, which might provide a potential target for controlling A. flavus with new strategies.
Collapse
Affiliation(s)
- Linlin Liang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yinghang Liu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kunlong Yang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guinan Lin
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhangling Xu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Huahui Lan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiuna Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
39
|
Bi X, Ren Y, Kath M. Proliferating cell nuclear antigen (PCNA) contributes to the high-order structure and stability of heterochromatin in Saccharomyces cerevisiae. Chromosome Res 2016; 25:89-100. [PMID: 27987109 DOI: 10.1007/s10577-016-9540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Heterochromatin plays important roles in the structure, maintenance, and function of the eukaryotic genome. It is associated with special histone modifications and specialized non-histone proteins and assumes a more compact structure than euchromatin. Genes embedded in heterochromatin are generally transcriptionally silent. It was found previously that several mutations of proliferating cell nuclear antigen (PCNA), a DNA replication processivity factor, reduce transcriptional silencing at heterochromatin loci in Saccharomyces cerevisiae. However, the notion that PCNA plays a role in transcriptional silencing was recently questioned because of a potential problem concerning the silencing assays used in prior studies. To determine if PCNA is a bona fide contributor to heterochromatin-mediated transcriptional silencing, we examined the effects of PCNA mutations on heterochromatin structure. We found evidence implicating PCNA in the maintenance of the high-order structure and stability of heterochromatin, which indicates a role of DNA replication in heterochromatin maintenance.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - Yue Ren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Morgan Kath
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
40
|
Vlaming H, Molenaar TM, van Welsem T, Poramba-Liyanage DW, Smith DE, Velds A, Hoekman L, Korthout T, Hendriks S, Altelaar AFM, van Leeuwen F. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. eLife 2016; 5. [PMID: 27922451 PMCID: PMC5179194 DOI: 10.7554/elife.18919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features. DOI:http://dx.doi.org/10.7554/eLife.18919.001 To fit into the nucleus of eukaryotic cells (which include plant, animal and yeast cells), DNA wraps around histone proteins to form a structure called chromatin. Histones can be modified by a variety of chemical tags, which affect how easily nearby DNA can be accessed by other molecules in the cell. These modifications therefore help to control the activity of the genes encoded in the DNA and other key processes such as DNA repair. If histone modifications are not regulated correctly, diseases such as cancer may result. Enzymes generally perform the actual modification, but there is another layer of regulation that controls the activity of these enzymes that not much is known about. The activity of an enzyme that performs a histone modification known as H3K79 methylation (which involves a methyl chemical group being added to a particular region of a particular histone protein) has been linked to some forms of leukemia. Collections of mutant yeast cells can be used to identify the factors that regulate histone modifications in both yeast and human cells. However, current methods that screen for these regulators are time consuming. To make the search for histone modification regulators more efficient, Vlaming et al. developed a new screening procedure called Epi-ID that can measure the amount of a specific histone modification in thousands of budding yeast mutants at the same time. In Epi-ID, each mutant yeast cell has a unique DNA sequence, or “barcode”. The mutant cells are mixed together and the barcodes that are modified by a particular histone modification – such as H3K79 methylation – are isolated and then counted using a DNA sequencing technique. A high barcode count of a certain mutant indicates that more of the histone modification occurs in that mutant. Using Epi-ID to survey H3K79 methylation enabled Vlaming et al. to successfully identify all previously known H3K79 methylation regulators, as well several new ones. These new regulators included enzymes that deposit histones on DNA, that carry out DNA repair, and that modify or de-modify histone proteins. To move forward with the newly identified regulators, it will be important to analyze how they control H3K79 methylation in yeast cells and to determine whether the regulators also control H3K79 methylation in human cells. Finally, Epi-ID can be used to identify regulators of other types of histone modifications. A better understanding of chromatin regulation – and H3K79 methylation regulation in particular – can increase our understanding of diseases in which chromatin is deregulated, and may yield new strategies for the treatment of such diseases. DOI:http://dx.doi.org/10.7554/eLife.18919.002
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thom M Molenaar
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Desiree E Smith
- Department of Clinical Chemistry, Metabolic Laboratory, VU University Medical Center, Amsterdam, Netherlands
| | - Arno Velds
- Central Genomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sjoerd Hendriks
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - A F Maarten Altelaar
- Mass Spectrometry/Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
41
|
Jezek M, Gast A, Choi G, Kulkarni R, Quijote J, Graham-Yooll A, Park D, Green EM. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 2016; 12:93-104. [PMID: 27911222 DOI: 10.1080/15592294.2016.1265712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genes adjacent to telomeres are subject to transcriptional repression mediated by an integrated set of chromatin modifying and remodeling factors. The telomeres of Saccharomyces cerevisiae have served as a model for dissecting the function of diverse chromatin proteins in gene silencing, and their study has revealed overlapping roles for many chromatin proteins in either promoting or antagonizing gene repression. The H3K4 methyltransferase Set1, which is commonly linked to transcriptional activation, has been implicated in telomere silencing. Set5 is an H4 K5, K8, and K12 methyltransferase that functions with Set1 to promote repression at telomeres. Here, we analyzed the combined role for Set1 and Set5 in gene expression control at native yeast telomeres. Our data reveal that Set1 and Set5 promote a Sir protein-independent mechanism of repression that may primarily rely on regulation of H4K5ac and H4K8ac at telomeric regions. Furthermore, cells lacking both Set1 and Set5 have highly correlated transcriptomes to mutants in telomere maintenance pathways and display defects in telomere stability, linking their roles in silencing to protection of telomeres. Our data therefore provide insight into and clarify potential mechanisms by which Set1 contributes to telomere silencing and shed light on the function of Set5 at telomeres.
Collapse
Affiliation(s)
- Meagan Jezek
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Alison Gast
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Grace Choi
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Rushmie Kulkarni
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Jeremiah Quijote
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Andrew Graham-Yooll
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - DoHwan Park
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Erin M Green
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| |
Collapse
|
42
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
43
|
Wang X, Chen CW, Armstrong SA. The role of DOT1L in the maintenance of leukemia gene expression. Curr Opin Genet Dev 2016; 36:68-72. [PMID: 27151433 DOI: 10.1016/j.gde.2016.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
Chromatin based (Epigenetic) mechanisms have been shown to play important roles in the regulation of gene expression during tumorigenesis and development. Mouse modeling suggests the methyltransferase DOT1L as a potential therapeutic target for MLL-rearranged leukemia. Epigenomic profiling indicates an abnormal H3K79me2 pattern on MLL-fusion targeted genes, but the molecular mechanism underlying this epigenetic dependency is not well understood. In this review, we will discuss recent advances in understanding the epigenetic mechanisms governed by DOT1L in the maintenance of gene expression. We will highlight the structural basis of chromatin targeting of DOT1L through its cofactors and the role of DOT1L in repelling transcription repressive complexes during leukemia development.
Collapse
Affiliation(s)
- Xi Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Chun-Wei Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott A Armstrong
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
44
|
Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:46-52. [PMID: 27234562 DOI: 10.1016/j.mrrev.2016.03.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
Dot1/DOT1L (disruptor of telomeric silencing-1) is an evolutionarily conserved histone methyltransferase that methylates lysine 79 located within the globular domain of histone H3. Dot1 was initially identified by a genetic screen as a disruptor of telomeric silencing in Saccharomyces cerevisiae; further, it is the only known non-SET domain containing histone methyltransferase. Methylation of H3K79 is involved in the regulation of telomeric silencing, cellular development, cell-cycle checkpoint, DNA repair, and regulation of transcription. hDot1L-mediated H3K79 methylation appears to have a crucial role in transformation as well as disease progression in leukemias involving several oncogenic fusion proteins. This review summarizes the multiple functions of Dot1/hDOT1L in a range of cellular processes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India.
| |
Collapse
|
45
|
Abstract
The budding yeast Saccharomyces cerevisiae has two alternative mating types designated MATa and MATα. These are distinguished by about 700 bp of unique sequences, Ya or Yα, including divergent promoter sequences and part of the open reading frames of genes that regulate mating phenotype. Homothallic budding yeast, carrying an active HO endonuclease gene, HO, can switch mating type through a recombination process known as gene conversion, in which a site-specific double-strand break (DSB) created immediately adjacent to the Y region results in replacement of the Y sequences with a copy of the opposite mating type information, which is harbored in one of two heterochromatic donor loci, HMLα or HMRa. HO gene expression is tightly regulated to ensure that only half of the cells in a lineage switch to the opposite MAT allele, thus promoting conjugation and diploid formation. Study of the silencing of these loci has provided a great deal of information about the role of the Sir2 histone deacetylase and its associated Sir3 and Sir4 proteins in creating heterochromatic regions. MAT switching has been examined in great detail to learn about the steps in homologous recombination. MAT switching is remarkably directional, with MATa recombining preferentially with HMLα and MATα using HMRa. Donor preference is controlled by a cis-acting recombination enhancer located near HML. RE is turned off in MATα cells but in MATa binds multiple copies of the Fkh1 transcription factor whose forkhead-associated phosphothreonine binding domain localizes at the DSB, bringing HML into conjunction with MATa.
Collapse
|
46
|
Abstract
Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes.
Collapse
|
47
|
Zhou L, Holt MT, Ohashi N, Zhao A, Müller MM, Wang B, Muir TW. Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation. Nat Commun 2016; 7:10589. [PMID: 26830124 PMCID: PMC4740876 DOI: 10.1038/ncomms10589] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
Ubiquitylation of histone H2B at lysine 120 (H2B-Ub), a post-translational modification first discovered in 1980, plays a critical role in diverse nuclear processes including the regulation of transcription and DNA damage repair. Herein, we use a suite of protein chemistry methods to explore how H2B-Ub stimulates hDot1L-mediated methylation of histone H3 on lysine 79 (H3K79me). By using semisynthetic 'designer' chromatin containing H2B-Ub bearing a site-specifically installed photocrosslinker, here we report an interaction between a functional hotspot on ubiquitin and the N-terminus of histone H2A. Our biochemical studies indicate that this interaction is required for stimulation of hDot1L activity and leads to a repositioning of hDot1L on the nucleosomal surface, which likely places the active site of the enzyme proximal to H3K79. Collectively, our data converge on a possible mechanism for hDot1L stimulation in which H2B-Ub physically 'corrals' the enzyme into a productive binding orientation.
Collapse
Affiliation(s)
- Linjiao Zhou
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Matthew T Holt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, 10065 New York, USA
| | - Nami Ohashi
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Aishan Zhao
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Manuel M Müller
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| | - Boyuan Wang
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA.,Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, 10065 New York, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, 08544 New Jersey, USA
| |
Collapse
|
48
|
Zeng Y, Zheng J, Zhao J, Jia PR, Yang Y, Yang GJ, Ma JF, Gu YQ, Xu J. High expression of Naa10p associates with lymph node metastasis and predicts favorable prognosis of oral squamous cell carcinoma. Tumour Biol 2015; 37:6719-28. [PMID: 26662107 DOI: 10.1007/s13277-015-4563-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023] Open
Abstract
N-a-Acetyltransferase 10 protein (Naa10p) is a potential prognostic biomarker and a modulator of several types of cancer. Despite the efforts to elucidate the relationship between Naa10p expression and clinical prognosis, little is known about its expression and role in human oral squamous cell carcinoma (OSCC). In this study, we firstly detected the mRNA and protein levels of Naa10p in 10 paired OSCC tissue samples and found Naa10p was frequently overexpressed in the tumor tissues of patients with OSCC. Further detection by immunohistochemistry was used to examine Naa10p expression in 124 OSCC tumor specimens by tissue microarray (TMA), and a relative high level of Naa10p protein expression was found in 98 out of 124 cases (79.03 %). Additional analyses illustrated that Naa10p expression inversely correlated with clinical stage (p = 0.047), degree of lymph node status (p = 0.020), differentiation (p = 0.022), and recurrence (p = 0.016) of patients with OSCC. The survival analysis showed that patients with Naa10p-positive expression had a better prognosis for disease-free survival (DFS) or overall survival (OS) than those with Naa10p-negative expression (p = 0.003 for both). Furthermore, we assessed the effect of Naa10p knockdown on motility of oral cancer cells in vitro, and the results showed that Naa10p inhibit cell wound healing, migration, and invasion. In summary, our study illustrated that the expression of Naa10p had a potential value for predicting the progression of OSCC and prognosis of OSCC patients.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Biochemistry and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jun Zheng
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Juan Zhao
- Department of Biochemistry and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Pei-Rong Jia
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yang Yang
- Department of Biochemistry and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Guo-Jun Yang
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Jing-Feng Ma
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Yong-Qing Gu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jiang Xu
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
49
|
Liu H, Wang P, Liu L, Min Z, Luo K, Wan Y. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae. Sci Rep 2015; 5:15583. [PMID: 26498326 PMCID: PMC4620441 DOI: 10.1038/srep15583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.
Collapse
Affiliation(s)
- Hongde Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pingyan Wang
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Lingjie Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhu Min
- Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Luo
- Department of Neurosurgery, Xinjiang Evidence-Based Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yakun Wan
- Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
50
|
Roidl D, Hellbach N, Bovio PP, Villarreal A, Heidrich S, Nestel S, Grüning BA, Boenisch U, Vogel T. DOT1L Activity Promotes Proliferation and Protects Cortical Neural Stem Cells from Activation of ATF4-DDIT3-Mediated ER Stress In Vitro. Stem Cells 2015; 34:233-45. [PMID: 26299268 DOI: 10.1002/stem.2187] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 12/28/2022]
Abstract
Growing evidence suggests that the lysine methyltransferase DOT1L/KMT4 has important roles in proliferation, survival, and differentiation of stem cells in development and in disease. We investigated the function of DOT1L in neural stem cells (NSCs) of the cerebral cortex. The pharmacological inhibition and shRNA-mediated knockdown of DOT1L impaired proliferation and survival of NSCs. DOT1L inhibition specifically induced genes that are activated during the unfolded protein response (UPR) in the endoplasmic reticulum (ER). Chromatin-immunoprecipitation analyses revealed that two genes encoding for central molecules involved in the ER stress response, Atf4 and Ddit3 (Chop), are marked with H3K79 methylation. Interference with DOT1L activity resulted in transcriptional activation of both genes accompanied by decreased levels of H3K79 dimethylation. Although downstream effectors of the UPR, such as Ppp1r15a/Gadd34, Atf3, and Tnfrsf10b/Dr5 were also transcriptionally activated, this most likely occurred in response to increased ATF4 expression rather than as a direct consequence of altered H3K79 methylation. While stem cells are particularly vulnerable to stress, the UPR and ER stress have not been extensively studied in these cells yet. Since activation of the ER stress program is also implicated in directing stem cells into differentiation or to maintain a proliferative status, the UPR must be tightly regulated. Our and published data suggest that histone modifications, including H3K4me3, H3K14ac, and H3K79me2, are implicated in the control of transcriptional activation of ER stress genes. In this context, the loss of H3K79me2 at the Atf4- and Ddit3-promoters appears to mark a point-of-no-return that activates the death program in NSCs.
Collapse
Affiliation(s)
- Deborah Roidl
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | - Nicole Hellbach
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | - Patrick P Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | - Alejandro Villarreal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | - Sigrun Nestel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | - Björn A Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University, Freiburg, Freiburg, Germany.,Pharmaceutical Bioinformatics, Institute of Pharmaceutical Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ulrike Boenisch
- Deep Sequencing Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| |
Collapse
|