1
|
Xia C, Jiang Y, Zhao Y, Chen Z, Sun Y, Sun Z, Cui R, Tao W. Genipin 1-O-β-D-gentiobioside ameliorates CUMS-induced prefrontal cortex neuron neuronal apoptosis by modulating HIPK2 SUMOylation. Int Immunopharmacol 2024; 141:112985. [PMID: 39213873 DOI: 10.1016/j.intimp.2024.112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Depression is a common mental illness with more than 280 million sufferers worldwide. Inflammation, particularly the c-Jun amino-terminal kinase (JNK) pathway, contributes to depression development and neuronal apoptosis. Gardenia is a herb with therapeutic effects on depression that has been shown to inhibit neuronal apoptosis. However, one of the components in gardenia, Genipin 1-O-β-D-gentiobioside(GG), has been less studied for its mechanism on depression. Thus, in the current study, we investigate how Genipin 1-O-β-D-gentiobioside improves depression and elucidate its possible mechanism of action. METHODS In this investigation, we utilize a chronic unpredictable mild stress (CUMS) mouse model and corticosterone-induced primary cortical neurons to examine the role of GG in ameliorating depressive symptoms and neuronal apoptosis. TUNEL staining and flow cytometry assessed the effects of GG on neuronal apoptosis. Western Blot analyses and immunofluorescence assays apoptosis-related proteins in the prefrontal cortex and primary neurons. The site of action of GG in regulating homeodomain interacting protein kinase 2 (HIPK2) SUMOylation was further explored in primary neurons. We constructed siRNA-SUMO1 vectors to transfect primary neuronal cells with intracellular SUMO1 knockdown. Proximity ligation assay (PLA) experiments were performed on primary neurons according to the instructions of the assay kit to observe the physical relationship between HIPK2 and SUMO1. We predicted the HIPK2 SUMOylation modification site by an online database and constructed vectors to target and site-directed mutagenesis, then to transfected primary neuronal cells. RESULTS The results showed that GG effectively alleviated depressive-like behaviours, down-regulated apoptosis-related proteins (p-JNK, Bax, Cleaved-Caspase-3), and inhibited neuronal apoptosis in CUMS-induced depressed mice and corticosterone-induced primary cortical neurons. We reveal a complex mechanism underlying the link between GG, SUMOylation of HIPK2, and complex pathways of neuronal apoptosis regulation. K326 and K1189 are the key SUMOylation sites regulated by GG in intricate interactions of apoptosis-related proteins. CONCLUSION Our study demonstrated that GG exerts antidepressant-like actions through neuroprotective effects by inhibiting the apoptosis of prefrontal cortex neurons, revealing the mechanism of GG inhibition of JNK phosphorylation by enhancing HIPK2 SUMOylation.
Collapse
Affiliation(s)
- Changbo Xia
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Yue Jiang
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Yan Zhao
- Anqing First People's Hospital of Anhui Medical University, Anqing 246004, Anhui, China
| | - Zhuzi Chen
- Jiangsu Health Vocational College, Nanjing 210000, Jiangsu, China
| | - Ying Sun
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Zhongwen Sun
- College of Medicine, Lishui University, Lishui 323000, Fujian, China
| | - Ruijie Cui
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China.
| | - Weiwei Tao
- Department of Pharmacy, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang 453000, Henan, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Zheng X, Pan Y, Chen X, Xia S, Hu Y, Zhou Y, Zhang J. Inactivation of homeodomain-interacting protein kinase 2 promotes oral squamous cell carcinoma metastasis through inhibition of P53-dependent E-cadherin expression. Cancer Sci 2020; 112:117-132. [PMID: 33063904 PMCID: PMC7780018 DOI: 10.1111/cas.14691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2), a well-known tumor suppressor, shows contradictory expression patterns in different cancers. This study was undertaken to clarify HIPK2 expression in oral squamous cell carcinoma (OSCC) and to reveal the potential mechanism of HIPK2 involvement in OSCC metastasis. Two hundred and four OSCC tissues, together with paired adjacent normal epithelia, dysplastic epithelia, and lymph node metastasis specimens, were collected to profile HIPK2 expression by immunohistochemical staining. High throughput RNA-sequencing was used to detect the dysregulated signaling pathways in HIPK2-deficient OSCC cells. Transwell assay and lymphatic metastatic orthotopic mouse model assay were undertaken to identify the effect of HIPK2 on tumor invasion. Western blotting and luciferase reporter assay were used to examine the HIPK2/P53/E-cadherin axis in OSCC. Nuclear delocalization of HIPK2 was observed during oral epithelial cancerization progression and was associated with cervical lymph node metastasis and poor outcome. Depletion of HIPK2 promoted tumor cell invasion in vitro and facilitated cervical lymph node metastasis in vivo. According to mRNA-sequencing, pathways closely related to tumor invasion were notably activated. Homeodomain-interacting protein kinase 2 was found to trigger E-cadherin expression by mediating P53, which directly targets the CDH1 (coding E-cadherin) promoter. Restoring P53 expression rescued the E-cadherin suppression induced by HIPK2 deficiency, whereas rescued cytoplasmic HIPK2 expression had no influence on the expression of E-cadherin and cell mobility. Together, nuclear delocalization of HIPK2 might serve as a valuable negative biomarker for poor prognosis of OSCC and lymph node metastasis. The depletion of HIPK2 expression promoted OSCC metastasis by suppressing the P53/E-cadherin axis, which might be a promising target for anticancer therapies.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuemei Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xinming Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|