1
|
Chang Q, Li J, Zhao Z, Zhu Q, Zhang Y, Sheng R, Yang Z, Dai M, Wang P, Fan X, He J. Elevated temperature affects the expression of signaling molecules in quail testes meiosis I prophase, but spermatogenesis remains normal. Theriogenology 2024; 229:16-22. [PMID: 39142066 DOI: 10.1016/j.theriogenology.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Spermatogenesis in eukaryotes is a process that occurs within a very narrow temperature threshold, typically not exceeding 36 °C. SPO11 was isolated from the temperature-sensitive mutant receptor of Saccharomyces cerevisiae and is thought to be the only protein that functions during meiosis. This suggested that SPO11 may be the key protein that influenced the temperature of spermatogenesis not exceeding 36 °C. Elevated temperatures typically damage the spermatogenic cells. Birds have a core body temperature of 41-42 °C, and their testis are located inside their bodies, providing an alternative perspective to investigate the potential impact of temperature threshold on spermatogenesis. The objective of this study was to ascertain whether elevated ambient temperatures affect spermatogenesis in birds and whether SPO11 is the key gene affecting the temperature threshold for spermatogenesis. STRA8, SCP3, SPO11, γ-H2AX, and RAD51 were all crucial components in the process of meiotic initiation, synapsis, DNA double-strand break (DSB) induction, homologous chromosome crossover recombination, and repair of DSB. In this study, 39-day-old Japanese quail were subjected to heat stress (HS) at 38 °C for 8 h per day for 3 (3d HS) and 13 (13d HS) consecutive days and analyzed the expression of meiotic signaling molecules (STRA8, SCP3, SPO11, γ-H2AX, and RAD51) using molecular biology techniques, including Immunohistochemistry (IHC), Western Blot (WB), and Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). We found that spermatogenesis was normal in both groups exposed to HS. Meiotic signaling molecules were expressed normally in the 3d HS group. All detected signaling molecules were normally expressed in the 13d HS group, except for SPO11, which showed a significant increase in expression, indicating that SPO11 was temperature-sensitive. We examined the localized expression of each meiotic signaling molecule in quail testis, explored the temperature sensitivity of SPO11, and determined that quail testis can undergo normal spermatogenesis at ambient temperatures exceeding 36 °C. This study concluded that SPO11 is not the key protein influencing spermatogenesis in birds. These findings enhance our understanding of avian spermatogenesis.
Collapse
Affiliation(s)
- Qianwen Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Jiarong Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Zihui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Qi Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Yaning Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Ruimin Sheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Ziyin Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Mingcheng Dai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Pengchao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Xiaorui Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Junping He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| |
Collapse
|
2
|
Agarwal A, Muniyappa K. Mycobacterium smegmatis putative Holliday junction resolvases RuvC and RuvX play complementary roles in the processing of branched DNA structures. J Biol Chem 2024; 300:107732. [PMID: 39222685 PMCID: PMC11466669 DOI: 10.1016/j.jbc.2024.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
In eubacteria, Holliday junction (HJ) resolvases (HJRs) are crucial for faithful segregation of newly replicated chromosomes, homologous recombination, and repair of stalled/collapsed DNA replication forks. However, compared with the Escherichia coli HJRs, little is known about their orthologs in mycobacterial species. A genome-wide analysis of Mycobacterium smegmatis identified two genes encoding putative HJRs, namely RuvC (MsRuvC) and RuvX (MsRuvX); but whether they play redundant, overlapping, or distinct roles remains unknown. Here, we reveal that MsRuvC exists as a homodimer while MsRuvX as a monomer in solution, and both showed high-binding affinity for branched DNAs compared with unbranched DNA species. Interestingly, the DNA cleavage specificities of MsRuvC and MsRuvX were found to be mutually exclusive: the former efficiently promotes HJ resolution, in a manner analogous to the Escherichia coli RuvC, but does not cleave other branched DNA species; whereas the latter is a versatile DNase capable of cleaving a variety of branched DNA structures, including 3' and 5' flap DNA, splayed-arm DNA and dsDNA with 3' and 5' overhangs but lacks the HJ resolution activity. Point mutations in the RNase H-like domains of MsRuvC and MsRuvX pinpointed critical residues required for their DNA cleavage activities and also demonstrated uncoupling between DNA-binding and DNA cleavage activities. Unexpectedly, we found robust evidence that MsRuvX possesses a double-strand/single-strand junction-specific endonuclease and ssDNA exonucleolytic activities. Combined, our findings highlight that the RuvC and RuvX DNases play distinct complementary, and not redundant, roles in the processing of branched DNA structures in M. smegmatis.
Collapse
Affiliation(s)
- Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
3
|
Jiang Y, Zhang HY, Lin Z, Zhu YZ, Yu C, Sha QQ, Tong MH, Shen L, Fan HY. CXXC finger protein 1-mediated histone H3 lysine-4 trimethylation is essential for proper meiotic crossover formation in mice. Development 2020; 147:dev183764. [PMID: 32094118 DOI: 10.1242/dev.183764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The most significant feature of meiosis is the recombination process during prophase I. CXXC finger protein 1 (CXXC1) binds to CpG islands and mediates the deposition of H3K4me3 by the SETD1 complex. CXXC1 is also predicted to recruit H3K4me3-marked regions to the chromosome axis for the generation of double-strand breaks (DSBs) in the prophase of meiosis. Therefore, we deleted Cxxc1 before the onset of meiosis with Stra8-Cre The conditional knockout mice were completely sterile with spermatogenesis arrested at MII. Knockout of Cxxc1 led to a decrease in the H3K4me3 level from the pachytene to the MII stage and caused transcriptional disorder. Many spermatogenesis pathway genes were expressed early leading to abnormal acrosome formation in arrested MII cells. In meiotic prophase, deletion of Cxxc1 caused delayed DSB repair and improper crossover formation in cells at the pachytene stage, and more than half of the diplotene cells exhibited precocious homologous chromosome segregation in both male and female meiosis. Cxxc1 deletion also led to a significant decrease of H3K4me3 enrichment at DMC1-binding sites, which might compromise DSB generation. Taken together, our results show that CXXC1 is essential for proper meiotic crossover formation in mice and suggest that CXXC1-mediated H3K4me3 plays an essential role in meiotic prophase of spermatogenesis and oogenesis.
Collapse
Affiliation(s)
- Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hui-Ying Zhang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
4
|
Bhattacharyya T, Walker M, Powers NR, Brunton C, Fine AD, Petkov PM, Handel MA. Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes. Curr Biol 2019; 29:1002-1018.e7. [PMID: 30853435 PMCID: PMC6544150 DOI: 10.1016/j.cub.2019.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
Meiotic recombination is required for correct segregation of chromosomes to gametes and to generate genetic diversity. In mice and humans, DNA double-strand breaks (DSBs) are initiated by SPO11 at recombination hotspots activated by PRDM9-catalyzed histone modifications on open chromatin. However, the DSB-initiating and repair proteins are associated with a linear proteinaceous scaffold called the chromosome axis, the core of which is composed of cohesin proteins. STAG3 is a stromalin subunit common to all meiosis-specific cohesin complexes. Mutations of meiotic cohesin proteins, especially STAG3, perturb both axis formation and recombination in the mouse, prompting determination of how the processes are mechanistically related. Protein interaction and genetic analyses revealed that PRDM9 interacts with STAG3 and REC8 in cooperative relationships that promote normal levels of meiotic DSBs at recombination hotspots in spermatocytes. The efficacy of the Prdm9-Stag3 genetic interaction in promoting DSB formation depends on PRDM9-mediated histone methyltransferase activity. Moreover, STAG3 deficiency has a major effect on DSB number even in the absence of PRDM9, showing that its role is not restricted to canonical PRDM9-activated hotspots. STAG3 and REC8 promote axis localization of the DSB-promoting proteins HORMAD1, IHO1, and MEI4, as well as SPO11 activity. These results establish that PRDM9 and axis-associated cohesin complexes together coordinate and facilitate meiotic recombination by recruiting key proteins for initiation of DSBs, thereby associating activated hotspots with DSB-initiating complexes on the axis.
Collapse
Affiliation(s)
| | | | | | | | - Alexander D Fine
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | | | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
5
|
Tock AJ, Henderson IR. Hotspots for Initiation of Meiotic Recombination. Front Genet 2018; 9:521. [PMID: 30467513 PMCID: PMC6237102 DOI: 10.3389/fgene.2018.00521] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Homologous chromosomes must pair and recombine to ensure faithful chromosome segregation during meiosis, a specialized type of cell division that occurs in sexually reproducing eukaryotes. Meiotic recombination initiates by programmed induction of DNA double-strand breaks (DSBs) by the conserved type II topoisomerase-like enzyme SPO11. A subset of meiotic DSBs are resolved as crossovers, whereby reciprocal exchange of DNA occurs between homologous chromosomes. Importantly, DSBs are non-randomly distributed along eukaryotic chromosomes, forming preferentially in permissive regions known as hotspots. In many species, including plants, DSB hotspots are located within nucleosome-depleted regions. DSB localization is governed by interconnected factors, including cis-regulatory elements, transcription factor binding, and chromatin accessibility, as well as by higher-order chromosome architecture. The spatiotemporal control of DSB formation occurs within a specialized chromosomal structure characterized by sister chromatids organized into linear arrays of chromatin loops that are anchored to a proteinaceous axis. Although SPO11 and its partner proteins required for DSB formation are bound to the axis, DSBs occur preferentially within the chromatin loops, which supports the "tethered-loop/axis model" for meiotic recombination. In this mini review, we discuss insights gained from recent efforts to define and profile DSB hotspots at high resolution in eukaryotic genomes. These advances are deepening our understanding of how meiotic recombination shapes genetic diversity and genome evolution in diverse species.
Collapse
Affiliation(s)
- Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Pelé A, Falque M, Trotoux G, Eber F, Nègre S, Gilet M, Huteau V, Lodé M, Jousseaume T, Dechaumet S, Morice J, Poncet C, Coriton O, Martin OC, Rousseau-Gueutin M, Chèvre AM. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas. PLoS Genet 2017; 13:e1006794. [PMID: 28493942 PMCID: PMC5444851 DOI: 10.1371/journal.pgen.1006794] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/25/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Matthieu Falque
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Frédérique Eber
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Sylvie Nègre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Virginie Huteau
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Maryse Lodé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Sylvain Dechaumet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Olivier Coriton
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Olivier C. Martin
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- * E-mail:
| |
Collapse
|