1
|
Evdokimova A, Kolesnikova T, Mazina MY, Krasnov A, Erokhin M, Chetverina D, Vorobyeva N. Transcriptional induction by ecdysone in Drosophila salivary glands involves an increase in chromatin accessibility and acetylation. Nucleic Acids Res 2025; 53:gkaf284. [PMID: 40239993 PMCID: PMC11997763 DOI: 10.1093/nar/gkaf284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Transcriptional activation by 20-hydroxyecdysone (20E) in Drosophila provides an excellent model for studying tissue-specific responses to steroids. An increase in the 20E concentration regulates the degradation of larval and the proliferation of adult tissues during metamorphosis. To study 20E-dependent transcription, we used the natural system for controlling the 20E concentration-the E23 membrane transporter-which exports 20E from the cell. We artificially expressed E23 in tissues to suppress the first wave of 20E-inducible transcription at metamorphosis. E23 expression revealed a plethora of 20E-dependent genes in salivary glands, while mildly affecting transcription in brain. We described the mechanisms controlling transcriptional activation by 20E in salivary glands. 20E depletion decreased the binding of Pol II and the TFIID subunit, TBP, to the promoters of primary targets, demonstrating the role of 20E in transcription initiation. At target loci, 20E depletion resulted in the malfunctioning of sites co-bound with EcR and CBP/Nejire and enriched for the H3K27Ac mark inherent to active enhancers. At these sites, the 20E concentration was found to control chromatin accessibility and acetylation. We suggest that the activity of these 'active' ecdysone-sensitive elements was responsible for the active status of 20E targets in the salivary glands of wandering larvae.
Collapse
Affiliation(s)
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | | |
Collapse
|
2
|
Vieira CS, Bisogno S, Salvemini M, Loza Telleria E, Volf P. Azadirachtin disrupts ecdysone signaling and alters sand fly immunity. Parasit Vectors 2024; 17:526. [PMID: 39707409 DOI: 10.1186/s13071-024-06589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis. METHODS Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR). RESULTS Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression. CONCLUSIONS These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.
Collapse
Affiliation(s)
- Cecilia Stahl Vieira
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sara Bisogno
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Li Z, Zhang Y, Peng B, Qin S, Zhang Q, Chen Y, Chen C, Bao Y, Zhu Y, Hong Y, Liu B, Liu Q, Xu L, Chen X, Ma X, Wang H, Xie L, Yao Y, Deng B, Li J, De B, Chen Y, Wang J, Li T, Liu R, Tang Z, Cao J, Zuo E, Mei C, Zhu F, Shao C, Wang G, Sun T, Wang N, Liu G, Ni JQ, Liu Y. A novel interpretable deep learning-based computational framework designed synthetic enhancers with broad cross-species activity. Nucleic Acids Res 2024; 52:13447-13468. [PMID: 39420601 PMCID: PMC11602155 DOI: 10.1093/nar/gkae912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design. Proficient in uncovering subtle and intricate patterns within extensive enhancer screening data, DREAM achieves cutting-edge sequence-based enhancer activity prediction and highlights critical sequence features implicating strong enhancer activity. Leveraging DREAM, we have engineered enhancers that surpass the potency of the strongest enhancer within the Drosophila genome by approximately 3.6-fold. Remarkably, these synthetic enhancers exhibited conserved functionality across species that have diverged more than billion years, indicating that DREAM was able to learn highly conserved enhancer regulatory grammar. Additionally, we designed silencers and cell line-specific enhancers using DREAM, demonstrating its versatility. Overall, our study not only introduces an interpretable approach for enhancer design but also lays out a general framework applicable to the design of other types of cis-regulatory elements.
Collapse
Affiliation(s)
- Zhaohong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Bo Peng
- Gene Regulatory Lab, School of Basic Medical Sciences, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
| | - Shenghua Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Qian Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yun Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yongzhou Bao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yuqi Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, NO. 7 Pengfei Road, Dapeng District, Shenzhen 518124, China
| | - Yi Hong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, NO. 7 Pengfei Road, Dapeng District, Shenzhen 518124, China
| | - Binghua Liu
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Qian Liu
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Xi Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Xinhao Ma
- College of Grassland Agriculture, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, NO. 3 Taicheng Road, Yangling District, Yangling, Shaanxi 712100, China
| | - Hongyan Wang
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Long Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yilong Yao
- Green Healthy Aquaculture Research Center, Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Building 26 Lihe Technology Park, Auxiliary Road of Xinxi Avenue South, Nanhai District, Foshan 528226, China
| | - Biao Deng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Jiaying Li
- Department of Ophthalmology, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiaomin lane No1, Dongcheng District, Beijing 100101, China
| | - Baojun De
- College of Life Sciences, Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, NO. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Yuting Chen
- College of Life Sciences, Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, NO. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Jing Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Tian Li
- College of JUNCAO Science and Ecology, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University (FAFU), NO.15 Shangxiadian Road, Cangshan District, Fuzhou 0350002, China
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road NO. 2, Haidian District, Beijing 100193, China
| | - Zhonglin Tang
- Green Healthy Aquaculture Research Center, Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Building 26 Lihe Technology Park, Auxiliary Road of Xinxi Avenue South, Nanhai District, Foshan 528226, China
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, NO. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Chugang Mei
- College of Grassland Agriculture, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, NO. 3 Taicheng Road, Yangling District, Yangling, Shaanxi 712100, China
| | - Fangjie Zhu
- College of JUNCAO Science and Ecology, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University (FAFU), NO.15 Shangxiadian Road, Cangshan District, Fuzhou 0350002, China
| | - Changwei Shao
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, NO. 7 Pengfei Road, Dapeng District, Shenzhen 518124, China
| | - Ningli Wang
- Department of Ophthalmology, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiaomin lane No1, Dongcheng District, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Basic Medical Sciences, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, NO. 56 Xinjian South Road, Yingze District, Taiyuan 030001, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Green Healthy Aquaculture Research Center, Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Building 26 Lihe Technology Park, Auxiliary Road of Xinxi Avenue South, Nanhai District, Foshan 528226, China
| |
Collapse
|
4
|
Loubiere V, de Almeida BP, Pagani M, Stark A. Developmental and housekeeping transcriptional programs display distinct modes of enhancer-enhancer cooperativity in Drosophila. Nat Commun 2024; 15:8584. [PMID: 39362902 PMCID: PMC11450171 DOI: 10.1038/s41467-024-52921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Genomic enhancers are key transcriptional regulators which, upon the binding of sequence-specific transcription factors, activate their cognate target promoters. Although enhancers have been extensively studied in isolation, a substantial number of genes have more than one simultaneously active enhancer, and it remains unclear how these cooperate to regulate transcription. Using Drosophila melanogaster S2 cells as a model, we assay the activities of more than a thousand individual enhancers and about a million enhancer pairs toward housekeeping and developmental core promoters with STARR-seq. We report that housekeeping and developmental enhancers show distinct modes of enhancer-enhancer cooperativity: while housekeeping enhancers are additive such that their combined activity mirrors the sum of their individual activities, developmental enhancers are super-additive and combine multiplicatively. Super-additivity between developmental enhancers is promiscuous and neither depends on the enhancers' endogenous genomic contexts nor on specific transcription factor motif signatures. However, it can be further boosted by Twist and Trl motifs and saturates for the highest levels of enhancer activity. These results have important implications for our understanding of gene regulation in complex multi-enhancer developmental loci and genomically clustered housekeeping genes, providing a rationale to interpret the transcriptional impact of non-coding mutations at different loci.
Collapse
Affiliation(s)
- Vincent Loubiere
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
5
|
Doronin SA, Ilyin AA, Kononkova AD, Solovyev MA, Olenkina OM, Nenasheva VV, Mikhaleva EA, Lavrov SA, Ivannikova AY, Simonov RA, Fedotova AA, Khrameeva EE, Ulianov SV, Razin SV, Shevelyov YY. Nucleoporin Elys attaches peripheral chromatin to the nuclear pores in interphase nuclei. Commun Biol 2024; 7:783. [PMID: 38951619 PMCID: PMC11217421 DOI: 10.1038/s42003-024-06495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.
Collapse
Affiliation(s)
- Semen A Doronin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Artem A Ilyin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Molecular Biosciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anna D Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia
| | - Mikhail A Solovyev
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Oxana M Olenkina
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Valentina V Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Elena A Mikhaleva
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Sergey A Lavrov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna Y Ivannikova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Ruslan A Simonov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna A Fedotova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Regulation of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia.
| | - Sergey V Ulianov
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sergey V Razin
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia.
| |
Collapse
|
6
|
Bi P, Geisbrecht ER. Cell fusion: Inter-organ tissue communication promotes a union between myoblasts. Curr Biol 2024; 34:R343-R345. [PMID: 38714160 DOI: 10.1016/j.cub.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Repeated rounds of fusion between apposing myoblasts allow muscles to become multinucleated. New research finds that myoblasts undergoing fusion in the Drosophila embryo respond to hormone signaling from a nearby tissue, resulting in the activation of a myoblast-specific gene necessary for the fusion process.
Collapse
Affiliation(s)
- Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
7
|
Ruan ZR, Yu Z, Xing C, Chen EH. Inter-organ steroid hormone signaling promotes myoblast fusion via direct transcriptional regulation of a single key effector gene. Curr Biol 2024; 34:1438-1452.e6. [PMID: 38513654 PMCID: PMC11003854 DOI: 10.1016/j.cub.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.
Collapse
Affiliation(s)
- Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Liu J, Cao J, Yu X, Chang J, Sui T, Cao X. Necroptosis pathway emerged as potential diagnosis markers in spinal cord injury. J Cell Mol Med 2024; 28:e18219. [PMID: 38509743 PMCID: PMC10955161 DOI: 10.1111/jcmm.18219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
The present research focused on identifying necroptosis-related differentially expressed genes (NRDEGs) in spinal cord injury (SCI) to highlight potential therapeutic and prognostic target genes in clinical SCI. Three SCI-related datasets were downloaded, including GSE151371, GSE5296 and GSE47681. MSigDB and KEGG datasets were searched for necroptosis-related genes (NRGs). Differentially expressed genes (DEGs) and NRGs were intersected to obtain NRDEGs. The MCC algorithm was employed to select the first 10 genes as hub genes. A protein-protein interaction (PPI) network related to NRDEGs was developed utilizing STRING. Several databases were searched to predict interactions between hub genes and miRNAs, transcription factors, potential drugs, and small molecules. Immunoassays were performed to identify DEGs using CIBERSORTx. Additionally, qRT-PCR was carried out to verify NRDEGs in an animal model of SCI. Combined analysis of all datasets identified 15 co-expressed DEGs and NRGs. GO and KEGG pathway analyses highlighted DEGs mostly belonged to pathways associated with necroptosis and apoptosis. Hub gene expression analysis showed high accuracy in SCI diagnosis was associated with the expression of CHMP7 and FADD. A total of two hub genes, i.e. CHMP7, FADD, were considered potential targets for SCI therapy.
Collapse
Affiliation(s)
- Jingcheng Liu
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Jiang Cao
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Xiao Yu
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Jie Chang
- Department of OrthopedicsThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Tao Sui
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Xiaojian Cao
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
9
|
Perez-Mockus G, Cocconi L, Alexandre C, Aerne B, Salbreux G, Vincent JP. The Drosophila ecdysone receptor promotes or suppresses proliferation according to ligand level. Dev Cell 2023; 58:2128-2139.e4. [PMID: 37769663 PMCID: PMC7615657 DOI: 10.1016/j.devcel.2023.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
The steroid hormone 20-hydroxy-ecdysone (20E) promotes proliferation in Drosophila wing precursors at low titer but triggers proliferation arrest at high doses. Remarkably, wing precursors proliferate normally in the complete absence of the 20E receptor, suggesting that low-level 20E promotes proliferation by overriding the default anti-proliferative activity of the receptor. By contrast, 20E needs its receptor to arrest proliferation. Dose-response RNA sequencing (RNA-seq) analysis of ex vivo cultured wing precursors identifies genes that are quantitatively activated by 20E across the physiological range, likely comprising positive modulators of proliferation and other genes that are only activated at high doses. We suggest that some of these "high-threshold" genes dominantly suppress the activity of the pro-proliferation genes. We then show mathematically and with synthetic reporters that combinations of basic regulatory elements can recapitulate the behavior of both types of target genes. Thus, a relatively simple genetic circuit can account for the bimodal activity of this hormone.
Collapse
Affiliation(s)
| | - Luca Cocconi
- The Francis Crick Institute, London NW1 1AT, UK.
| | | | | | - Guillaume Salbreux
- The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | | |
Collapse
|
10
|
Brennan KJ, Weilert M, Krueger S, Pampari A, Liu HY, Yang AWH, Morrison JA, Hughes TR, Rushlow CA, Kundaje A, Zeitlinger J. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev Cell 2023; 58:1898-1916.e9. [PMID: 37557175 PMCID: PMC10592203 DOI: 10.1016/j.devcel.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
Collapse
Affiliation(s)
- Kaelan J Brennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA
| | - Hsiao-Yun Liu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Ally W H Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA; Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
11
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
12
|
Sun Z, Fan J, Dang Y, Zhao Y. Enhancer in cancer pathogenesis and treatment. Genet Mol Biol 2023; 46:e20220313. [PMID: 37548349 PMCID: PMC10405138 DOI: 10.1590/1678-4685-gmb-2022-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Enhancers are essential cis-acting regulatory elements that determine cell identity and tumor progression. Enhancer function is dependent on the physical interaction between the enhancer and its target promoter inside its local chromatin environment. Enhancer reprogramming is an important mechanism in cancer pathogenesis and can be driven by both cis and trans factors. Super enhancers are acquired at oncogenes in numerous cancer types and represent potential targets for cancer treatment. BET and CDK inhibitors act through mechanisms of enhancer function and have shown promising results in therapy for various types of cancer. Genome editing is another way to reprogram enhancers in cancer treatment. The relationship between enhancers and cancer has been revised by several authors in the past few years, which mainly focuses on the mechanisms by which enhancers can impact cancer. Here, we emphasize SE's role in cancer pathogenesis and the new therapies involving epigenetic regulators (BETi and CDKi). We suggest that understanding mechanisms of activity would aid clinical success for these anti-cancer agents.
Collapse
Affiliation(s)
- Zhuo Sun
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| | - Jinbo Fan
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
| | - Yixiong Dang
- Xi’an Medical University, School of Public Health, Weiyang District, Xi’an, 710021 Shaanxi, China
| | - Yufeng Zhao
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| |
Collapse
|
13
|
Krasnov AN, Evdokimova AA, Mazina MY, Erokhin M, Chetverina D, Vorobyeva NE. Coregulators Reside within Drosophila Ecdysone-Inducible Loci before and after Ecdysone Treatment. Int J Mol Sci 2023; 24:11844. [PMID: 37511602 PMCID: PMC10380596 DOI: 10.3390/ijms241411844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
14
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Temporal control of neuronal wiring. Semin Cell Dev Biol 2023; 142:81-90. [PMID: 35644877 DOI: 10.1016/j.semcdb.2022.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022]
Abstract
Wiring an animal brain is a complex process involving a staggering number of cell-types born at different times and locations in the developing brain. Incorporation of these cells into precise circuits with high fidelity is critical for animal survival and behavior. Assembly of neuronal circuits is heavily dependent upon proper timing of wiring programs, requiring neurons to express specific sets of genes (sometimes transiently) at the right time in development. While cell-type specificity of genetic programs regulating wiring has been studied in detail, mechanisms regulating proper timing and coordination of these programs across cell-types are only just beginning to emerge. In this review, we discuss some temporal regulators of wiring programs and how their activity is controlled over time and space. A common feature emerges from these temporal regulators - they are induced by cell-extrinsic cues and control transcription factors capable of regulating a highly cell-type specific set of target genes. Target specificity in these contexts comes from cell-type specific transcription factors. We propose that the spatiotemporal specificity of wiring programs is controlled by the combinatorial activity of temporal programs and cell-type specific transcription factors. Going forward, a better understanding of temporal regulators will be key to understanding the mechanisms underlying brain wiring, and will be critical for the development of in vitro models like brain organoids.
Collapse
|
16
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
17
|
Kalluchi A, Harris HL, Reznicek TE, Rowley MJ. Considerations and caveats for analyzing chromatin compartments. Front Mol Biosci 2023; 10:1168562. [PMID: 37091873 PMCID: PMC10113542 DOI: 10.3389/fmolb.2023.1168562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Genomes are organized into nuclear compartments, separating active from inactive chromatin. Chromatin compartments are readily visible in a large number of species by experiments that map chromatin conformation genome-wide. When analyzing these maps, a common step is the identification of genomic intervals that interact within A (active) and B (inactive) compartments. It has also become increasingly common to identify and analyze subcompartments. We review different strategies to identify A/B and subcompartment intervals, including a discussion of various machine-learning approaches to predict these features. We then discuss the strengths and limitations of current strategies and examine how these aspects of analysis may have impacted our understanding of chromatin compartments.
Collapse
Affiliation(s)
| | | | | | - M. Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
18
|
Yang Q, Li MM, Li BL, Wu YT, Li YY, Xu XL, Wu JX. The ecdysis triggering hormone system is essential for reproductive success in Mythimna separata (Walker). INSECT MOLECULAR BIOLOGY 2023; 32:213-227. [PMID: 36533723 DOI: 10.1111/imb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Ecdysis triggering hormone (ETH) was originally discovered as a key hormone that regulates insect moulting via binding to its receptor, ETH receptor (ETHR). However, the precise role of ETH in moth reproduction remains to be explored in detail. ETH function was verified in vivo using Mythimna separata (Walker), an important cereal crop pest. RT-qPCR analysis revealed that transcriptional expression profiles of MsepETH showed evident sexual dimorphism in the adult stage. MsepETH expression increased in the females on day 3 and persisted thereafter till day 7, consistent with female ovarian maturation, and was merely detectable in males. Meanwhile, MsepETH expression levels were significantly higher in the trachea than in other tissues. MsepETHR-A and MsepETHR-B were expressed in both sexes and were significantly higher in the antennae than in other tissues. MsepETH and MsepETHR knockdown in females by RNA interference significantly reduced the expression of MsepETH, MsepETHR-A, MsepETHR-B, MsepJHAMT, and MsepVG, which delayed egg-laying and significantly reduced egg production. RNAi 20-hydroxyecdysone (20E) receptor (EcR) decreased MsepETH expression whereas injecting 20E restored egg production that had been disrupted by MsepETH interference. Meanwhile, RNAi juvenile hormone (JH) methoprene tolerant protein (Met) also decreased MsepETH expression and smearing JH analog methoprene (Meth) restored egg production. In conclusion, the reproduction roles of ETH, JH, and 20E were investigated in M. separata. These findings will lay the foundation for future research to develop an antagonist that reduces female reproduction and control strategies for pest insects.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Mei-Mei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bo-Liao Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, People's Republic of China
| | - Yu-Ting Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yan-Ying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiang-Li Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jun-Xiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
19
|
Das M, Hossain A, Banerjee D, Praul CA, Girirajan S. Challenges and considerations for reproducibility of STARR-seq assays. Genome Res 2023; 33:479-495. [PMID: 37130797 PMCID: PMC10234304 DOI: 10.1101/gr.277204.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
High-throughput methods such as RNA-seq, ChIP-seq, and ATAC-seq have well-established guidelines, commercial kits, and analysis pipelines that enable consistency and wider adoption for understanding genome function and regulation. STARR-seq, a popular assay for directly quantifying the activities of thousands of enhancer sequences simultaneously, has seen limited standardization across studies. The assay is long, with more than 250 steps, and frequent customization of the protocol and variations in bioinformatics methods raise concerns for reproducibility of STARR-seq studies. Here, we assess each step of the protocol and analysis pipelines from published sources and in-house assays, and identify critical steps and quality control (QC) checkpoints necessary for reproducibility of the assay. We also provide guidelines for experimental design, protocol scaling, customization, and analysis pipelines for better adoption of the assay. These resources will allow better optimization of STARR-seq for specific research needs, enable comparisons and integration across studies, and improve the reproducibility of results.
Collapse
Affiliation(s)
- Maitreya Das
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayaan Hossain
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Deepro Banerjee
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig Alan Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Mohammed Ismail W, Mazzone A, Ghiraldini FG, Kaur J, Bains M, Munankarmy A, Bagwell MS, Safgren SL, Moore-Weiss J, Buciuc M, Shimp L, Leach KA, Duarte LF, Nagi CS, Carcamo S, Chung CY, Hasson D, Dadgar N, Zhong J, Lee JH, Couch FJ, Revzin A, Ordog T, Bernstein E, Gaspar-Maia A. MacroH2A histone variants modulate enhancer activity to repress oncogenic programs and cellular reprogramming. Commun Biol 2023; 6:215. [PMID: 36823213 PMCID: PMC9950461 DOI: 10.1038/s42003-023-04571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Considerable efforts have been made to characterize active enhancer elements, which can be annotated by accessible chromatin and H3 lysine 27 acetylation (H3K27ac). However, apart from poised enhancers that are observed in early stages of development and putative silencers, the functional significance of cis-regulatory elements lacking H3K27ac is poorly understood. Here we show that macroH2A histone variants mark a subset of enhancers in normal and cancer cells, which we coined 'macro-Bound Enhancers', that modulate enhancer activity. We find macroH2A variants localized at enhancer elements that are devoid of H3K27ac in a cell type-specific manner, indicating a role for macroH2A at inactive enhancers to maintain cell identity. In following, reactivation of macro-bound enhancers is associated with oncogenic programs in breast cancer and their repressive role is correlated with the activity of macroH2A2 as a negative regulator of BRD4 chromatin occupancy. Finally, through single cell epigenomic profiling of normal mammary stem cells derived from mice, we show that macroH2A deficiency facilitates increased activity of transcription factors associated with stem cell activity.
Collapse
Affiliation(s)
- Wazim Mohammed Ismail
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jagneet Kaur
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Manvir Bains
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Amik Munankarmy
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Monique S Bagwell
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Stephanie L Safgren
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - John Moore-Weiss
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Marina Buciuc
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Lynzie Shimp
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Kelsey A Leach
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Luis F Duarte
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandandeep S Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chi-Yeh Chung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neda Dadgar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jian Zhong
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Fergus J Couch
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandre Gaspar-Maia
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Gallego Romero I, Lea AJ. Leveraging massively parallel reporter assays for evolutionary questions. Genome Biol 2023; 24:26. [PMID: 36788564 PMCID: PMC9926830 DOI: 10.1186/s13059-023-02856-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
A long-standing goal of evolutionary biology is to decode how gene regulation contributes to organismal diversity. Doing so is challenging because it is hard to predict function from non-coding sequence and to perform molecular research with non-model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands to millions of sequences for regulatory activity simultaneously. Here, we discuss the execution, advantages, and limitations of MPRAs, with a focus on evolutionary questions. We propose solutions for extending MPRAs to rare taxa and those with limited genomic resources, and we underscore MPRA's broad potential for driving genome-scale, functional studies across organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia. .,School of BioSciences, The University of Melbourne, Royal Parade, Parkville, 3010, Australia. .,The Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3010, Australia. .,Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Amanda J. Lea
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37240 USA ,Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| |
Collapse
|
22
|
Аpplication of massive parallel reporter analysis in biotechnology and medicine. КЛИНИЧЕСКАЯ ПРАКТИКА 2023. [DOI: 10.17816/clinpract115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development and functioning of an organism relies on tissue-specific gene programs. Genome regulatory elements play a key role in the regulation of such programs, and disruptions in their function can lead to the development of various pathologies, including cancers, malformations and autoimmune diseases. The emergence of high-throughput genomic studies has led to massively parallel reporter analysis (MPRA) methods, which allow the functional verification and identification of regulatory elements on a genome-wide scale. Initially MPRA was used as a tool to investigate fundamental aspects of epigenetics, but the approach also has great potential for clinical and practical biotechnology. Currently, MPRA is used for validation of clinically significant mutations, identification of tissue-specific regulatory elements, search for the most promising loci for transgene integration, and is an indispensable tool for creating highly efficient expression systems, the range of application of which extends from approaches for protein development and design of next-generation therapeutic antibody superproducers to gene therapy. In this review, the main principles and areas of practical application of high-throughput reporter assays will be discussed.
Collapse
|
23
|
Transcriptional Activation of Ecdysone-Responsive Genes Requires H3K27 Acetylation at Enhancers. Int J Mol Sci 2022; 23:ijms231810791. [PMID: 36142704 PMCID: PMC9502983 DOI: 10.3390/ijms231810791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The steroid hormone ecdysone regulates insect development via its nuclear receptor (the EcR protein), which functions as a ligand-dependent transcription factor. The EcR regulates target gene expression by binding to ecdysone response elements (EcREs) in their promoter or enhancer regions. Its role in epigenetic regulation and, particularly, in histone acetylation remains to be clarified. Here, we analyzed the dynamics of histone acetylation and demonstrated that the acetylation of histone H3 on lysine 27 (H3K27) at enhancers was required for the transcriptional activation of ecdysone-responsive genes. Western blotting and ChIP-qPCR revealed that ecdysone altered the acetylation of H3K27. For E75B and Hr4, ecdysone-responsive genes, enhancer activity, and transcription required the histone acetyltransferase activity of the CBP. EcR binding was critical in inducing enhancer activity and H3K27 acetylation. The CREB-binding protein (CBP) HAT domain catalyzed H3K27 acetylation and CBP coactivation with EcR, independent of the presence of ecdysone. Increased H3K27 acetylation promoted chromatin accessibility, with the EcR and CBP mediating a local chromatin opening in response to ecdysone. Hence, epigenetic mechanisms, including the modification of acetylation and chromatin accessibility, controlled ecdysone-dependent gene transcription.
Collapse
|
24
|
Bateman JR, Johnson JE. Altering enhancer-promoter linear distance impacts promoter competition in cis and in trans. Genetics 2022; 222:6617354. [PMID: 35748724 PMCID: PMC9434180 DOI: 10.1093/genetics/iyac098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila, pairing of maternal and paternal homologs can permit trans-interactions between enhancers on one homolog and promoters on another, an example of a phenomenon called transvection. When chromosomes are paired, promoters in cis and in trans to an enhancer can compete for the enhancer's activity, but the parameters that govern this competition are as yet poorly understood. To assess how the linear spacing between an enhancer and promoter can influence promoter competition in Drosophila, we employed transgenic constructs wherein the eye-specific enhancer GMR is placed at varying distances from a heterologous hsp70 promoter driving a fluorescent reporter. While GMR activates the reporter to a high degree when the enhancer and promoter are spaced by a few hundred base pairs, activation is strongly attenuated when the enhancer is moved 3 kilobases away. By examining transcription of endogenous genes near the point of transgene insertion, we show that linear spacing of 3 kb between GMR and the hsp70 promoter results in elevated transcription of neighboring promoters, suggesting a loss of specificity between the enhancer and its intended transgenic target promoter. Furthermore, increasing spacing between GMR and hsp70 by just 100 bp can enhance transvection, resulting in increased activation of a promoter on a paired homolog at the expense of a promoter in cis to the enhancer. Finally, cis-/trans-promoter competition assays in which one promoter carries mutations to key core promoter elements show that GMR will skew its activity toward a wild type promoter, suggesting that an enhancer is in a balanced competition between its potential target promoters in cis and in trans.
Collapse
Affiliation(s)
- Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | | |
Collapse
|
25
|
Essential functions of mosquito ecdysone importers in development and reproduction. Proc Natl Acad Sci U S A 2022; 119:e2202932119. [PMID: 35696563 PMCID: PMC9231622 DOI: 10.1073/pnas.2202932119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Steroid hormones control sexual maturation and reproduction in insects and humans alike. The insect steroid hormone ecdysone uses a membrane transporter named Ecdysone Importer (EcI) to enter cells and promote these physiological processes, but EcI is unexpectedly missing in mosquito genomes. Using the yellow fever mosquito Aedes aegypti, here we show that mosquitoes use alternative ecdysone importers to facilitate ecdysone-dependent development and reproduction. These transporters are also present in other insects, including fruit flies, but they are dispensable for fly development and reproduction likely due to their limited expression patterns. Our results thus indicate that differential expression of steroid hormone importers enables tissue- and stage-specific hormone responses, and some importers can obtain critical physiological functions only in certain species. The primary insect steroid hormone ecdysone requires a membrane transporter to enter its target cells. Although an organic anion-transporting polypeptide (OATP) named Ecdysone Importer (EcI) serves this role in the fruit fly Drosophila melanogaster and most likely in other arthropod species, this highly conserved transporter is apparently missing in mosquitoes. Here we report three additional OATPs that facilitate cellular incorporation of ecdysone in Drosophila and the yellow fever mosquito Aedes aegypti. These additional ecdysone importers (EcI-2, -3, and -4) are dispensable for development and reproduction in Drosophila, consistent with the predominant role of EcI. In contrast, in Aedes, EcI-2 is indispensable for ecdysone-mediated development, whereas EcI-4 is critical for vitellogenesis induced by ecdysone in adult females. Altogether, our results indicate unique and essential functions of these additional ecdysone importers in mosquito development and reproduction, making them attractive molecular targets for species- and stage-specific control of ecdysone signaling in mosquitoes.
Collapse
|
26
|
Spielmann M, Kircher M. Computational and experimental methods for classifying variants of unknown clinical significance. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006196. [PMID: 35483875 PMCID: PMC9059783 DOI: 10.1101/mcs.a006196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The increase in sequencing capacity, reduction in costs, and national and international coordinated efforts have led to the widespread introduction of next-generation sequencing (NGS) technologies in patient care. More generally, human genetics and genomic medicine are gaining importance for more and more patients. Some communities are already discussing the prospect of sequencing each individual's genome at time of birth. Together with digital health records, this shall enable individualized treatments and preventive measures, so-called precision medicine. A central step in this process is the identification of disease causal mutations or variant combinations that make us more susceptible for diseases. Although various technological advances have improved the identification of genetic alterations, the interpretation and ranking of the identified variants remains a major challenge. Based on our knowledge of molecular processes or previously identified disease variants, we can identify potentially functional genetic variants and, using different lines of evidence, we are sometimes able to demonstrate their pathogenicity directly. However, the vast majority of variants are classified as variants of uncertain clinical significance (VUSs) with not enough experimental evidence to determine their pathogenicity. In these cases, computational methods may be used to improve the prioritization and an increasing toolbox of experimental methods is emerging that can be used to assay the molecular effects of VUSs. Here, we discuss how computational and experimental methods can be used to create catalogs of variant effects for a variety of molecular and cellular phenotypes. We discuss the prospects of integrating large-scale functional data with machine learning and clinical knowledge for the development of accurate pathogenicity predictions for clinical applications.
Collapse
Affiliation(s)
- Malte Spielmann
- Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany;,Institute of Human Genetics, Christian-Albrechts-Universität, 24105 Kiel, Germany;,Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Martin Kircher
- Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany;,Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10115 Berlin, Germany
| |
Collapse
|
27
|
Pascual-Garcia P, Little SC, Capelson M. Nup98-dependent transcriptional memory is established independently of transcription. eLife 2022; 11:e63404. [PMID: 35289742 PMCID: PMC8923668 DOI: 10.7554/elife.63404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/26/2022] [Indexed: 12/31/2022] Open
Abstract
Cellular ability to mount an enhanced transcriptional response upon repeated exposure to external cues is termed transcriptional memory, which can be maintained epigenetically through cell divisions and can depend on a nuclear pore component Nup98. The majority of mechanistic knowledge on transcriptional memory has been derived from bulk molecular assays. To gain additional perspective on the mechanism and contribution of Nup98 to memory, we used single-molecule RNA FISH (smFISH) to examine the dynamics of transcription in Drosophila cells upon repeated exposure to the steroid hormone ecdysone. We combined smFISH with mathematical modeling and found that upon hormone exposure, cells rapidly activate a low-level transcriptional response, but simultaneously begin a slow transition into a specialized memory state characterized by a high rate of expression. Strikingly, our modeling predicted that this transition between non-memory and memory states is independent of the transcription stemming from initial activation. We confirmed this prediction experimentally by showing that inhibiting transcription during initial ecdysone exposure did not interfere with memory establishment. Together, our findings reveal that Nup98's role in transcriptional memory is to stabilize the forward rate of conversion from low to high expressing state, and that induced genes engage in two separate behaviors - transcription itself and the establishment of epigenetically propagated transcriptional memory.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shawn C Little
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maya Capelson
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
28
|
Direct and indirect gene repression by the ecdysone cascade during mosquito reproductive cycle. Proc Natl Acad Sci U S A 2022; 119:e2116787119. [PMID: 35254892 PMCID: PMC8931382 DOI: 10.1073/pnas.2116787119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hematophagous Aedes aegypti mosquitoes spread devastating viral diseases. Upon blood feeding, a steroid hormone, 20-hydroxyecdysone (20E), initiates a reproductive program during which thousands of genes are differentially expressed. While 20E-mediated gene activation is well known, repressive action by this hormone remains poorly understood. Using bioinformatics and molecular biological approaches, we have identified the mechanisms of 20E-dependent direct and indirect transcriptional repression by the ecdysone receptor (EcR). While indirect repression involves E74, EcR binds to an ecdysone response element different from those utilized in 20E-mediated gene activation to exert direct repressive action. Moreover, liganded EcR recruits a corepressor Mi2, initiating chromatin compaction. This study advances our understanding of the 20E-EcR repression mechanism and could lead to improved vector control approaches. Hematophagous mosquitoes transmit devastating human diseases. Reproduction of these mosquitoes is cyclical, with each egg maturation period supported by a blood meal. Previously, we have shown that in the female mosquito Aedes aegypti, nearly half of all genes are differentially expressed during the postblood meal reproductive period in the fat body, an insect analog of mammalian liver and adipose tissue. This work aims to decipher how transcription networks govern these genes. Bioinformatics tools found 89 putative transcription factor binding sites (TFBSs) on the cis-regulatory regions of more than 1,400 differentially expressed genes. Putative transcription factors that may bind to these TFBSs were identified and used for the construction of temporally coordinated regulatory networks. Further molecular biology analyses have uncovered mechanisms of direct and indirect negative transcriptional regulation by the steroid hormone 20-hydroxyecdysone (20E) through the ecdysone receptor (EcR). Genes within the two groups, early genes and late mid-genes, have distinctly different expression profiles. However, both groups of genes show lower expression at the high titers of 20E and are down-regulated by the 20E/EcR cascade by different molecular mechanisms. Transcriptional repression of early genes is indirect and involves the classic 20E pathway with ecdysone-induced protein E74 functioning as a repressor. Late mid-genes are repressed directly by EcR that recognizes and binds a previously unreported DNA element, different from those utilized in the 20E-mediated gene activation, within the regulatory regions of its target genes and recruits Mi2 that acts as a corepressor, initiating chromatin condensation.
Collapse
|
29
|
Galouzis CC, Furlong EEM. Regulating specificity in enhancer-promoter communication. Curr Opin Cell Biol 2022; 75:102065. [PMID: 35240372 DOI: 10.1016/j.ceb.2022.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Enhancers are cis-regulatory elements that can activate transcription remotely to regulate a specific pattern of a gene's expression. Genes typically have many enhancers that are often intermingled in the loci of other genes. To regulate expression, enhancers must therefore activate their correct promoter while ignoring others that may be in closer linear proximity. In this review, we discuss mechanisms by which enhancers engage with promoters, including recent findings on the role of cohesin and the Mediator complex, and how this specificity in enhancer-promoter communication is encoded. Genetic dissection of model loci, in addition to more recent findings using genome-wide approaches, highlight the core promoter sequence, its accessibility, cofactor-promoter preference, in addition to the surrounding genomic context, as key components.
Collapse
Affiliation(s)
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
30
|
A global timing mechanism regulates cell-type-specific wiring programmes. Nature 2022; 603:112-118. [PMID: 35197627 DOI: 10.1038/s41586-022-04418-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/10/2022] [Indexed: 01/04/2023]
Abstract
The assembly of neural circuits is dependent on precise spatiotemporal expression of cell recognition molecules1-5. Factors controlling cell type specificity have been identified6-8, but how timing is determined remains unknown. Here we describe induction of a cascade of transcription factors by a steroid hormone (ecdysone) in all fly visual system neurons spanning target recognition and synaptogenesis. We demonstrate through single-cell sequencing that the ecdysone pathway regulates the expression of a common set of targets required for synaptic maturation and cell-type-specific targets enriched for cell-surface proteins regulating wiring specificity. Transcription factors in the cascade regulate the expression of the same wiring genes in complex ways, including activation in one cell type and repression in another. We show that disruption of the ecdysone pathway generates specific defects in dendritic and axonal processes and synaptic connectivity, with the order of transcription factor expression correlating with sequential steps in wiring. We also identify shared targets of a cell-type-specific transcription factor and the ecdysone pathway that regulate specificity. We propose that neurons integrate a global temporal transcriptional module with cell-type-specific transcription factors to generate different cell-type-specific patterns of cell recognition molecules regulating wiring.
Collapse
|
31
|
Glaser LV, Steiger M, Fuchs A, van Bömmel A, Einfeldt E, Chung HR, Vingron M, Meijsing SH. Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq. Nucleic Acids Res 2021; 49:12178-12195. [PMID: 34850108 PMCID: PMC8643627 DOI: 10.1093/nar/gkab1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells (ESCs) can differentiate into any given cell type and therefore represent a versatile model to study the link between gene regulation and differentiation. To quantitatively assess the dynamics of enhancer activity during the early stages of murine ESC differentiation, we analyzed accessible genomic regions using STARR-seq, a massively parallel reporter assay. This resulted in a genome-wide quantitative map of active mESC enhancers, in pluripotency and during the early stages of differentiation. We find that only a minority of accessible regions is active and that such regions are enriched near promoters, characterized by specific chromatin marks, enriched for distinct sequence motifs, and modeling shows that active regions can be predicted from sequence alone. Regions that change their activity upon retinoic acid-induced differentiation are more prevalent at distal intergenic regions when compared to constitutively active enhancers. Further, analysis of differentially active enhancers verified the contribution of individual TF motifs toward activity and inducibility as well as their role in regulating endogenous genes. Notably, the activity of retinoic acid receptor alpha (RARα) occupied regions can either increase or decrease upon the addition of its ligand, retinoic acid, with the direction of the change correlating with spacing and orientation of the RARα consensus motif and the co-occurrence of additional sequence motifs. Together, our genome-wide enhancer activity map elucidates features associated with enhancer activity levels, identifies regulatory regions disregarded by computational prediction tools, and provides a resource for future studies into regulatory elements in mESCs.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Mara Steiger
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alisa Fuchs
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Alena van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Edda Einfeldt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ho-Ryun Chung
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| |
Collapse
|
32
|
Dib A, Zanet J, Mancheno-Ferris A, Gallois M, Markus D, Valenti P, Marques-Prieto S, Plaza S, Kageyama Y, Chanut-Delalande H, Payre F. Pri smORF Peptides Are Wide Mediators of Ecdysone Signaling, Contributing to Shape Spatiotemporal Responses. Front Genet 2021; 12:714152. [PMID: 34527021 DOI: 10.3389/fgene.2021.714152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that peptides encoded by small open-reading frames (sORF or smORF) can fulfill various cellular functions and define a novel class regulatory molecules. To which extend transcripts encoding only smORF peptides compare with canonical protein-coding genes, yet remain poorly understood. In particular, little is known on whether and how smORF-encoding RNAs might need tightly regulated expression within a given tissue, at a given time during development. We addressed these questions through the analysis of Drosophila polished rice (pri, a.k.a. tarsal less or mille pattes), which encodes four smORF peptides (11-32 amino acids in length) required at several stages of development. Previous work has shown that the expression of pri during epidermal development is regulated in the response to ecdysone, the major steroid hormone in insects. Here, we show that pri transcription is strongly upregulated by ecdysone across a large panel of cell types, suggesting that pri is a core component of ecdysone response. Although pri is produced as an intron-less short transcript (1.5 kb), genetic assays reveal that the developmental functions of pri require an unexpectedly large array of enhancers (spanning over 50 kb), driving a variety of spatiotemporal patterns of pri expression across developing tissues. Furthermore, we found that separate pri enhancers are directly activated by the ecdysone nuclear receptor (EcR) and display distinct regulatory modes between developmental tissues and/or stages. Alike major developmental genes, the expression of pri in a given tissue often involves several enhancers driving apparently redundant (or shadow) expression, while individual pri enhancers can harbor pleiotropic functions across tissues. Taken together, these data reveal the broad role of Pri smORF peptides in ecdysone signaling and show that the cis-regulatory architecture of the pri gene contributes to shape distinct spatial and temporal patterns of ecdysone response throughout development.
Collapse
Affiliation(s)
- Azza Dib
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Jennifer Zanet
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Alexandra Mancheno-Ferris
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Maylis Gallois
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Damien Markus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Philippe Valenti
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Simon Marques-Prieto
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Serge Plaza
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Yuji Kageyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.,Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hélène Chanut-Delalande
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - François Payre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| |
Collapse
|
33
|
Yoo B, Kim HY, Chen X, Shen W, Jang JS, Stein SN, Cormier O, Pereira L, Shih CRY, Krieger C, Reed B, Harden N, Wang SJH. 20-hydroxyecdysone (20E) signaling regulates amnioserosa morphogenesis during Drosophila dorsal closure: EcR modulates gene expression in a complex with the AP-1 subunit, Jun. Biol Open 2021; 10:271855. [PMID: 34296248 PMCID: PMC8411571 DOI: 10.1242/bio.058605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Steroid hormones influence diverse biological processes throughout the animal life cycle, including metabolism, stress resistance, reproduction, and lifespan. In insects, the steroid hormone, 20-hydroxyecdysone (20E), is the central hormone regulator of molting and metamorphosis, and plays roles in tissue morphogenesis. For example, amnioserosa contraction, which is a major driving force in Drosophila dorsal closure (DC), is defective in embryos mutant for 20E biosynthesis. Here, we show that 20E signaling modulates the transcription of several DC participants in the amnioserosa and other dorsal tissues during late embryonic development, including zipper, which encodes for non-muscle myosin. Canonical ecdysone signaling typically involves the binding of Ecdysone receptor (EcR) and Ultraspiracle heterodimers to ecdysone-response elements (EcREs) within the promoters of responsive genes to drive expression. During DC, however, we provide evidence that 20E signaling instead acts in parallel to the JNK cascade via a direct interaction between EcR and the AP-1 transcription factor subunit, Jun, which together binds to genomic regions containing AP-1 binding sites but no EcREs to control gene expression. Our work demonstrates a novel mode of action for 20E signaling in Drosophila that likely functions beyond DC, and may provide further insights into mammalian steroid hormone receptor interactions with AP-1. Summary: During Drosophila dorsal closure, 20E signaling acts non-canonically through an interaction between EcR and the AP-1 subunit, Jun, to control gene expression at regions containing AP-1 motifs but no EcREs.
Collapse
Affiliation(s)
- Byoungjoo Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hae-Yoon Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Xi Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Weiping Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ji Sun Jang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Shaianne N Stein
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Olga Cormier
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lionel Pereira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Claire R Y Shih
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Bruce Reed
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Simon J H Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
34
|
Yamamoto Y, Gustafson EA, Foulk MS, Smith HS, Gerbi SA. Anatomy and evolution of a DNA replication origin. Chromosoma 2021; 130:199-214. [PMID: 34254172 DOI: 10.1007/s00412-021-00756-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/09/2021] [Accepted: 03/09/2021] [Indexed: 10/20/2022]
Abstract
DNA amplification occurs at the DNA puff II/9A locus in the fungus fly Sciara coprophila. As a foundation to study the molecular mechanism for the initiating events of II/9A DNA re-replication, we have sequenced 14 kb spanning a DNase hypersensitive site (DHS) upstream of the 1 kb amplification origin and through transcription units II/9-1 and II/9-2 downstream of the origin. These elements are annotated as well as the ORC binding site at the origin and the transition point (TP) between continuous and discontinuous DNA syntheses that marks the origin of bidirectional replication at the nucleotide level. A 9 bp motif found at the TP is repeated near the other end of the 1 kb ORI and may identify a putative second TP. The steroid hormone ecdysone induces DNA amplification as well as transcription and puffing at locus II/9A. Within the 14 kb, several matches to the ecdysone response element (EcRE) consensus sequence were identified, including some in the amplification origin region. EcRE O-P is at a central axis of a remarkable symmetry, equidistant to the TPs that are themselves equidistant to EcRE O-1 and EcRE O-2. DNA sequence alterations have occurred throughout the II/9A region in a newly discovered polymorphism (#2). Polymorphism #2 is not specific to developmental stage, sex, or tissue, and it does not impair DNA amplification. The DHS, both 9 bp TP sequences, and EcREs O-1, O-P, and O-2 are conserved between the polymorphism #1 and #2 sequences, suggesting their functional importance and retention during evolutionary selection. Moreover, a 72 bp sequence in the Sciara DHS at DNA puff II/9A is conserved in DNA puff C-3 of Rhynchosciara americana. Comparisons are discussed between the Sciara II/9A amplicon and the chorion locus amplicon on the third chromosome of Drosophila.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA
| | - Eric A Gustafson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.,Zipher Medical Affairs Co., 380 Wareham Street, Marion, MA, 02738, USA
| | - Michael S Foulk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.,Department of Biology, Mercyhurst University, 501 East 38th Street, Erie, PA, 16546, USA
| | - Heidi S Smith
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.
| |
Collapse
|
35
|
van der Burg KR, Reed RD. Seasonal plasticity: how do butterfly wing pattern traits evolve environmental responsiveness? Curr Opin Genet Dev 2021; 69:82-87. [PMID: 33740694 DOI: 10.1016/j.gde.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023]
Abstract
Phenotypic plasticity in response to environmental cues is common in butterflies, and is a major driver of butterfly wing pattern diversity. The endocrine signal ecdysone has been revealed as a major modulator of plasticity in butterflies. External cues such as day length or temperature are translated internally into variation in ecdysone titers, which in turn lead to alternate phenotypes such as seasonal wing patterns. Here we review the evidence showing that ecdysone-mediated plasticity of different wing pattern features such as wing color and eyespot size can evolve independently. Recent studies show that ecdysone regulates gene expression in Drosophila melanogaster via a chromatin remodeling mechanism. We thus propose that environmentally responsive ecdysone titers in butterflies may also function via chromatin regulation to promote different seasonal phenotypes. We present a model of ecdysone response evolution that integrates both gene regulatory architecture and organismal development, and propose a set of testable mechanistic hypotheses for how plastic response profiles of specific genes can evolve.
Collapse
Affiliation(s)
- Karin Rl van der Burg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
36
|
Ruiz JL, Ranford-Cartwright LC, Gómez-Díaz E. The regulatory genome of the malaria vector Anopheles gambiae: integrating chromatin accessibility and gene expression. NAR Genom Bioinform 2021; 3:lqaa113. [PMID: 33987532 PMCID: PMC8092447 DOI: 10.1093/nargab/lqaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| | - Lisa C Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
37
|
Mazina MY, Kovalenko EV, Vorobyeva NE. The negative elongation factor NELF promotes induced transcriptional response of Drosophila ecdysone-dependent genes. Sci Rep 2021; 11:172. [PMID: 33420323 PMCID: PMC7794308 DOI: 10.1038/s41598-020-80650-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
For many years it was believed that promoter-proximal RNA-polymerase II (Pol II) pausing manages the transcription of genes in Drosophila development by controlling spatiotemporal properties of their activation and repression. But the exact proteins that cooperate to stall Pol II in promoter-proximal regions of developmental genes are still largely unknown. The current work describes the molecular mechanism employed by the Negative ELongation Factor (NELF) to control the Pol II pause at genes whose transcription is induced by 20-hydroxyecdysone (20E). According to our data, the NELF complex is recruited to the promoters and enhancers of 20E-dependent genes. Its presence at the regulatory sites of 20E-dependent genes correlates with observed interaction between the NELF-A subunit and the ecdysone receptor (EcR). The complete NELF complex is formed at the 20E-dependent promoters and participates in both their induced transcriptional response and maintenance of the uninduced state to keep them ready for the forthcoming transcription. NELF depletion causes a significant decrease in transcription induced by 20E, which is associated with the disruption of Pol II elongation complexes. A considerable reduction in the promoter-bound level of the Spt5 subunit of transcription elongation factor DSIF was observed at the 20E-dependent genes upon NELF depletion. We presume that an important function of NELF is to participate in stabilizing the Pol II-DSIF complex, resulting in a significant impact on transcription of its target genes. In order to directly link NELF to regulation of 20E-dependent genes in development, we show the presence of NELF at the promoters of 20E-dependent genes during their active transcription in both embryogenesis and metamorphosis. We also demonstrate that 20E-dependent promoters, while temporarily inactive at the larval stage, preserve a Pol II paused state and bind NELF complex.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
38
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
39
|
Ecdysone-Induced 3D Chromatin Reorganization Involves Active Enhancers Bound by Pipsqueak and Polycomb. Cell Rep 2020; 28:2715-2727.e5. [PMID: 31484080 PMCID: PMC6754745 DOI: 10.1016/j.celrep.2019.07.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence suggests that Polycomb (Pc) is present at chromatin loop anchors in Drosophila. Pc is recruited to DNA through interactions with the GAGA binding factors GAF and Pipsqueak (Psq). Using HiChIP in Drosophila cells, we find that the psq gene, which has diverse roles in development and tumorigenesis, encodes distinct isoforms with unanticipated roles in genome 3D architecture. The BR-C, ttk, and bab domain (BTB)-containing Psq isoform (PsqL) colocalizes genome-wide with known architectural proteins. Conversely, Psq lacking the BTB domain (PsqS) is consistently found at Pc loop anchors and at active enhancers, including those that respond to the hormone ecdysone. After stimulation by this hormone, chromatin 3D organization is altered to connect promoters and ecdysone-responsive enhancers bound by PsqS. Our findings link Psq variants lacking the BTB domain to Pc-bound active enhancers, thus shedding light into their molecular function in chromatin changes underlying the response to hormone stimulus.
Collapse
|
40
|
Abstract
Key discoveries in Drosophila have shaped our understanding of cellular "enhancers." With a special focus on the fly, this chapter surveys properties of these adaptable cis-regulatory elements, whose actions are critical for the complex spatial/temporal transcriptional regulation of gene expression in metazoa. The powerful combination of genetics, molecular biology, and genomics available in Drosophila has provided an arena in which the developmental role of enhancers can be explored. Enhancers are characterized by diverse low- or high-throughput assays, which are challenging to interpret, as not all of these methods of identifying enhancers produce concordant results. As a model metazoan, the fly offers important advantages to comprehensive analysis of the central functions that enhancers play in gene expression, and their critical role in mediating the production of phenotypes from genotype and environmental inputs. A major challenge moving forward will be obtaining a quantitative understanding of how these cis-regulatory elements operate in development and disease.
Collapse
Affiliation(s)
- Stephen Small
- Department of Biology, Developmental Systems Training Program, New York University, 10003 and
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
41
|
Zraly CB, Zakkar A, Perez JH, Ng J, White KP, Slattery M, Dingwall AK. The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Res 2020; 48:3476-3495. [PMID: 32052053 PMCID: PMC7144903 DOI: 10.1093/nar/gkaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers depending on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.
Collapse
Affiliation(s)
- Claudia B Zraly
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abdul Zakkar
- Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - John Hertenstein Perez
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jeffrey Ng
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Andrew K Dingwall
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
42
|
van der Burg KRL, Lewis JJ, Martin A, Nijhout HF, Danko CG, Reed RD. Contrasting Roles of Transcription Factors Spineless and EcR in the Highly Dynamic Chromatin Landscape of Butterfly Wing Metamorphosis. Cell Rep 2020; 27:1027-1038.e3. [PMID: 31018121 DOI: 10.1016/j.celrep.2019.03.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/25/2019] [Indexed: 01/24/2023] Open
Abstract
Development requires highly coordinated changes in chromatin accessibility in order for proper gene regulation to occur. Here, we identify factors associated with major, discrete changes in chromatin accessibility during butterfly wing metamorphosis. By combining mRNA sequencing (mRNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and machine learning analysis of motifs, we show that distinct sets of transcription factors are predictive of chromatin opening at different developmental stages. Our data suggest an important role for nuclear hormone receptors early in metamorphosis, whereas PAS-domain transcription factors are strongly associated with later chromatin opening. Chromatin immunoprecipitation sequencing (ChIP-seq) validation of select candidate factors showed spineless binding to be a major predictor of opening chromatin. Surprisingly, binding of ecdysone receptor (EcR), a candidate accessibility factor in Drosophila, was not predictive of opening but instead marked persistent sites. This work characterizes the chromatin dynamics of insect wing metamorphosis, identifies candidate chromatin remodeling factors in insects, and presents a genome assembly of the model butterfly Junonia coenia.
Collapse
Affiliation(s)
- Karin R L van der Burg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Shokri L, Inukai S, Hafner A, Weinand K, Hens K, Vedenko A, Gisselbrecht SS, Dainese R, Bischof J, Furger E, Feuz JD, Basler K, Deplancke B, Bulyk ML. A Comprehensive Drosophila melanogaster Transcription Factor Interactome. Cell Rep 2020; 27:955-970.e7. [PMID: 30995488 PMCID: PMC6485956 DOI: 10.1016/j.celrep.2019.03.071] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Combinatorial interactions among transcription factors (TFs) play essential roles in generating gene expression specificity and diversity in metazoans. Using yeast 2-hybrid (Y2H) assays on nearly all sequence-specific Drosophila TFs, we identified 1,983 protein-protein interactions (PPIs), more than doubling the number of currently known PPIs among Drosophila TFs. For quality assessment, we validated a subset of our interactions using MITOMI and bimolecular fluorescence complementation assays. We combined our interactome with prior PPI data to generate an integrated Drosophila TF-TF binary interaction network. Our analysis of ChIP-seq data, integrating PPI and gene expression information, uncovered different modes by which interacting TFs are recruited to DNA. We further demonstrate the utility of our Drosophila interactome in shedding light on human TF-TF interactions. This study reveals how TFs interact to bind regulatory elements in vivo and serves as a resource of Drosophila TF-TF binary PPIs for understanding tissue-specific gene regulation. Combinatorial regulation by transcription factors (TFs) is one mechanism for achieving condition and tissue-specific gene regulation. Shokri et al. mapped TF-TF interactions between most Drosophila TFs, reporting a comprehensive TF-TF network integrated with previously known interactions. They used this network to discern distinct TF-DNA binding modes.
Collapse
Affiliation(s)
- Leila Shokri
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sachi Inukai
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Antonina Hafner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Systems Biology Graduate Program, Harvard University, Cambridge, MA 02138, USA; Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Kathryn Weinand
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Bioinformatics and Integrative Genomics Ph.D. Program, Harvard University, Cambridge, MA 02138, USA
| | - Korneel Hens
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Anastasia Vedenko
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen S Gisselbrecht
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Riccardo Dainese
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Johannes Bischof
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Edy Furger
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Jean-Daniel Feuz
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Martha L Bulyk
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Systems Biology Graduate Program, Harvard University, Cambridge, MA 02138, USA; Bioinformatics and Integrative Genomics Ph.D. Program, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Neumayr C, Pagani M, Stark A, Arnold CD. STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries. ACTA ACUST UNITED AC 2020; 128:e105. [PMID: 31503413 PMCID: PMC9286403 DOI: 10.1002/cpmb.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of transcriptional enhancers and the quantitative assessment of enhancer activities is essential to understanding how regulatory information for gene expression is encoded in animal and human genomes. Further, it is key to understanding how sequence variants affect enhancer function. STARR‐seq enables the direct and quantitative assessment of enhancer activity for millions of candidate sequences of arbitrary length and origin in parallel, allowing the screening of entire genomes and the establishment of genome‐wide enhancer activity maps. In STARR‐seq, the candidate sequences are cloned downstream of the core promoter into a reporter gene's transcription unit (i.e., the 3′ UTR). Candidates that function as active enhancers lead to the transcription of reporter mRNAs that harbor the candidates’ sequences. This direct coupling of enhancer sequence and enhancer activity in cis enables the straightforward and efficient cloning of complex candidate libraries and the assessment of enhancer activities of millions of candidates in parallel by quantifying the reporter mRNAs by deep sequencing. This article describes how to create focused and genome‐wide human STARR‐seq libraries and how to perform STARR‐seq screens in mammalian cells, and also describes a novel STARR‐seq variant (UMI‐STARR‐seq) that allows the accurate counting of reporter mRNAs for STARR‐seq libraries of low complexity. © 2019 The Authors. Basic Protocol 1: STARR‐seq plasmid library cloning Basic Protocol 2: Mammalian STARR‐seq screening protocol Alternate Protocol: UMI‐STARR‐seq screening protocol—unique molecular identifier integration Support Protocol: Transfection of human cells using the MaxCyte STX scalable transfection system
Collapse
Affiliation(s)
- Christoph Neumayr
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Cosmas D Arnold
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
45
|
Proximity-dependent biotin labelling reveals CP190 as an EcR/Usp molecular partner. Sci Rep 2020; 10:4793. [PMID: 32179799 PMCID: PMC7075897 DOI: 10.1038/s41598-020-61514-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/23/2022] Open
Abstract
Proximity-dependent biotin labelling revealed undescribed participants of the ecdysone response in Drosophila. Two labelling enzymes (BioID2 and APEX2) were fused to EcR or Usp to biotin label the surrounding proteins. The EcR/Usp heterodimer was found to collaborate with nuclear pore subunits, chromatin remodelers, and architectural proteins. Many proteins identified through proximity-dependent labelling with EcR/Usp were described previously as functional components of an ecdysone response, corroborating the potency of this labelling method. A link to ecdysone response was confirmed for some newly discovered regulators by immunoprecipitation of prepupal nuclear extract with anti-EcR antibodies and functional experiments in Drosophila S2 cells. A more in-depth study was conducted to clarify the association of EcR/Usp with one of the detected proteins, CP190, a well-described cofactor of Drosophila insulators. CP190 was found to co-immunoprecipitate with the EcR subunit of EcR/Usp in a 20E-independent manner. ChIP-Seq experiments revealed only partial overlapping between CP190 and EcR bound sites in the Drosophila genome and complete absence of CP190 binding at 20E-dependent enhancers. Analysis of Hi-C data demonstrated an existence of remote interactions between 20E-dependent enhancers and CP190 sites which suggests formation of a protein complex between EcR/Usp and CP190 through the space. Our results support the previous concept that CP190 has a role in stabilization of specific chromatin loops for proper activation of transcription of genes regulated by 20E hormone.
Collapse
|
46
|
Bozek M, Gompel N. Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity. Bioessays 2020; 42:e1900188. [PMID: 32142172 DOI: 10.1002/bies.201900188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Measurements of open chromatin in specific cell types are widely used to infer the spatiotemporal activity of transcriptional enhancers. How reliable are these predictions? In this review, it is argued that the relationship between the accessibility and activity of an enhancer is insufficiently described by simply considering open versus closed chromatin, or active versus inactive enhancers. Instead, recent studies focusing on the quantitative nature of accessibility signal reveal subtle differences between active enhancers and their different inactive counterparts: the closed silenced state and the accessible primed and repressed states. While the open structure as such is not a specific indicator of enhancer activity, active enhancers display a higher degree of accessibility than the primed and repressed states. Molecular mechanisms that may account for these quantitative differences are discussed. A model that relates molecular events at an enhancer to changes in its activity and accessibility in a developing tissue is also proposed.
Collapse
Affiliation(s)
- Marta Bozek
- Department Biochemie, Ludwig-Maximilians Universität München, Genzentrum, 81377, München, Germany
| | - Nicolas Gompel
- Fakultät für Biologie, Ludwig-Maximilians Universität München, Biozentrum, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
47
|
McDonald SI, Beachum AN, Hinnant TD, Blake AJ, Bynum T, Hickman EP, Barnes J, Churchill KL, Roberts TS, Zangwill DE, Ables ET. Novel cis-regulatory regions in ecdysone responsive genes are sufficient to promote gene expression in Drosophila ovarian cells. Gene Expr Patterns 2019; 34:119074. [PMID: 31563631 PMCID: PMC6996244 DOI: 10.1016/j.gep.2019.119074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/18/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The insect steroid hormone ecdysone is a key regulator of oogenesis in Drosophila melanogaster and many other species. Despite the diversity of cellular functions of ecdysone in oogenesis, the molecular regulation of most ecdysone-responsive genes in ovarian cells remains largely unexplored. We performed a functional screen using the UAS/Gal4 system to identify non-coding cis-regulatory elements within well-characterized ecdysone-response genes capable of driving transcription of an indelible reporter in ovarian cells. Using two publicly available transgenic collections (the FlyLight and Vienna Tiles resources), we tested 62 Gal4 drivers corresponding to ecdysone-response genes EcR, usp, E75, br, ftz-f1 and Hr3. We observed 31 lines that were sufficient to drive a UAS-lacZ reporter in discrete cell populations in the ovary. Reporter expression was reproducibly observed in both somatic and germ cells at distinct stages of oogenesis, including those previously characterized as critical points of ecdysone regulation. Our studies identified several useful new reagents, adding to the UAS/Gal4 toolkit available for genetic analysis of oogenesis in Drosophila. Further, our study provides novel insight into the molecular regulation of ecdysone signaling in oogenesis.
Collapse
Affiliation(s)
| | - Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Amelia J Blake
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Tierra Bynum
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - E Parris Hickman
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Joseph Barnes
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Kaely L Churchill
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Tamesia S Roberts
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Denise E Zangwill
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
48
|
Sampathi S, Acharya P, Zhao Y, Wang J, Stengel KR, Liu Q, Savona MR, Hiebert SW. The CDK7 inhibitor THZ1 alters RNA polymerase dynamics at the 5' and 3' ends of genes. Nucleic Acids Res 2019; 47:3921-3936. [PMID: 30805632 PMCID: PMC6486546 DOI: 10.1093/nar/gkz127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
The t(8;21) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). We found that t(8;21) AML were extremely sensitive to THZ1, which triggered apoptosis after only 4 h. We used precision nuclear run-on transcription sequencing (PROseq) to define the global effects of THZ1 and other CDK inhibitors on RNA polymerase II dynamics. Inhibition of CDK7 using THZ1 caused wide-spread loss of promoter-proximal paused RNA polymerase. This loss of 5′ pausing was associated with accumulation of polymerases in the body of a large number of genes. However, there were modest effects on genes regulated by ‘super-enhancers’. At the 3′ ends of genes, treatment with THZ1 suppressed RNA polymerase ‘read through’ at the end of the last exon, which resembled a phenotype associated with a mutant RNA polymerase with slower elongation rates. Consistent with this hypothesis, polyA site-sequencing (PolyA-seq) did not detect differences in poly A sites after THZ1 treatment. PROseq analysis after short treatments with THZ1 suggested that these 3′ effects were due to altered CDK7 activity at the 5′ end of long genes, and were likely to be due to slower rates of elongation.
Collapse
Affiliation(s)
- Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027
| |
Collapse
|
49
|
Kovalenko EV, Mazina MY, Krasnov AN, Vorobyeva NE. The Drosophila nuclear receptors EcR and ERR jointly regulate the expression of genes involved in carbohydrate metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103184. [PMID: 31295549 DOI: 10.1016/j.ibmb.2019.103184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
The rate of carbohydrate metabolism is tightly coordinated with developmental transitions in Drosophila, and fluctuates depending on the requirements of a particular developmental stage. These successive metabolic switches result from changes in the expression levels of genes encoding glycolytic, tricarboxylic acid cycle (TCA), and oxidative phosphorylation enzymes. In this report, we describe a repressive action of ecdysone signaling on the expression of glycolytic genes and enzymes of glycogen metabolism in Drosophila development. The basis of this effect is an interaction between the ecdysone receptor (EcR) and the estrogen-related receptor (ERR), a specific regulator of the Drosophila glycolysis. We found an overlapping DNA-binding pattern for the EcR and ERR in the Drosophila S2 cells. EcR was detected at a subset of the ERR target genes responsible for carbohydrate metabolism. The 20-hydroxyecdysone treatment of both the Drosophila larvae and the S2 cells decreased transcriptional levels of ERR targets. We propose a joint action mode for both the EcR and ERR, for at least a subset of the glycolytic genes. We find that both receptors bind to the same regulatory regions and may form or be part of a joint transcriptional regulatory complex in the Drosophila S2 cells.
Collapse
Affiliation(s)
- Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
50
|
Mazina MY, Krasnov AN, Georgiev PG, Vorobyeva NE. The Development of Reporter System for the Investigation of Molecular Mechanisms of Ecdysone Response. DOKL BIOCHEM BIOPHYS 2019; 485:138-140. [PMID: 31201635 DOI: 10.1134/s1607672919020170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 11/23/2022]
Abstract
To study the mechanisms of transcriptional regulation, a convenient experimental approach is to use the artificial chimeric constructs carrying the regulatory elements of interest. In the present work, we describe the creation and characterization of a novel genetic construct that makes it possible to study the transcriptional regulation of the early-late gene of the ecdysone cascade. Using the data of genome-wide experiments, we have isolated the main regulatory region of the hr4 gene, which was successfully used to create a chimeric reporter construct expressing a fluorescent protein upon the treatment with the ecdysone hormone. This reporter system can be used to study the mechanisms of the ecdysone response, both in cell culture and in tissues, at various stages of the Drosophila development.
Collapse
Affiliation(s)
- M Yu Mazina
- Institute of Gene Biology Russian Academy of Sciences, 119334, Moscow, Russia
| | - A N Krasnov
- Institute of Gene Biology Russian Academy of Sciences, 119334, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology Russian Academy of Sciences, 119334, Moscow, Russia
| | - N E Vorobyeva
- Institute of Gene Biology Russian Academy of Sciences, 119334, Moscow, Russia.
| |
Collapse
|