1
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Lee Q, Chan WC, Qu X, Sun Y, Abdelkarim H, Le J, Saqib U, Sun MY, Kruse K, Banerjee A, Hitchinson B, Geyer M, Huang F, Guaiquil V, Mutso AA, Sanders M, Rosenblatt MI, Maienschein-Cline M, Lawrence MS, Gaponenko V, Malik AB, Komarova YA. End binding-3 inhibitor activates regenerative program in age-related macular degeneration. Cell Rep Med 2023; 4:101223. [PMID: 37794584 PMCID: PMC10591057 DOI: 10.1016/j.xcrm.2023.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Wet age-related macular degeneration (AMD), characterized by leaky neovessels emanating from the choroid, is a main cause of blindness. As current treatments for wet AMD require regular intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, there is a need for the development of less invasive treatments. Here, we designed an allosteric inhibitor of end binding-3 (EB3) protein, termed EBIN, which reduces the effects of environmental stresses on endothelial cells by limiting pathological calcium signaling. Delivery of EBIN via eye drops in mouse and non-human primate (NHP) models of wet AMD prevents both neovascular leakage and choroidal neovascularization. EBIN reverses the epigenetic changes induced by environmental stresses, allowing an activation of a regenerative program within metabolic-active endothelial cells comprising choroidal neovascularization (CNV) lesions. These results suggest the therapeutic potential of EBIN in preventing the degenerative processes underlying wet AMD.
Collapse
Affiliation(s)
- Quinn Lee
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Xinyan Qu
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ying Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Jonathan Le
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Uzma Saqib
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mitchell Y Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Avik Banerjee
- Department of Chemistry, The University of Illinois, Chicago, IL 60612, USA
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Melissa Geyer
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Fei Huang
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Victor Guaiquil
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Amelia A Mutso
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Mark I Rosenblatt
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia A Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Kwok ML, Geyer M, Chan WC, Zhao S, Gu L, Huang F, Vogel SM, Petukhov PA, Komarova Y. Targeting EB3-IP 3R3 Interface with Cognate Peptide Protects from Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2023; 69:391-403. [PMID: 37290041 PMCID: PMC10557916 DOI: 10.1165/rcmb.2022-0217oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a lung disease characterized by acute onset of noncardiogenic pulmonary edema, hypoxemia, and respiratory insufficiency. The current treatment for ARDS is mainly supportive in nature, providing a critical need for targeted pharmacological management. We addressed this medical problem by developing a pharmacological treatment for pulmonary vascular leakage, a culprit of alveolar damage and lung inflammation. Our novel therapeutic target is the microtubule accessory factor EB3 (end binding protein 3), which contributes to pulmonary vascular leakage by amplifying pathological calcium signaling in endothelial cells in response to inflammatory stimuli. EB3 interacts with IP3R3 (inositol 1,4,5-trisphosphate receptor 3) and orchestrates calcium release from endoplasmic reticulum stores. Here, we designed and tested the therapeutic benefits of a 14-aa peptide named CIPRI (cognate IP3 receptor inhibitor), which disrupted EB3-IP3R3 interaction in vitro and in lungs of mice challenged with endotoxin. Treatment with CIPRI or depletion of IP3R3 in lung microvascular endothelial monolayers mitigated calcium release from endoplasmic reticulum stores and prevented a disassembly of vascular endothelial cadherin junctions in response to the proinflammatory mediator α-thrombin. Furthermore, intravenous administration of CIPRI in mice mitigated inflammation-induced lung injury, blocked pulmonary microvascular leakage, prevented activation of NFAT (nuclear factor of activated T cells) signaling, and reduced production of proinflammatory cytokines in the lung tissue. CIPRI also improved survival of mice from endotoxemia and polymicrobial sepsis. Together, these data demonstrate that targeting EB3-IP3R3 interaction with a cognate peptide is a promising strategy to address hyperpermeability of microvessels in inflammatory lung diseases.
Collapse
Affiliation(s)
- Man Long Kwok
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Melissa Geyer
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Wan Ching Chan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Shuangping Zhao
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Lianzhi Gu
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Fei Huang
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Steven M. Vogel
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| |
Collapse
|
4
|
Buglak DB, Bougaran P, Kulikauskas MR, Liu Z, Monaghan-Benson E, Gold AL, Marvin AP, Burciu A, Tanke NT, Oatley M, Ricketts SN, Kinghorn K, Johnson BN, Shiau CE, Rogers S, Guilluy C, Bautch VL. Nuclear SUN1 stabilizes endothelial cell junctions via microtubules to regulate blood vessel formation. eLife 2023; 12:83652. [PMID: 36989130 PMCID: PMC10059686 DOI: 10.7554/elife.83652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.
Collapse
Affiliation(s)
- Danielle B Buglak
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Ariel L Gold
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Allison P Marvin
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Andrew Burciu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Shea N Ricketts
- Department of Pathology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Bryan N Johnson
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Celia E Shiau
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Stephen Rogers
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
- McAllister Heart Institute, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
5
|
Mees I, Tran H, Roberts A, Lago L, Li S, Roberts BR, Hannan AJ, Renoir T. Quantitative Phosphoproteomics Reveals Extensive Protein Phosphorylation Dysregulation in the Cerebral Cortex of Huntington's Disease Mice Prior to Onset of Symptoms. Mol Neurobiol 2022; 59:2456-2471. [PMID: 35083661 DOI: 10.1007/s12035-021-02698-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation plays a role in many important cellular functions such as cellular plasticity, gene expression, and intracellular trafficking. All of these are dysregulated in Huntington's disease (HD), a devastating neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene. However, no studies have yet found protein phosphorylation differences in preclinical HD mouse models. Our current study investigated changes occurring in the cortical phosphoproteome of 8-week-old (prior to motor deficits) and 20-week-old (fully symptomatic) R6/1 transgenic HD mice. When comparing 8-week-old HD mice with their wild-type (WT) littermates, we found 660 peptides differentially phosphorylated, which were mapped to 227 phosphoproteins. These proteins were mainly involved in synaptogenesis, cytoskeleton organization, axon development, and nervous system development. Tau protein, found hyperphosphorylated at multiple sites in early symptomatic HD mice, also appeared as a main upstream regulator for the changes observed. Surprisingly, we found fewer changes in the phosphorylation profile of HD mice at the fully symptomatic stage, with 29 peptides differentially phosphorylated compared to WT mice, mapped to 25 phosphoproteins. These proteins were involved in cAMP signaling, dendrite development, and microtubule binding. Furthermore, huntingtin protein appeared as an upstream regulator for the changes observed at the fully symptomatic stage, suggesting impacts on kinases and phosphatases that extend beyond the mutated polyglutamine tract. In summary, our findings show that the most extensive changes in the phosphorylation machinery appear at an early presymptomatic stage in HD pathogenesis and might constitute a new target for the development of treatments.
Collapse
Affiliation(s)
- Isaline Mees
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Harvey Tran
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anne Roberts
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Larissa Lago
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Blaine R Roberts
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
6
|
Gerhardt T, Haghikia A, Stapmanns P, Leistner DM. Immune Mechanisms of Plaque Instability. Front Cardiovasc Med 2022; 8:797046. [PMID: 35087883 PMCID: PMC8787133 DOI: 10.3389/fcvm.2021.797046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation crucially drives atherosclerosis from disease initiation to the emergence of clinical complications. Targeting pivotal inflammatory pathways without compromising the host defense could compliment therapy with lipid-lowering agents, anti-hypertensive treatment, and lifestyle interventions to address the substantial residual cardiovascular risk that remains beyond classical risk factor control. Detailed understanding of the intricate immune mechanisms that propel plaque instability and disruption is indispensable for the development of novel therapeutic concepts. In this review, we provide an overview on the role of key immune cells in plaque inception and progression, and discuss recently identified maladaptive immune phenomena that contribute to plaque destabilization, including epigenetically programmed trained immunity in myeloid cells, pathogenic conversion of autoreactive regulatory T-cells and expansion of altered leukocytes due to clonal hematopoiesis. From a more global perspective, the article discusses how systemic crises such as acute mental stress or infection abruptly raise plaque vulnerability and summarizes recent advances in understanding the increased cardiovascular risk associated with COVID-19 disease. Stepping outside the box, we highlight the role of gut dysbiosis in atherosclerosis progression and plaque vulnerability. The emerging differential role of the immune system in plaque rupture and plaque erosion as well as the limitations of animal models in studying plaque disruption are reviewed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Stapmanns
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
| | - David Manuel Leistner
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: David Manuel Leistner
| |
Collapse
|
7
|
Khandkar C, Madhavan MV, Weaver JC, Celermajer DS, Karimi Galougahi K. Atherothrombosis in Acute Coronary Syndromes-From Mechanistic Insights to Targeted Therapies. Cells 2021; 10:865. [PMID: 33920201 PMCID: PMC8070089 DOI: 10.3390/cells10040865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
The atherothrombotic substrates for acute coronary syndromes (ACS) consist of plaque ruptures, erosions and calcified nodules, while the non-atherothrombotic etiologies, such as spontaneous coronary artery dissection, coronary artery spasm and coronary embolism are the rarer causes of ACS. The purpose of this comprehensive review is to (1) summarize the histopathologic insights into the atherothrombotic plaque subtypes in acute ACS from postmortem studies; (2) provide a brief overview of atherogenesis, while mainly focusing on the events that lead to plaque destabilization and disruption; (3) summarize mechanistic data from clinical studies that have used intravascular imaging, including high-resolution optical coherence tomography, to assess culprit plaque morphology and its underlying pathobiology, especially the newly described role of innate and adaptive immunity in ACS secondary to plaque erosion; (4) discuss the utility of intravascular imaging for effective treatment of patients presenting with ACS by percutaneous coronary intervention; and (5) discuss the opportunities that these mechanistic and imaging insights may provide for more individualized treatment of patients with ACS.
Collapse
Affiliation(s)
- Chinmay Khandkar
- Department of Cardiology, Orange Base Hospital, Orange, NSW 2800, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
| | - Mahesh V Madhavan
- New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
- Clinical Trials Center, Cardiovascular Research Foundation, New York, NY 10019, USA
| | - James C Weaver
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Heart Research Institute, Sydney, NSW 2042, Australia
| | - David S Celermajer
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Heart Research Institute, Sydney, NSW 2042, Australia
| | - Keyvan Karimi Galougahi
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2008, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Heart Research Institute, Sydney, NSW 2042, Australia
| |
Collapse
|
8
|
Buglak DB, Kushner EJ, Marvin AP, Davis KL, Bautch VL. Excess centrosomes disrupt vascular lumenization and endothelial cell adherens junctions. Angiogenesis 2020; 23:567-575. [PMID: 32699963 PMCID: PMC7524686 DOI: 10.1007/s10456-020-09737-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Proper blood vessel formation requires coordinated changes in endothelial cell polarity and rearrangement of cell-cell junctions to form a functional lumen. One important regulator of cell polarity is the centrosome, which acts as a microtubule organizing center. Excess centrosomes perturb aspects of endothelial cell polarity linked to migration, but whether centrosome number influences apical-basal polarity and cell-cell junctions is unknown. Here, we show that excess centrosomes alter the apical-basal polarity of endothelial cells in angiogenic sprouts and disrupt endothelial cell-cell adherens junctions. Endothelial cells with excess centrosomes had narrower lumens in a 3D sprouting angiogenesis model, and zebrafish intersegmental vessels had reduced perfusion following centrosome overduplication. These results indicate that endothelial cell centrosome number regulates proper lumenization downstream of effects on apical-basal polarity and cell-cell junctions. Endothelial cells with excess centrosomes are prevalent in tumor vessels, suggesting how centrosomes may contribute to tumor vessel dysfunction.
Collapse
Affiliation(s)
- Danielle B Buglak
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Erich J Kushner
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Allison P Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA
| | - Katy L Davis
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Abdelkarim H, Hitchinson B, Qu X, Banerjee A, Komarova YA, Gaponenko V. NMR resonance assignment and structure prediction of the C-terminal domain of the microtubule end-binding protein 3. PLoS One 2020; 15:e0232338. [PMID: 32421702 PMCID: PMC7233555 DOI: 10.1371/journal.pone.0232338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/13/2020] [Indexed: 11/29/2022] Open
Abstract
End-binding proteins (EBs) associate with the growing microtubule plus ends to regulate microtubule dynamics as well as the interaction with intracellular structures. EB3 contributes to pathological vascular leakage through interacting with the inositol 1,4,5-trisphosphate receptor 3 (IP3R3), a calcium channel located at the endoplasmic reticulum membrane. The C-terminal domain of EB3 (residues 200–281) is functionally important for this interaction because it contains the effector binding sites, a prerequisite for EB3 activity and specificity. Structural data for this domain is limited. Here, we report the backbone chemical shift assignments for the human EB3 C-terminal domain and computationally explore its EB3 conformations. Backbone assignments, along with computational models, will allow future investigation of EB3 structural dynamics, interactions with effectors, and will facilitate the development of novel EB3 inhibitors.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Xinyan Qu
- Department of Pharmacology and the Center for Lung Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Avik Banerjee
- Department of Chemistry, University of Illinois, Chicago, IL, United States of America
| | - Yulia A. Komarova
- Department of Pharmacology and the Center for Lung Biology, University of Illinois at Chicago, Chicago, IL, United States of America
- * E-mail: (YAK); (VG)
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
- * E-mail: (YAK); (VG)
| |
Collapse
|
10
|
Sohn PD, Huang CTL, Yan R, Fan L, Tracy TE, Camargo CM, Montgomery KM, Arhar T, Mok SA, Freilich R, Baik J, He M, Gong S, Roberson ED, Karch CM, Gestwicki JE, Xu K, Kosik KS, Gan L. Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis. Neuron 2019; 104:458-470.e5. [PMID: 31542321 PMCID: PMC6880876 DOI: 10.1016/j.neuron.2019.08.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/02/2019] [Accepted: 08/03/2019] [Indexed: 01/08/2023]
Abstract
Dysregulation of neuronal excitability underlies the pathogenesis of tauopathies, including frontotemporal dementia (FTD) with tau inclusions. A majority of FTD-causing tau mutations are located in the microtubule-binding domain, but how these mutations alter neuronal excitability is largely unknown. Here, using CRISPR/Cas9-based gene editing in human pluripotent stem cell (iPSC)-derived neurons and isogenic controls, we show that the FTD-causing V337M tau mutation impairs activity-dependent plasticity of the cytoskeleton in the axon initial segment (AIS). Extracellular recordings by multi-electrode arrays (MEAs) revealed that the V337M tau mutation in human neurons leads to an abnormal increase in neuronal activity in response to chronic depolarization. Stochastic optical reconstruction microscopy of human neurons with this mutation showed that AIS plasticity is impaired by the abnormal accumulation of end-binding protein 3 (EB3) in the AIS submembrane region. These findings expand our understanding of how FTD-causing tau mutations dysregulate components of the neuronal cytoskeleton, leading to network dysfunction.
Collapse
Affiliation(s)
- Peter Dongmin Sohn
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cindy Tzu-Ling Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medical Center, New York, NY10021, USA
| | - Tara E Tracy
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carolina M Camargo
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kelly M Montgomery
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Rebecca Freilich
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Justin Baik
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manni He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medical Center, New York, NY10021, USA
| | - Erik D Roberson
- Departments of Neurology and Neurobiology, University of Alabama, Birmingham, Birmingham, AL 35294, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Li R, Li L, Liu Y, Tang Y, Zhang R. VE-cadherin regulates migration inhibitory factor synthesis and release. Inflamm Res 2019; 68:877-887. [PMID: 31342095 DOI: 10.1007/s00011-019-01270-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Vascular endothelial (VE)-cadherin-mediated adherens junction is critical to maintain endothelial integrity. Besides its role of homophilic intercellular adhesion, VE-cadherin also has a role of outside-in signaling with functional consequences for vascular physiology. However, the nature of these signals remains not completely understood. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were used in cell culture experiments. Confluent HUVECs were treated with VE-cadherin function-blocking antibodies BV9 (50 μg/ml) or IgG control. Antibody array was used to screen for cytokine/chemokine in supernatant. For VE-cadherin knockdown, siRNA transfection was used. ELISA, Western blot, and qRT-PCR were used to confirm the expression of screened cytokine/chemokine. To explore the possible mechanisms, Scr phosphorylation was detected and Scr inhibitor PP2 (1 μM) was used. To investigate in vivo relevance of the findings, BV9 and the indicated neutralizing antibodies were injected into mice and then lung vascular leak and inflammation were examined by Evans blue assay and lung tissue H&E, respectively. RESULTS Using a non-biased, high-throughout human cytokine/chemokine antibody array, we first found that disruption of VE-cadherin-mediated adhesion by function-blocking antibody BV9 triggered the release of migration inhibitory factor (MIF). This VE-cadherin-mediated release of MIF further confirmed by ELISA with both VE-cadherin blocking antibody and siRNA technique was due to enhanced expression of MIF mRNA, which was mediated by Src kinase activation. In addition, in vivo lung vascular leak induced by VE-cadherin function-blocking antibody was partly alleviated by neutralizing MIF. CONCLUSIONS VE-cadherin regulates MIF synthesis and release via Src kinase. Our data provide additional evidence to the concept that VE-cadherin transfers intracellular signals to coordinate the state of cell-cell adhesion with gene expression.
Collapse
Affiliation(s)
- Ranran Li
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Li
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiyun Liu
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaoqing Tang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruyuan Zhang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Kruse K, Klomp J, Sun M, Chen Z, Santana D, Huang F, Kanabar P, Maienschein-Cline M, Komarova YA. Analysis of biological networks in the endothelium with biomimetic microsystem platform. Am J Physiol Lung Cell Mol Physiol 2019; 317:L392-L401. [PMID: 31313617 DOI: 10.1152/ajplung.00392.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Here we describe a novel method for studying the protein "interactome" in primary human cells and apply this method to investigate the effect of posttranslational protein modifications (PTMs) on the protein's functions. We created a novel "biomimetic microsystem platform" (Bio-MSP) to isolate the protein complexes in primary cells by covalently attaching purified His-tagged proteins to a solid microscale support. Using this Bio-MSP, we have analyzed the interactomes of unphosphorylated and phosphomimetic end-binding protein-3 (EB3) in endothelial cells. Pathway analysis of these interactomes demonstrated the novel role of EB3 phosphorylation at serine 162 in regulating the protein's function. We showed that phosphorylation "switches" the EB3 biological network to modulate cellular processes such as cell-to-cell adhesion whereas dephosphorylation of this site promotes cell proliferation. This novel technique provides a useful tool to study the role of PTMs or single point mutations in activating distinct signal transduction networks and thereby the biological function of the protein in health and disease.
Collapse
Affiliation(s)
- Kevin Kruse
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Mitchell Sun
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhang Chen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Fei Huang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Pinal Kanabar
- Research Informatics Core of the Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mark Maienschein-Cline
- Research Informatics Core of the Research Resources Center, University of Illinois at Chicago, Chicago, Illinois.,College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia A Komarova
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
14
|
Juettner VV, Kruse K, Dan A, Vu VH, Khan Y, Le J, Leckband D, Komarova Y, Malik AB. VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. J Cell Biol 2019; 218:1725-1742. [PMID: 30948425 PMCID: PMC6504901 DOI: 10.1083/jcb.201807210] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Juettner et al. describe a novel phosphatase-activity–independent mechanism by which the phosphatase VE-PTP restricts endothelial permeability. VE-PTP functions as a scaffold that binds and inhibits the RhoGEF GEF-H1, limiting RhoA-dependent tension across VE-cadherin junctions and decreasing VE-cadherin internalization to stabilize adherens junctions and reduce endothelial permeability. Vascular endothelial (VE) protein tyrosine phosphatase (PTP) is an endothelial-specific phosphatase that stabilizes VE-cadherin junctions. Although studies have focused on the role of VE-PTP in dephosphorylating VE-cadherin in the activated endothelium, little is known of VE-PTP’s role in the quiescent endothelial monolayer. Here, we used the photoconvertible fluorescent protein VE-cadherin-Dendra2 to monitor VE-cadherin dynamics at adherens junctions (AJs) in confluent endothelial monolayers. We discovered that VE-PTP stabilizes VE-cadherin junctions by reducing the rate of VE-cadherin internalization independently of its phosphatase activity. VE-PTP serves as an adaptor protein that through binding and inhibiting the RhoGEF GEF-H1 modulates RhoA activity and tension across VE-cadherin junctions. Overexpression of the VE-PTP cytosolic domain mutant interacting with GEF-H1 in VE-PTP–depleted endothelial cells reduced GEF-H1 activity and restored VE-cadherin dynamics at AJs. Thus, VE-PTP stabilizes VE-cadherin junctions and restricts endothelial permeability by inhibiting GEF-H1, thereby limiting RhoA signaling at AJs and reducing the VE-cadherin internalization rate.
Collapse
Affiliation(s)
- Vanessa V Juettner
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Kevin Kruse
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Arkaprava Dan
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Vinh H Vu
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yousaf Khan
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Jonathan Le
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yulia Komarova
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Asrar B Malik
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
15
|
Zhang R, Li R, Tang Y. Soluble vascular endothelial cadherin: a promising marker of critical illness? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:57. [PMID: 30782198 PMCID: PMC6381610 DOI: 10.1186/s13054-019-2343-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Ruyuan Zhang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ranran Li
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaoqing Tang
- Department of Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Kruse K, Lee QS, Sun Y, Klomp J, Yang X, Huang F, Sun MY, Zhao S, Hong Z, Vogel SM, Shin JW, Leckband DE, Tai LM, Malik AB, Komarova YA. N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. J Cell Biol 2018; 218:299-316. [PMID: 30463880 PMCID: PMC6314553 DOI: 10.1083/jcb.201802076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/10/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
This work describes a role for endothelial N-cadherin in the regulation of endothelial permeability in the brain and lung. N-cadherin adhesions formed between endothelial cells and pericytes increase the abundance of VE-cadherin at adherens junctions through the RhoGEF Trio-dependent activation of RhoA and Rac1. Vascular endothelial (VE)–cadherin forms homotypic adherens junctions (AJs) in the endothelium, whereas N-cadherin forms heterotypic adhesion between endothelial cells and surrounding vascular smooth muscle cells and pericytes. Here we addressed the question whether both cadherin adhesion complexes communicate through intracellular signaling and contribute to the integrity of the endothelial barrier. We demonstrated that deletion of N-cadherin (Cdh2) in either endothelial cells or pericytes increases junctional endothelial permeability in lung and brain secondary to reduced accumulation of VE-cadherin at AJs. N-cadherin functions by increasing the rate of VE-cadherin recruitment to AJs and induces the assembly of VE-cadherin junctions. We identified the dual Rac1/RhoA Rho guanine nucleotide exchange factor (GEF) Trio as a critical component of the N-cadherin adhesion complex, which activates both Rac1 and RhoA signaling pathways at AJs. Trio GEF1-mediated Rac1 activation induces the recruitment of VE-cadherin to AJs, whereas Trio GEF2-mediated RhoA activation increases intracellular tension and reinforces Rac1 activation to promote assembly of VE-cadherin junctions and thereby establish the characteristic restrictive endothelial barrier.
Collapse
Affiliation(s)
- Kevin Kruse
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Quinn S Lee
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Ying Sun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Xiaoyan Yang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Fei Huang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Mitchell Y Sun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Shuangping Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Jae-Won Shin
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago, IL
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Yulia A Komarova
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
17
|
|
18
|
Procter DJ, Banerjee A, Nukui M, Kruse K, Gaponenko V, Murphy EA, Komarova Y, Walsh D. The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread. Dev Cell 2018; 45:83-100.e7. [PMID: 29634939 DOI: 10.1016/j.devcel.2018.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/08/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.
Collapse
Affiliation(s)
- Dean J Procter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Masatoshi Nukui
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Eain A Murphy
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Yulia Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
19
|
Liu L, Meng L, Zhang P, Lin H, Chi J, Peng F, Guo H. Angiotensin II inhibits the protein expression of ZO‑1 in vascular endothelial cells by downregulating VE‑cadherin. Mol Med Rep 2018; 18:429-434. [PMID: 29749551 DOI: 10.3892/mmr.2018.8991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (Ang II) is reported to be involved in the development of various cardiovascular diseases by disrupting microvessel permeability, however, the underlying mechanism remains to be elucidated. The present study aimed to investigate the mechanism by which Ang II disrupts microvascular permeability. Rat endothelial cells were subjected to primary culture and identification. Cells in passages 4‑7 were then used for the following experiments. The cells were divided into control, Ang II, and Ang II + valsartan groups, and reverse transcription‑quantitative polymerase chain reaction and western blot analyses were perform to evaluate the expression of zonula occludens‑1 (ZO‑1) and vascular endothelial (VE)‑cadherin in the cells. The distribution of ZO‑1 protein was also detected using immunofluorescence assays. It was found that, compared with the control group, lower expression levels of ZO‑1 and VE‑cadherin were present in the Ang II group (P<0.01). ZO‑1 was also irregularly distributed at the periphery of the cells. In addition, the overexpression of VE‑cadherin reversed the effect of Ang II on the expression and distribution of ZO‑1 in endothelial cells. Together, these results suggested that Ang II inhibited the protein expression of ZO‑1 in vascular endothelial cells by downregulating VE‑cadherin, thus destroying the tight junctions between endothelial cells, which may also be the mechanism by which Ang II is involved in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Longbin Liu
- Department of Cardiology, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Peng Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Fang Peng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing Municipal Hospital, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
20
|
IP 3 receptor signaling and endothelial barrier function. Cell Mol Life Sci 2017; 74:4189-4207. [PMID: 28803370 DOI: 10.1007/s00018-017-2624-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.
Collapse
|
21
|
Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 2017; 74:2381-2393. [PMID: 28204846 PMCID: PMC11107513 DOI: 10.1007/s00018-017-2476-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
The regulation of microtubule dynamics is critical to ensure essential cell functions, such as proper segregation of chromosomes during mitosis or cell polarity and migration. End-binding protein 1 (EB1) is a plus-end-tracking protein (+TIP) that accumulates at growing microtubule ends and plays a pivotal role in the regulation of microtubule dynamics. EB1 autonomously binds an extended tubulin-GTP/GDP-Pi structure at growing microtubule ends and acts as a molecular scaffold that recruits a large number of regulatory +TIPs through interaction with CAP-Gly or SxIP motifs. While extensive studies have focused on the structure of EB1-interacting site at microtubule ends and its role as a molecular platform, the mechanisms involved in the negative regulation of EB1 have only started to emerge and remain poorly understood. In this review, we summarize recent studies showing that EB1 association with MT ends is regulated by post-translational modifications and affected by microtubule-targeting agents. We also present recent findings that structural MAPs, that have no tip-tracking activity, physically interact with EB1 to prevent its accumulation at microtubule plus ends. These observations point out a novel concept of "endogenous EB1 antagonists" and emphasize the importance of finely regulating EB1 function at growing microtubule ends.
Collapse
Affiliation(s)
- Anne Nehlig
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Angie Molina
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
- CBD, University of Toulouse-3, Toulouse, France
| | - Sylvie Rodrigues-Ferreira
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
- University Paris Saclay, 94800, Villejuif, France
| | - Stéphane Honoré
- Aix Marseille University, Inserm U-911, CRO2, Marseille, France
- Service Pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France.
- University Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
22
|
Su W, Kowalczyk AP. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell 2016; 28:76-84. [PMID: 27798242 PMCID: PMC5221631 DOI: 10.1091/mbc.e16-09-0658] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 12/26/2022] Open
Abstract
VE-cadherin is cleaved by calpain to remove the β-catenin–binding domain upon entry into clathrin-enriched membrane domains. Calpain cleavage of VE-cadherin cytoplasmic tail appears to fate cadherin for degradation rather than recycling and thus alters the cadherin trafficking itinerary after endocytosis. VE-cadherin trafficking to and from the plasma membrane has emerged as a critical mechanism for regulating cadherin surface levels and adhesion strength. In addition, proteolytic processing of cadherin extracellular and cytoplasmic domains has been reported to regulate cadherin adhesion and signaling. Here we provide evidence that VE-cadherin is cleaved by calpain upon entry into clathrin-enriched domains. This cleavage event occurs between the β-catenin and p120-binding domains within the cadherin cytoplasmic tail. Of interest, VE-cadherin mutants that are resistant to endocytosis are similarly resistant to cleavage. Furthermore, p120-catenin overexpression blocks cadherin internalization and cleavage, coupling entry into the endocytic pathway with proteolytic processing. Of importance, the cleavage of the VE-cadherin tail alters the postendocytic trafficking itinerary of the cadherin, resulting in a higher turnover rate due to decreased recycling and increased degradation. In conclusion, this study identifies a novel proteolytic event that regulates the trafficking of VE-cadherin after endocytosis.
Collapse
Affiliation(s)
- Wenji Su
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322.,Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322 .,Department of Dermatology, Emory University, Atlanta, GA 30322.,Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
23
|
The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer's disease. Brain Res Bull 2016; 126:293-299. [PMID: 27365229 DOI: 10.1016/j.brainresbull.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
The drebrin/EB3/Cdk5 intracellular signalling pathway couples actin filaments to dynamic microtubules in cellular settings where cells are changing shape. The pathway has been most intensively studied in neuronal development, particularly neuritogenesis and neuronal migration, and in synaptic plasticity at dendritic spines in mature neurons. Drebrin is an actin filament side-binding and bundling protein that stabilises actin filaments. The end-binding (EB) proteins are microtubule plus-end tracking proteins (+TIPs) that localise to the growing plus-ends of dynamic microtubules and regulate their behavior and the binding of other +TIP proteins. EB3 binds specifically to drebrin when drebrin is bound to actin filaments, for example at the base of a growth cone filopodium, and EB3 is located at the plus-end of a growing microtubule inserting into the filopodium. This interaction therefore forms the basis for coupling dynamic microtubules to actin filaments in growth cones of developing neurons. Appropriate responses to growth cone guidance cues depend on actin filament/microtubule co-ordination in the growth cone, although the role of the drebrin/EB3/Cdk5 pathway in this context has not been directly tested. A similar cytoskeleton coupling pathway operates in dendritic spines in mature neurons where the activity-dependent insertion of dynamic microtubules into dendritic spines is facilitated by drebrin binding to EB3. Microtubule insertion into dendritic spines drives spine maturation during long-term potentiation and therefore has a role in synaptic plasticity and memory formation. In Alzheimer's disease and related chronic neurodegenerative diseases, there is an early and dramatic loss of drebrin from dendritic spines that precedes synapse loss and neurodegeneration and might contribute to a failure of synaptic plasticity and hence to cognitive decline.
Collapse
|
24
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Feng G, Sullivan DP, Han F, Muller WA. Segregation of VE-cadherin from the LBRC depends on the ectodomain sequence required for homophilic adhesion. J Cell Sci 2016; 128:576-88. [PMID: 25501813 DOI: 10.1242/jcs.159053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lateral border recycling compartment (LBRC) is a reticulum ofperijunctional tubulovesicular membrane that is continuous with the plasmalemma of endothelial cells and is essential for efficient transendothelial migration (TEM) of leukocytes. The LBRC contains molecules involved in TEM, such as PECAM, PVR and CD99, but not VE-cadherin. Despite its importance, how membrane proteins are included in or excluded from the LBRC is not known. Immunoelectronmicroscopy and biochemical approaches demonstrate that inclusion into the LBRC is the default pathway for transmembrane molecules present at endothelial cell borders. A chimeric molecule composed of the extracellular domain of VE-cadherin and cytoplasmic tail of PECAM (VE-CAD/PECAM) did not enter the LBRC, suggesting that VE-cadherin was excluded by a mechanism involving its extracellular domain. Deletion of the homophilic interaction domain EC1 or the homophilic interaction motif RVDAE allowed VE-CAD/PECAM and even native VE-cadherin to enter the LBRC. Similarly, treatment with RVDAE peptide to block homophilic VE-cadherin interactions allowed endogenous VE-cadherin to enter the LBRC. This suggests that homophilic interactions of VE-cadherin stabilize it at cell borders and prevent entry into the LBRC.
Collapse
|
26
|
Wright CE, Kushner EJ, Du Q, Bautch VL. LGN Directs Interphase Endothelial Cell Behavior via the Microtubule Network. PLoS One 2015; 10:e0138763. [PMID: 26398908 PMCID: PMC4580422 DOI: 10.1371/journal.pone.0138763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/03/2015] [Indexed: 12/24/2022] Open
Abstract
Angiogenic sprouts require coordination of endothelial cell (EC) behaviors as they extend and branch. Microtubules influence behaviors such as cell migration and cell-cell interactions via regulated growth and shrinkage. Here we investigated the role of the mitotic polarity protein LGN in EC behaviors and sprouting angiogenesis. Surprisingly, reduced levels of LGN did not affect oriented division of EC within a sprout, but knockdown perturbed overall sprouting. At the cell level, LGN knockdown compromised cell-cell adhesion and migration. EC with reduced LGN levels also showed enhanced growth and stabilization of microtubules that correlated with perturbed migration. These results fit a model whereby LGN influences interphase microtubule dynamics in endothelial cells to regulate migration, cell adhesion, and sprout extension, and reveal a novel non-mitotic role for LGN in sprouting angiogenesis.
Collapse
Affiliation(s)
- Catherine E. Wright
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Erich J. Kushner
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Quansheng Du
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
| | - Victoria L. Bautch
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Tauseef M, Farazuddin M, Sukriti S, Rajput C, Meyer JO, Ramasamy SK, Mehta D. Transient receptor potential channel 1 maintains adherens junction plasticity by suppressing sphingosine kinase 1 expression to induce endothelial hyperpermeability. FASEB J 2015; 30:102-10. [PMID: 26316271 DOI: 10.1096/fj.15-275891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022]
Abstract
Stability of endothelial cell (EC) adherens junctions (AJs) is central for prevention of tissue edema, the hallmark of chronic inflammatory diseases including acute respiratory distress syndrome. Here, we demonstrate a previously unsuspected role of sphingosine kinase 1 (SPHK1) in the mechanism by which transient receptor potential channel 1 (Trpc1)-mediated Ca(2+) entry destabilizes AJs. Trpc1(-/-) monolayers showed a 2.2-fold increase in vascular endothelial (VE)-cadherin cell-surface expression above wild-type (WT) monolayers. Thrombin increased endothelial permeability (evident by a 5-fold increase in interendothelial gap area and 60% decrease in transendothelial electrical resistance) in WT but not Trpc1(-/-) ECs. Trpc1(-/-) mice resisted the hyperpermeability effects of the edemagenic agonists used and exhibited 60% less endotoxin-induced mortality. Because sphingosine-1-phosphate (S1P) strengthens AJs, we determined if TRPC1 functioned by inhibiting SPHK1 activity, which generates S1P. Intriguingly, Trpc1(-/-) ECs or ECs transducing a TRPC1-inactive mutant showed a 1.5-fold increase in basal SPHK1 expression compared with WT ECs, resulting in a 2-fold higher S1P level. SPHK1 inhibitor SK1-I decreased basal transendothelial electrical resistance more in WT ECs (48 and 72% reduction at 20 and 50 μM, respectively) than in Trpc1(-/-) ECs. However, SK1-I pretreatment rescued thrombin-induced EC permeability in Trpc1(-/-) ECs. Thus, TRPC1 suppression of basal SPHK1 activity enables EC-barrier destabilization by edemagenic agonists.
Collapse
Affiliation(s)
- Mohammad Tauseef
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Mohammad Farazuddin
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Sukriti Sukriti
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Charu Rajput
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - James Otto Meyer
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Suresh Kumar Ramasamy
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
28
|
Alieva IB, Berezinskaya T, Borisy GG, Vorobjev IA. Centrosome nucleates numerous ephemeral microtubules and only few of them participate in the radial array. Cell Biol Int 2015; 39:1203-16. [PMID: 25998195 DOI: 10.1002/cbin.10492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/16/2015] [Indexed: 11/10/2022]
Abstract
It is generally accepted that long microtubules (MTs) grow from the centrosome with their minus ends anchored there and plus ends directed towards cell membrane. However, recent findings show this scheme to be an oversimplification. To further analyze the relationship between the centrosome and the MT array we undertook a detailed study on the MTs growing from the centrosome after microinjection of Cy3 labeled tubulin and transfection of cells with EB1-GFP. To evaluate MTs around the centrosome two approaches were used: path photobleaching across the centrosome area (Komarova et al., ) and sequential image subtraction analysis (Vorobjev et al., ). We show that about 50% of MTs had been nucleated at the centrosome are short-living: their mean length was 1.8 ± 0.8 μm and their life span - 7 ± 2 s. MTs initiated from the centrosome also rarely reach cell margin, since their elongation was limited and growth after shortening (rescue) was rare. After initial growth all MTs associated with the centrosome converted to pause or shortening. After pause MTs associated with the centrosome mainly depolymerized via the plus end shortening. Stability of the minus ends of cytoplasmic MTs was the same as for centrosomal ones. We conclude that in fibroblasts (1) the default behavior of free MTs in the cell interior is biased dynamic instability (i.e., random walk of the plus ends with significant positive drift); (2) MTs born at the centrosome show "dynamic instability" type behavior with no boundary; and (3) that the extended radial array is formed predominantly by MTs not associated with the centrosome.
Collapse
Affiliation(s)
- Irina B Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana Berezinskaya
- Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Gary G Borisy
- Department of Microbiology, The Forsyth Institute Cambridge, Massachusetts, USA
| | - Ivan A Vorobjev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
29
|
Geyer M, Huang F, Sun Y, Vogel SM, Malik AB, Taylor CW, Komarova YA. Microtubule-Associated Protein EB3 Regulates IP3 Receptor Clustering and Ca(2+) Signaling in Endothelial Cells. Cell Rep 2015; 12:79-89. [PMID: 26119739 PMCID: PMC4487770 DOI: 10.1016/j.celrep.2015.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 03/27/2015] [Accepted: 05/31/2015] [Indexed: 01/12/2023] Open
Abstract
The mechanisms by which the microtubule cytoskeleton regulates the permeability of endothelial barrier are not well understood. Here, we demonstrate that microtubule-associated end-binding protein 3 (EB3), a core component of the microtubule plus-end protein complex, binds to inositol 1,4,5-trisphosphate receptors (IP3Rs) through an S/TxIP EB-binding motif. In endothelial cells, α-thrombin, a pro-inflammatory mediator that stimulates phospholipase Cβ, increases the cytosolic Ca(2+) concentration and elicits clustering of IP3R3s. These responses, and the resulting Ca(2+)-dependent phosphorylation of myosin light chain, are prevented by depletion of either EB3 or mutation of the TxIP motif of IP3R3 responsible for mediating its binding to EB3. We also show that selective EB3 gene deletion in endothelial cells of mice abrogates α-thrombin-induced increase in endothelial permeability. We conclude that the EB3-mediated interaction of IP3Rs with microtubules controls the assembly of IP3Rs into effective Ca(2+) signaling clusters, which thereby regulate microtubule-dependent endothelial permeability.
Collapse
Affiliation(s)
- Melissa Geyer
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Fei Huang
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ying Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Stephen M Vogel
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Yulia A Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Abstract
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell–cell junctions, and in particular, VE -cadherin-mediated contacts. VE -cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE -cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE -cadherin adhesion can be disrupted, leading to cell–cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE -cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.
Collapse
|
31
|
ROS-mediated EB1 phosphorylation through Akt/GSK3β pathway: implication in cancer cell response to microtubule-targeting agents. Oncotarget 2015; 5:3408-23. [PMID: 24930764 PMCID: PMC4102819 DOI: 10.18632/oncotarget.1982] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are largely administered in adults and children cancers. Better deciphering their mechanism of action is of prime importance to develop more convenient therapy strategies. Here, we addressed the question of how reactive oxygen species (ROS) generation by mitochondria can be necessary for MTA efficacy. We showed for the first time that EB1 associates with microtubules in a phosphorylation-dependent manner, under control of ROS. By using phospho-defective mutants, we further characterized the Serine 155 residue as critical for EB1 accumulation at microtubule plus-ends, and both cancer cell migration and proliferation. Phosphorylation of EB1 on the Threonine 166 residue triggered opposite effects, and was identified as a requisite molecular switch in MTA activities. We then showed that GSK3β activation was responsible for MTA-triggered EB1 phosphorylation, resulting from ROS-mediated inhibition of upstream Akt. We thus disclosed here a novel pathway by which generation of mitochondrial ROS modulates microtubule dynamics through phosphorylation of EB1, improving our fundamental knowledge about this oncogenic protein, and pointing out the need to re-examine the current dogma of microtubule targeting by MTAs. The present work also provides a strong mechanistic rational to the promising therapeutic strategies that currently combine MTAs with anti-Akt targeted therapies.
Collapse
|
32
|
Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms regulating endothelial permeability. Pulm Circ 2015; 4:535-51. [PMID: 25610592 DOI: 10.1086/677356] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/03/2014] [Indexed: 12/26/2022] Open
Abstract
The endothelial monolayer partitioning underlying tissue from blood components in the vessel wall maintains tissue fluid balance and host defense through dynamically opening intercellular junctions. Edemagenic agonists disrupt endothelial barrier function by signaling the opening of the intercellular junctions leading to the formation of protein-rich edema in the interstitial tissue, a hallmark of tissue inflammation that, if left untreated, causes fatal diseases, such as acute respiratory distress syndrome. In this review, we discuss how intercellular junctions are maintained under normal conditions and after stimulation of endothelium with edemagenic agonists. We have focused on reviewing the new concepts dealing with the alteration of adherens junctions after inflammatory stimulus.
Collapse
Affiliation(s)
- Sukriti Sukriti
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Mohammad Tauseef
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Pascal Yazbeck
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
33
|
Liu J, Han R. The Evolution of Microtubule End-Binding Protein 1 (EB1) and Roles in Regulating Microtubule Behavior. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.613212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
35
|
Alieva IB. Role of microtubule cytoskeleton in regulation of endothelial barrier function. BIOCHEMISTRY (MOSCOW) 2014; 79:964-75. [DOI: 10.1134/s0006297914090119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Yamada KH, Nakajima Y, Geyer M, Wary KK, Ushio-Fukai M, Komarova Y, Malik AB. KIF13B regulates angiogenesis through Golgi to plasma membrane trafficking of VEGFR2. J Cell Sci 2014; 127:4518-30. [PMID: 25128562 DOI: 10.1242/jcs.156109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although the trafficking of newly synthesized VEGFR2 to the plasma membrane is a key determinant of angiogenesis, the molecular mechanisms of Golgi to plasma membrane trafficking are unknown. Here, we have identified a key role of the kinesin family plus-end molecular motor KIF13B in delivering VEGFR2 cargo from the Golgi to the endothelial cell surface. KIF13B is shown to interact directly with VEGFR2 on microtubules. We also observed that overexpression of truncated versions of KIF13B containing the binding domains that interact with VEGFR2 inhibited VEGF-induced capillary tube formation. KIF13B depletion prevented VEGF-mediated endothelial migration, capillary tube formation and neo-vascularization in mice. Impairment in trafficking induced by knockdown of KIF13B shunted VEGFR2 towards the lysosomal degradation pathway. Thus, KIF13B is an essential molecular motor required for the trafficking of VEGFR2 from the Golgi, and its delivery to the endothelial cell surface mediates angiogenesis.
Collapse
Affiliation(s)
- Kaori H Yamada
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yuki Nakajima
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Melissa Geyer
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Masuko Ushio-Fukai
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Plestant C, Strale PO, Seddiki R, Nguyen E, Ladoux B, Mège RM. Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell–cell contacts through organization of actomyosin. J Cell Sci 2014; 127:1660-71. [DOI: 10.1242/jcs.131284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ABSTRACT
Adhesive interactions of cadherins induce crosstalk between adhesion complexes and the actin cytoskeleton, allowing strengthening of adhesions and cytoskeletal organization. The underlying mechanisms are not completely understood, and microtubules (MTs) might be involved, as for integrin-mediated cell–extracellular-matrix adhesions. Therefore, we investigated the relationship between N-cadherin and MTs by analyzing the influence of N-cadherin engagement on MT distribution and dynamics. MTs progressed less, with a lower elongation rate, towards cadherin adhesions than towards focal adhesions. Increased actin treadmilling and the presence of an actomyosin contractile belt, suggested that actin relays inhibitory signals from cadherin adhesions to MTs. The reduced rate of MT elongation, associated with reduced recruitment of end-binding (EB) proteins to plus ends, was alleviated by expression of truncated N-cadherin, but was only moderately affected when actomyosin was disrupted. By contrast, destabilizing actomyosin fibers allowed MTs to enter the adhesion area, suggesting that tangential actin bundles impede MT growth independently of MT dynamics. Blocking MT penetration into the adhesion area strengthened cadherin adhesions. Taken together, these results establish a crosstalk between N-cadherin, F-actin and MTs. The opposing effects of cadherin and integrin engagement on actin organization and MT distribution might induce bias of the MT network during cell polarization.
Collapse
Affiliation(s)
- Charlotte Plestant
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Pierre-Olivier Strale
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Rima Seddiki
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Benoit Ladoux
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - René-Marc Mège
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
38
|
Revenu C, Streichan S, Donà E, Lecaudey V, Hufnagel L, Gilmour D. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation. Development 2014; 141:1282-91. [DOI: 10.1242/dev.101675] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a ‘tissue-scale’ polarity, whereby ‘leader’ cells at the edge of the tissue guide trailing ‘followers’ that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.
Collapse
Affiliation(s)
- Céline Revenu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sebastian Streichan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Erika Donà
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Virginie Lecaudey
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Darren Gilmour
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
39
|
Oldenburg J, de Rooij J. Mechanical control of the endothelial barrier. Cell Tissue Res 2014; 355:545-55. [PMID: 24519624 DOI: 10.1007/s00441-013-1792-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
The integrity of the endothelial barrier is controlled by the combined action of chemical and mechanical signaling systems. Permeability-regulating factors signal through small GTPases to regulate the architecture of the cytoskeleton and this has a strong impact on the morphology and stability of VE-cadherin-based cell-cell junctions. The details of how structural and mechanical properties of the actin cytoskeleton influence cell-cell adhesion and how this impacts the dynamic regulation of the endothelial barrier, are beginning to be elucidated. In this review, we discuss the physical and regulatory interactions between the VE-cadherin complex and the actomysoin cytoskeleton, as they are the main determinants of cell-cell adhesion and the mechanical architecture of the cytoskeleton. We discuss, based on recent in vitro data, how a balance between Linear Adherens Junctions, paralleled by cortical actin bundles and Focal Adherens Junctions, connected to radial action bundles, determines endothelial barrier function. We discuss how small GTPases control this balance by regulating the spatial organization and mechanics of actomyosin. We propose a hypothetical model of how biochemical and mechanical signals cooperate locally, at the actomyosin-adhesion interface to open and re-seal the barrier in a rapid and controlled manner.
Collapse
Affiliation(s)
- Joppe Oldenburg
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Shahbazi MN, Perez-Moreno M. Microtubules CLASP to Adherens Junctions in epidermal progenitor cells. BIOARCHITECTURE 2014; 4:25-30. [PMID: 24522006 DOI: 10.4161/bioa.28177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cadherin-mediated cell adhesion at Adherens Junctions (AJs) and its dynamic connections with the microtubule (MT) cytoskeleton are important regulators of cellular architecture. However, the functional relevance of these interactions and the molecular players involved in different cellular contexts and cellular compartments are still not completely understood. Here, we comment on our recent findings showing that the MT plus-end binding protein CLASP2 interacts with the AJ component p120-catenin (p120) specifically in progenitor epidermal cells. Absence of either protein leads to alterations in MT dynamics and AJ functionality. These findings represent a novel mechanism of MT targeting to AJs that may be relevant for the maintenance of proper epidermal progenitor cell homeostasis. We also discuss the potential implication of other MT binding proteins previously associated to AJs in the wider context of epithelial tissues. We hypothesize the existence of adaptation mechanisms that regulate the formation and stability of AJs in different cellular contexts to allow the dynamic behavior of these complexes during tissue homeostasis and remodeling.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Epithelial Cell Biology Lab; Banco Bilbao Vizcaya Argentaria (BBVA) Foundation; Spanish National Cancer Research Center (CNIO) Cancer Cell Biology Program; Madrid, Spain
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Lab; Banco Bilbao Vizcaya Argentaria (BBVA) Foundation; Spanish National Cancer Research Center (CNIO) Cancer Cell Biology Program; Madrid, Spain
| |
Collapse
|
41
|
VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 2013; 26:441-54. [PMID: 24044891 DOI: 10.1016/j.devcel.2013.08.020] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
VE-cadherin is a component of endothelial cell-to-cell adherens junctions, and it has a key role in the maintenance of vascular integrity. During embryo development, VE-cadherin is required for the organization of a stable vascular system, and in the adult it controls vascular permeability and inhibits unrestrained vascular growth. The mechanisms of action of VE-cadherin are complex and include reshaping and organization of the endothelial cell cytoskeleton and modulation of gene transcription. Here we review some of the most important pathways through which VE-cadherin modulates vascular homeostasis and discuss the emerging concepts in the overall biological role of this protein.
Collapse
|
42
|
Abstract
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell-cell junctions, and in particular, VE-cadherin-mediated contacts. VE-cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE-cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE-cadherin adhesion can be disrupted, leading to cell-cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE-cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.
Collapse
Affiliation(s)
- Julie Gavard
- Cnrs; UMR8104; Paris, France; Inserm; U1016; Paris, France; Universite Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
43
|
Ferreira JG, Pereira AJ, Akhmanova A, Maiato H. Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. ACTA ACUST UNITED AC 2013; 201:709-24. [PMID: 23712260 PMCID: PMC3664705 DOI: 10.1083/jcb.201301131] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During mitosis, human cells round up, decreasing their adhesion to extracellular substrates. This must be quickly reestablished by poorly understood cytoskeleton remodeling mechanisms that prevent detachment from epithelia, while ensuring the successful completion of cytokinesis. Here we show that the microtubule end-binding (EB) proteins EB1 and EB3 play temporally distinct roles throughout cell division. Whereas EB1 was involved in spindle orientation before anaphase, EB3 was required for stabilization of focal adhesions and coordinated daughter cell spreading during mitotic exit. Additionally, EB3 promoted midbody microtubule stability and, consequently, midbody stabilization necessary for efficient cytokinesis. Importantly, daughter cell adhesion and cytokinesis completion were spatially regulated by distinct states of EB3 phosphorylation on serine 176 by Aurora B. This EB3 phosphorylation was enriched at the midbody and shown to control cortical microtubule growth. These findings uncover differential roles of EB proteins and explain the importance of an Aurora B phosphorylation gradient for the spatiotemporal regulation of microtubule function during mitotic exit and cytokinesis.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|