1
|
Timsit Y, Sergeant-Perthuis G, Bennequin D. The role of ribosomal protein networks in ribosome dynamics. Nucleic Acids Res 2025; 53:gkae1308. [PMID: 39788545 PMCID: PMC11711686 DOI: 10.1093/nar/gkae1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics. Our findings show that major motion centers in the bacterial ribosome interact specifically with r-proteins, and that ribosomal RNA exhibits high mobility around each r-protein. This suggests that periodic electrostatic changes in the context of negatively charged residues (Glu and Asp) induce RNA-protein 'distance-approach' cycles, controlling key ribosomal movements during translocation. These charged residues play a critical role in modulating electrostatic repulsion between RNA and proteins, thus coordinating ribosomal dynamics. We propose that r-protein networks synchronize ribosomal dynamics through an 'electrostatic domino' effect, extending the concept of allostery to the regulation of movements within supramolecular assemblies.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 163 avenue de Luminy 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| | - Grégoire Sergeant-Perthuis
- Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Daniel Bennequin
- Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France
| |
Collapse
|
2
|
Thaler J, Mitteregger C, Flemmich L, Micura R. A Universal Support for the Solid-Phase Synthesis of Peptidyl-tRNA Mimics. Chembiochem 2025; 26:e202400717. [PMID: 39466664 DOI: 10.1002/cbic.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are often required for structural and functional studies of protein synthesis at the ribosome. These conjugates can be synthesized by solid-phase chemical synthesis, which allows maximum flexibility in both the peptide and RNA sequence. The commonly used strategy is based on (3'-N-aminoacyl)-3'-amino-3'-deoxyadenosine solid supports, which already contain the first C-terminal amino acid of the target peptidyl chain. This is a limitation in the sense that different individual supports must be synthesized for different C-terminal amino acids. In this study, we demonstrate a solution to this problem by introducing a novel universal support. The key is a free ribose 3'-NH2 group that can be coupled to any amino acid. This is made possible by a photocleavable ether moiety that links the ribose 2'-O to the support, thus avoiding the typical O-to-N migration that occurs when using 2'-O-acyl linked solid supports. Once assembled, the conjugate is readily cleaved by UV irradiation. The structural integrity of the obtained peptidyl-RNA conjugates was verified by mass spectrometry analysis. In conclusion, the new photocleavable solid support makes the synthesis of 3'-peptidyl tRNA mimics of different peptidyl chains significantly more efficient compared to the commonly used approaches.
Collapse
Affiliation(s)
- Julia Thaler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Christoph Mitteregger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Laurin Flemmich
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Koller TO, Berger MJ, Morici M, Paternoga H, Bulatov T, Di Stasi A, Dang T, Mainz A, Raulf K, Crowe-McAuliffe C, Scocchi M, Mardirossian M, Beckert B, Vázquez-Laslop N, Mankin AS, Süssmuth RD, Wilson DN. Paenilamicins are context-specific translocation inhibitors of protein synthesis. Nat Chem Biol 2024; 20:1691-1700. [PMID: 39420228 PMCID: PMC11581978 DOI: 10.1038/s41589-024-01752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The paenilamicins are a group of hybrid nonribosomal peptide-polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here we determine structures of paenilamicin PamB2-stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site transfer RNAs (tRNAs). In addition to providing a precise description of interactions of PamB2 with the ribosome, the structures also rationalize the resistance mechanisms used by P. larvae. We further demonstrate that PamB2 interferes with the translocation of messenger RNA and tRNAs through the ribosome during translation elongation, and that this inhibitory activity is influenced by the presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines the paenilamicins as a class of context-specific translocation inhibitors.
Collapse
Affiliation(s)
- Timm O Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Max J Berger
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Timur Bulatov
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Tam Dang
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Karoline Raulf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
4
|
Nandi S, Dey D, Srinivas P, Dunham CM, Conn GL. Distant Ribose 2'-O-Methylation of 23S rRNA Helix 69 Pre-Orders the Capreomycin Drug Binding Pocket at the Ribosome Subunit Interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.619916. [PMID: 39574593 PMCID: PMC11580936 DOI: 10.1101/2024.11.05.619916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Loss of ribosomal RNA (rRNA) modifications incorporated by the intrinsic methyltransferase TlyA results in reduced sensitivity to tuberactinomycin antibiotics such as capreomycin. However, the mechanism by which rRNA methylation alters drug binding, particularly at the distant but functionally more important site in 23S rRNA Helix 69 (H69), is currently unknown. We determined high-resolution cryo-electron microscopy structures of the Mycolicibacterium smegmatis 70S ribosome with or without the two ribose 2'-O-methyl modifications incorporated by TlyA. In the unmodified ribosome, the tip of H69 adopts a more compact conformation, positioning two key nucleotides (A2137 and C2138) such that interactions with capreomycin would be lost and the binding pocket partially occluded. In contrast, methylation of 23S rRNA nucleotide C2144 results in conformational changes that propagate from the site of modification to the H69 tip, resulting in its movement away from h44, a more favorable positioning of C2138 and adoption of a more open conformation to enable capreomycin binding. Methylation of h44 also results in structural rearrangements at the H69-h44 interface that further support antibiotic binding. These structures thus reveal the effect and regulation of distant rRNA methylation on ribosome-targeting antibiotic binding.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Pooja Srinivas
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, Georgia, 30322, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
5
|
Srinivasan K, Banerjee A, Sengupta J. Cryo-EM structures reveal the molecular mechanism of HflX-mediated erythromycin resistance in mycobacteria. Structure 2024; 32:1443-1453.e4. [PMID: 39029461 DOI: 10.1016/j.str.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
Mycobacterial HflX confers resistance against macrolide antibiotics. However, the exact molecular mechanism is poorly understood. To gain further insights, we determined the cryo-EM structures of M. smegmatis (Msm) HflX-50S subunit and 50S subunit-erythromycin (ERY) complexes at a global resolution of approximately 3 Å. A conserved nucleotide A2286 at the gate of nascent peptide exit tunnel (NPET) adopts a swayed conformation in HflX-50S complex and interacts with a loop within the linker helical (LH) domain of MsmHflX that contains an additional 9 residues insertion. Interestingly, the swaying of this nucleotide, which is usually found in the non-swayed conformation, is induced by erythromycin binding. Furthermore, we observed that erythromycin decreases HflX's ribosome-dependent GTP hydrolysis, resulting in its enhanced binding and anti-association activity on the 50S subunit. Our findings reveal how mycobacterial HflX senses the presence of macrolides at the peptide tunnel entrance and confers antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Krishnamoorthi Srinivasan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aneek Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Koller TO, Berger MJ, Morici M, Paternoga H, Bulatov T, Di Stasi A, Dang T, Mainz A, Raulf K, Crowe-McAuliffe C, Scocchi M, Mardirossian M, Beckert B, Vázquez-Laslop N, Mankin A, Süssmuth RD, Wilson DN. Paenilamicins from the honey bee pathogen Paenibacillus larvae are context-specific translocation inhibitors of protein synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595107. [PMID: 38826346 PMCID: PMC11142091 DOI: 10.1101/2024.05.21.595107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The paenilamicins are a group of hybrid non-ribosomal peptide-polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here, we have determined structures of the paenilamicin PamB2 stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site tRNAs. In addition to providing a precise description of interactions of PamB2 with the ribosome, the structures also rationalize the resistance mechanisms utilized by P. larvae. We could further demonstrate that PamB2 interferes with the translocation of mRNA and tRNAs through the ribosome during translation elongation, and that this inhibitory activity is influenced by the presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines the paenilamicins as a new class of context-specific translocation inhibitors.
Collapse
Affiliation(s)
- Timm O. Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Max J. Berger
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Timur Bulatov
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tam Dang
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Karoline Raulf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Alexander Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Judd HNG, Martínez AK, Klepacki D, Vázquez-Laslop N, Sachs MS, Cruz-Vera LR. Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues. J Biol Chem 2024; 300:105780. [PMID: 38395310 PMCID: PMC10941005 DOI: 10.1016/j.jbc.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp-directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.
Collapse
Affiliation(s)
- Heather N G Judd
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Luis R Cruz-Vera
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA.
| |
Collapse
|
8
|
Dimitrova-Paternoga L, Kasvandik S, Beckert B, Granneman S, Tenson T, Wilson DN, Paternoga H. Structural basis of ribosomal 30S subunit degradation by RNase R. Nature 2024; 626:1133-1140. [PMID: 38326618 PMCID: PMC10901742 DOI: 10.1038/s41586-024-07027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.
Collapse
Affiliation(s)
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Sander Granneman
- Centre for Engineering Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
9
|
Bhattacharya A, Renault TT, Innis CA. The ribosome as a small-molecule sensor. Curr Opin Microbiol 2024; 77:102418. [PMID: 38159358 DOI: 10.1016/j.mib.2023.102418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Sensing small molecules is crucial for microorganisms to adapt their genetic programs to changes in their environment. Arrest peptides encoded by short regulatory open reading frames program the ribosomes that translate them to undergo translational arrest in response to specific metabolites. Ribosome stalling in turn controls the expression of downstream genes on the same messenger RNA by translational or transcriptional means. In this review, we present our current understanding of the mechanisms by which ribosomes translating arrest peptides sense different metabolites, such as antibiotics or amino acids, to control gene expression.
Collapse
Affiliation(s)
- Arunima Bhattacharya
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Thibaud T Renault
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - C Axel Innis
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, F-33600 Pessac, France.
| |
Collapse
|
10
|
Thaler J, Syroegin EA, Breuker K, Polikanov YS, Micura R. Practical Synthesis of N-Formylmethionylated Peptidyl-tRNA Mimics. ACS Chem Biol 2023; 18:2233-2239. [PMID: 37433044 PMCID: PMC10594587 DOI: 10.1021/acschembio.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are frequently needed for structural and functional studies of protein synthesis in the ribosome. Such conjugates are accessible by chemical solid-phase synthesis, allowing for the utmost flexibility of both the peptide and the RNA sequence. Commonly used protection group strategies, however, have severe limitations with respect to generating the characteristic Nα-formylmethionyl terminus because the formyl group of the conjugate synthesized at the solid support is easily cleaved during the final basic deprotection/release step. In this study, we demonstrate a simple solution to the problem by coupling appropriately activated Nα-formyl methionine to the fully deprotected conjugate. The structural integrity of the obtained Nα-formylmethionyl conjugate─and hence the chemoselectivity of the reaction─were verified by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry sequence analysis. Additionally, we confirmed the applicability of our procedure for structural studies by obtaining two structures of the ribosome in complex with either fMAI-nh-ACCA or fMFI-nh-ACCA in the P site and ACC-PMN in the A site of the bacterial ribosome at 2.65 and 2.60 Å resolution, respectively. In summary, our approach for hydrolysis-resistant Nα-formylated RNA-peptide conjugates is synthetically straightforward and opens up new avenues to explore ribosomal translation with high-precision substrate mimics.
Collapse
Affiliation(s)
- Julia Thaler
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Egor A. Syroegin
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
| | - Kathrin Breuker
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Yury S. Polikanov
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
- Center
for Biomolecular Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ronald Micura
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Center
for Biomolecular Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
Polikanov YS, Etheve-Quelquejeu M, Micura R. Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications. Acc Chem Res 2023; 56:2713-2725. [PMID: 37728742 PMCID: PMC10552525 DOI: 10.1021/acs.accounts.3c00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/21/2023]
Abstract
Protein biosynthesis is a central process in all living cells that is catalyzed by a complex molecular machine─the ribosome. This process is termed translation because the language of nucleotides in mRNAs is translated into the language of amino acids in proteins. Transfer RNA (tRNA) molecules charged with amino acids serve as adaptors and recognize codons of mRNA in the decoding center while simultaneously the individual amino acids are assembled into a peptide chain in the peptidyl transferase center (PTC). As the nascent peptide emerges from the ribosome, it is threaded through a long tunnel referred to as a nascent peptide exit tunnel (NPET). The PTC and NPET are the sites targeted by many antibiotics and are thus of tremendous importance from a biomedical perspective and for drug development in the pharmaceutical industry.Researchers have achieved much progress in characterizing ribosomal translation at the molecular level; an impressive number of high-resolution structures of different functional and inhibited states of the ribosome are now available. These structures have significantly contributed to our understanding of how the ribosome interacts with its key substrates, namely, mRNA, tRNAs, and translation factors. In contrast, much less is known about the mechanisms of how small molecules, especially antibiotics, affect ribosomal protein synthesis. This mainly concerns the structural basis of small molecule-NPET interference with cotranslational protein folding and the regulation of protein synthesis. Growing biochemical evidence suggests that NPET plays an active role in the regulation of protein synthesis.Much-needed progress in this field is hampered by the fact that during the preparation of ribosome complexes for structural studies (i.e., X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy) the aminoacyl- or peptidyl-tRNAs are unstable and become hydrolyzed. A solution to this problem is the application of hydrolysis-resistant mimics of aminoacyl- or peptidyl-tRNAs.In this Account, we present an overview of synthetic methods for the generation of peptidyl-tRNA analogs. Modular approaches have been developed that combine (i) RNA and peptide solid-phase synthesis on 3'-aminoacylamino-adenosine resins, (ii) native chemical ligations and Staudinger ligations, (iii) tailoring of tRNAs by the selective cleavage of natural native tRNAs with DNAzymes followed by reassembly with enzymatic ligation to synthetic peptidyl-RNA fragments, and (iv) enzymatic tailing and cysteine charging of the tRNA to obtain modified CCA termini of a tRNA that are chemically ligated to the peptide moiety of interest. With this arsenal of tools, in principle, any desired sequence of a stably linked peptidyl-tRNA mimic is accessible. To underline the significance of the synthetic conjugates, we briefly point to the most critical applications that have shed new light on the molecular mechanisms underlying the context-specific activity of ribosome-targeting antibiotics, ribosome-dependent incorporation of multiple consecutive proline residues, the incorporation of d-amino acids, and tRNA mischarging.Furthermore, we discuss new types of stably charged tRNA analogs, relying on triazole- and squarate (instead of amide)-linked conjugates. Those have pushed forward our mechanistic understanding of nonribosomal peptide synthesis, where aminoacyl-tRNA-dependent enzymes are critically involved in various cellular processes in primary and secondary metabolism and in bacterial cell wall synthesis.
Collapse
Affiliation(s)
- Yury S. Polikanov
- Department
of Biological Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago, Illinois 60607, United States
- Center for
Biomolecular Sciences, University of Illinois
at Chicago, Chicago, Illinois 60607, United States
| | - Mélanie Etheve-Quelquejeu
- Université
Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques
et Toxicologiques, Paris F-75006, France
| | - Ronald Micura
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Fostier CR, Ousalem F, Leroy EC, Ngo S, Soufari H, Innis CA, Hashem Y, Boël G. Regulation of the macrolide resistance ABC-F translation factor MsrD. Nat Commun 2023; 14:3891. [PMID: 37393329 PMCID: PMC10314930 DOI: 10.1038/s41467-023-39553-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors that provide resistance against clinically important ribosome-targeting antibiotics which are proliferating among pathogens. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure. We show that binding of cladinose-containing macrolides to the ribosome prompts insertion of the leader peptide MsrDL into a crevice of the ribosomal exit tunnel, which is conserved throughout bacteria and eukaryotes. This leads to a local rearrangement of the 23 S rRNA that prevents peptide bond formation and accommodation of release factors. The stalled ribosome obstructs the formation of a Rho-independent terminator structure that prevents msrD transcriptional attenuation. Erythromycin induction of msrD expression via MsrDL, is suppressed by ectopic expression of mrsD, but not by mutants which do not provide antibiotic resistance, showing correlation between MsrD function in antibiotic resistance and its action on this stalled complex.
Collapse
Affiliation(s)
- Corentin R Fostier
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Farès Ousalem
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Elodie C Leroy
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Heddy Soufari
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
- SPT Labtech Ltd., SG8 6HB, Melbourn, United Kingdom
| | - C Axel Innis
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Yaser Hashem
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France.
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France.
| |
Collapse
|
13
|
Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes. Nat Chem 2023; 15:143-153. [PMID: 36316410 PMCID: PMC9840698 DOI: 10.1038/s41557-022-01073-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
During protein synthesis, the growing polypeptide threads through the ribosomal exit tunnel and modulates ribosomal activity by itself or by sensing various small molecules, such as metabolites or antibiotics, appearing in the tunnel. While arrested ribosome-nascent chain complexes (RNCCs) have been extensively studied structurally, the lack of a simple procedure for the large-scale preparation of peptidyl-tRNAs, intermediates in polypeptide synthesis that carry the growing chain, means that little attention has been given to RNCCs representing functionally active states of the ribosome. Here we report the facile synthesis of stably linked peptidyl-tRNAs through a chemoenzymatic approach based on native chemical ligation and use them to determine several structures of RNCCs in the functional pre-attack state of the peptidyl transferase centre. These structures reveal that C-terminal parts of the growing peptides adopt the same uniform β-strand conformation stabilized by an intricate network of hydrogen bonds with the universally conserved 23S rRNA nucleotides, and explain how the ribosome synthesizes growing peptides containing various sequences with comparable efficiencies.
Collapse
|
14
|
Zhang D, Li SHJ, King CG, Wingreen NS, Gitai Z, Li Z. Global and gene-specific translational regulation in Escherichia coli across different conditions. PLoS Comput Biol 2022; 18:e1010641. [PMID: 36264977 PMCID: PMC9624429 DOI: 10.1371/journal.pcbi.1010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/01/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
How well mRNA transcript levels represent protein abundances has been a controversial issue. Particularly across different environments, correlations between mRNA and protein exhibit remarkable variability from gene to gene. Translational regulation is likely to be one of the key factors contributing to mismatches between mRNA level and protein abundance in bacteria. Here, we quantified genome-wide transcriptome and relative translation efficiency (RTE) under 12 different conditions in Escherichia coli. By quantifying the mRNA-RTE correlation both across genes and across conditions, we uncovered a diversity of gene-specific translational regulations, cooperating with transcriptional regulations, in response to carbon (C), nitrogen (N), and phosphate (P) limitations. Intriguingly, we found that many genes regulating translation are themselves subject to translational regulation, suggesting possible feedbacks. Furthermore, a random forest model suggests that codon usage partially predicts a gene's cross-condition variability in translation efficiency; such cross-condition variability tends to be an inherent quality of a gene, independent of the specific nutrient limitations. These findings broaden the understanding of translational regulation under different environments and provide novel strategies for the control of translation in synthetic biology. In addition, our data offers a resource for future multi-omics studies.
Collapse
Affiliation(s)
- Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Sophia Hsin-Jung Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Christopher G. King
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
15
|
Shichino Y, Iwasaki S. Compounds for selective translational inhibition. Curr Opin Chem Biol 2022; 69:102158. [PMID: 35598529 DOI: 10.1016/j.cbpa.2022.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Since many human diseases are caused by the unwelcome production of harmful proteins, compounds that selectively suppress protein synthesis should provide a unique path for drug development, expanding the druggable proteome. Although surveying the RNA/amino acid contexts that are preferentially affected by translation inhibitors has presented an analytic hurdle, the application of a technique termed ribosome profiling overcomes this problem. Indeed, this technique uncovers the selectivity of translation repression by small molecules such as chloramphenicol, macrolides, PF846, and rocaglates. The molecular understanding of how the compounds inspire context selectivity, despite their targeting to general translation machinery, facilitates rational drug design and discovery for therapeutic purposes.
Collapse
Affiliation(s)
- Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
16
|
Benito-Vicente A, Uribe KB, Larrea-Sebal A, Palacios L, Cenarro A, Calle X, Galicia-Garcia U, Jebari-Benslaiman S, Sánchez-Hernández RM, Stef M, Lambert G, Civeira F, Martín C. Leu22_Leu23 Duplication at the Signal Peptide of PCSK9 Promotes Intracellular Degradation of LDLr and Autosomal Dominant Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2022; 42:e203-e216. [PMID: 35510551 DOI: 10.1161/atvbaha.122.315499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND PCSK9 (Proprotein convertase subtilisin/kexin type 9) regulates LDL-C (low-density lipoprotein cholesterol) metabolism by targeting LDLr (LDL receptor) for lysosomal degradation. PCSK9 gain-of-function variants cause autosomal dominant hypercholesterolemia by reducing LDLr levels, the D374Y variant being the most severe, while loss-of-function variants are associated with low LDL-C levels. Gain-of-function and loss-of-function activities have also been attributed to variants occurring in the PCSK9 signal peptide. Among them, L11 is a very rare PCSK9 variant that seems to increase LDL-C values in a moderate way causing mild hypercholesterolemia. METHODS Using molecular biology and biophysics methodologies, activities of L8 and L11 variants, both located in the leucine repetition stretch of the signal peptide, have been extensively characterized in vitro. RESULTS L8 variant is not associated with increased LDLr activity, whereas L11 activity is increased by ≈20% compared with wt PCSK9. The results suggest that the L11 variant reduces LDLr levels intracellularly by a process resulting from impaired cleavage of the signal peptide. This would lead to less efficient LDLr transport to the cell membrane and promote LDLr intracellular degradation. CONCLUSIONS Deletion of a leucine in the signal peptide in L8 variant does not affect PCSK9 activity, whereas the leucine duplication in the L11 variant enhances LDLr intracellular degradation. These findings highlight the importance of deep in vitro characterization of PCSK9 genetic variants to determine pathogenicity and improve clinical diagnosis and therapy of inherited familial hypercholesterolemia disease.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain (K.B.U.)
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Lourdes Palacios
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Ana Cenarro
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Xabier Calle
- Institute of Biological Phychiatry, Mental Health Services, University Hospital, Copenhagen, Denmark (X.C.)
| | - Unai Galicia-Garcia
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Rosa M Sánchez-Hernández
- Endocrinology Department, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria and Instituto Universitario de Investigación Biomédica y Sanitaria (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Spain (R.M.S.-H.)
| | - Marianne Stef
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Gilles Lambert
- Inserm, Laboratoire UMR1188 DéTROI, Sainte Clotilde, France (G.L.).,Université de La Réunion, Faculté de Médecine, Saint Denis de La Réunion, France (G.L.)
| | - Fernando Civeira
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| |
Collapse
|
17
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
18
|
Kolář MH, Nagy G, Kunkel J, Vaiana SM, Bock LV, Grubmüller H. Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel. Nucleic Acids Res 2022; 50:2258-2269. [PMID: 35150281 PMCID: PMC8887479 DOI: 10.1093/nar/gkac038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Gabor Nagy
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
| | - John Kunkel
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Sara M Vaiana
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Lars V Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany
| |
Collapse
|
19
|
Crowe-McAuliffe C, Wilson DN. Putting the antibiotics chloramphenicol and linezolid into context. Nat Struct Mol Biol 2022; 29:79-81. [DOI: 10.1038/s41594-022-00725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Tsai K, Stojković V, Lee DJ, Young ID, Szal T, Klepacki D, Vázquez-Laslop N, Mankin AS, Fraser JS, Fujimori DG. Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics. Nat Struct Mol Biol 2022; 29:162-171. [DOI: 10.1038/s41594-022-00723-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/05/2022] [Indexed: 01/02/2023]
|
21
|
Syroegin EA, Flemmich L, Klepacki D, Vazquez-Laslop N, Micura R, Polikanov YS. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat Struct Mol Biol 2022; 29:152-161. [PMID: 35165455 PMCID: PMC9071271 DOI: 10.1038/s41594-022-00720-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
Ribosome-targeting antibiotics serve as powerful antimicrobials and as tools for studying the ribosome, the catalytic peptidyl transferase center (PTC) of which is targeted by many drugs. The classic PTC-acting antibiotic chloramphenicol (CHL) and the newest clinically significant linezolid (LZD) were considered indiscriminate inhibitors of protein synthesis that cause ribosome stalling at every codon of every gene being translated. However, recent discoveries have shown that CHL and LZD preferentially arrest translation when the ribosome needs to polymerize particular amino acid sequences. The molecular mechanisms that underlie the context-specific action of ribosome inhibitors are unknown. Here we present high-resolution structures of ribosomal complexes, with or without CHL, carrying specific nascent peptides that support or negate the drug action. Our data suggest that the penultimate residue of the nascent peptide directly modulates antibiotic affinity to the ribosome by either establishing specific interactions with the drug or by obstructing its proper placement in the binding site.
Collapse
Affiliation(s)
- Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laurin Flemmich
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vazquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ronald Micura
- Institute of Organic Chemistry, University of Innsbruck, Center of Molecular Biosciences Innsbruck, Innsbruck, Austria.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Su T, Kudva R, Becker T, Buschauer R, Komar T, Berninghausen O, von Heijne G, Cheng J, Beckmann R. Structural basis of l-tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Res 2021; 49:9539-9547. [PMID: 34403461 PMCID: PMC8450073 DOI: 10.1093/nar/gkab665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.
Collapse
Affiliation(s)
- Ting Su
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Tobias Komar
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| |
Collapse
|
23
|
Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling. Nat Commun 2021; 12:5340. [PMID: 34504068 PMCID: PMC8429421 DOI: 10.1038/s41467-021-25663-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.
Collapse
|
24
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
25
|
Beckert B, Leroy EC, Sothiselvam S, Bock LV, Svetlov MS, Graf M, Arenz S, Abdelshahid M, Seip B, Grubmüller H, Mankin AS, Innis CA, Vázquez-Laslop N, Wilson DN. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat Commun 2021; 12:4466. [PMID: 34294725 PMCID: PMC8298421 DOI: 10.1038/s41467-021-24674-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics.
Collapse
Affiliation(s)
- Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Elodie C Leroy
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France
| | | | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Graf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Stefan Arenz
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Maha Abdelshahid
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Britta Seip
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - C Axel Innis
- Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ARNA, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Pessac, France.
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
26
|
Khairullina ZZ, Tereshchenkov AG, Zavyalova SA, Komarova ES, Lukianov DA, Tashlitsky VN, Osterman IA, Sumbatyan NV. Interaction of Chloramphenicol Cationic Peptide Analogues with the Ribosome. BIOCHEMISTRY (MOSCOW) 2021; 85:1443-1457. [PMID: 33280584 DOI: 10.1134/s0006297920110127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Virtual screening of all possible tripeptide analogues of chloramphenicol was performed using molecular docking to evaluate their affinity to bacterial ribosomes. Chloramphenicol analogues that demonstrated the lowest calculated energy of interaction with ribosomes were synthesized. Chloramphenicol amine (CAM) derivatives, which contained specific peptide fragments from the proline-rich antimicrobial peptides were produced. It was demonstrated using displacement of the fluorescent erythromycin analogue from its complex with ribosomes that the novel peptide analogues of chloramphenicol were able to bind bacterial ribosome; all the designed tripeptide analogues and one of the chloramphenicol amine derivatives containing fragment of the proline-rich antimicrobial peptides exhibited significantly greater affinity to Escherichia coli ribosome than chloramphenicol. Correlation between the calculated and experimentally evaluated levels of the ligand efficiencies was observed. In vitro protein biosynthesis inhibition assay revealed, that the RAW-CAM analogue shows activity at the level of chloramphenicol. These data were confirmed by the chemical probing assay, according to which binding pattern of this analogue in the nascent peptide exit tunnel was similar to chloramphenicol.
Collapse
Affiliation(s)
- Z Z Khairullina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Tereshchenkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - S A Zavyalova
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - E S Komarova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - D A Lukianov
- Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - V N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - I A Osterman
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - N V Sumbatyan
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
27
|
Albers S, Beckert B, Matthies MC, Mandava CS, Schuster R, Seuring C, Riedner M, Sanyal S, Torda AE, Wilson DN, Ignatova Z. Repurposing tRNAs for nonsense suppression. Nat Commun 2021; 12:3850. [PMID: 34158503 PMCID: PMC8219837 DOI: 10.1038/s41467-021-24076-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.
Collapse
Affiliation(s)
- Suki Albers
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Bertrand Beckert
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marco C. Matthies
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Chandra Sekhar Mandava
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Raphael Schuster
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | | | - Maria Riedner
- grid.9026.d0000 0001 2287 2617Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
| | - Suparna Sanyal
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew E. Torda
- grid.9026.d0000 0001 2287 2617Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Daniel N. Wilson
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- grid.9026.d0000 0001 2287 2617Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Sherman MW, Sandeep S, Contreras LM. The Tryptophan-Induced tnaC Ribosome Stalling Sequence Exposes High Amino Acid Cross-Talk That Can Be Mitigated by Removal of NusB for Higher Orthogonality. ACS Synth Biol 2021; 10:1024-1038. [PMID: 33835775 DOI: 10.1021/acssynbio.0c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing number of engineered synthetic circuits have employed biological parts coupling transcription and translation in bacterial systems to control downstream gene expression. One such example, the leader sequence of the tryptophanase (tna) operon, is a transcription-translation system commonly employed as an l-tryptophan inducible circuit controlled by ribosome stalling. While induction of the tna operon has been well-characterized in response to l-tryptophan, cross-talk of this modular component with other metabolites in the cell, such as other naturally occurring amino acids, has been less explored. In this study, we investigated the impact of natural metabolites and E. coli host factors on induction of the tna leader sequence. To do so, we constructed and biochemically validated an experimental assay using the tna operon leader sequence to assess differential regulation of transcription elongation and translation in response to l-tryptophan. Operon induction was then assessed following addition of each of the 20 naturally occurring amino acids to discover that several additional amino acids (e.g., l-alanine, l-cysteine, l-glycine, l-methionine, and l-threonine) also induce expression of the tna leader sequence. Following characterization of dose-dependent induction by l-cysteine relative to l-tryptophan, the effect on induction by single gene knockouts of protein factors associated with transcription and/or translation were interrogated. Our results implicate the endogenous cellular protein, NusB, as an important factor associated with induction of the operon by the alternative amino acids. As such, removal of the nusB gene from strains intended for tryptophan-sensing utilizing the tna leader region reduces amino acid cross-talk, resulting in enhanced orthogonal control of this commonly used synthetic system.
Collapse
Affiliation(s)
- Mark W. Sherman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Sanjna Sandeep
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| |
Collapse
|
29
|
Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Nat Commun 2021; 12:2803. [PMID: 33990576 PMCID: PMC8121947 DOI: 10.1038/s41467-021-23068-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.
Collapse
|
30
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
31
|
Myers AG, Clark RB. Discovery of Macrolide Antibiotics Effective against Multi-Drug Resistant Gram-Negative Pathogens. Acc Chem Res 2021; 54:1635-1645. [PMID: 33691070 DOI: 10.1021/acs.accounts.1c00020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrolides are among the most widely prescribed antibiotics, particularly for bacterial lung infections, due to their favorable safety, oral bioavailability, and spectrum of activity against Gram-positive pathogens such as Streptococcus pneumoniae, the most common cause of bacterial pneumonia. Their utility against Gram-negative bacteria is extremely limited and does not include the Enterobacteriaceae or other ESKAPE pathogens. With the increasing development of resistance to current therapies and the lack of safe, oral options to treat Gram-negative infections, extended-spectrum macrolides have the potential to provide valuable treatment options. While the bacterial ribosome, the target of macrolides, is highly conserved across Gram-positive and Gram-negative bacteria, traditional macrolides do not possess the proper physicochemical properties to cross the polar Gram-negative outer membrane and are highly susceptible to efflux. As with most natural product-derived compounds, macrolides are generally prepared through semisynthesis, which is limited in scope and lacks the ability to make the drastic physicochemical property changes necessary to overcome these hurdles.By using a fully synthetic platform technology to greatly expand structural diversity, novel macrolides were prepared with a focus on lowering the MW and increasing the polarity to achieve a physicochemical property profile more similar to that of traditional Gram-negative drug classes. In addition to the removal of lipophilic groups, a critical structural feature for obtaining Gram-negative activity in the macrolide class proved to be the introduction of small secondary or tertiary amines to yield polycationic species potentially capable of self-promoted uptake. Within the azithromycin-like 15-membered azalides, potent activity was seen when small alkyl amines were introduced at the 6'-position of desosamine. The biggest gains, however, were made by replacing the entire C10-C13 fragment of the macrolactone ring with commercially available or readily synthesized 1,2-aminoalcohols, leading to 13-membered azalides. The introduction of a tethered basic amine at the C10-position and systematic optimization of substitution and tether length and flexibility ultimately provided new macrolides that for the first time exhibit clinically relevant antibacterial activity against multi-drug resistant Gram-negative bacteria. A retrospective computational analysis of >1800 fully synthetic macrolides prepared during this effort identified key drivers and optimum ranges for improving permeability and avoiding efflux. In contrast to standard Gram-negative drugs which generally have MWs below 600 and clogD7.4 values below 0, we found that the ideal ranges for Gram-negative macrolides were MW between 600 and 720 and cLogD7.4 between -1 and 3. A total charge of between 2.5 and 3 was also required to provide optimal permeability and efflux avoidance. Thus, Gram-negative macrolides occupy a unique physicochemical property space that lies between traditional Gram-negative drug classes and Gram-positive macrolides.
Collapse
Affiliation(s)
- Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Roger B. Clark
- Zikani Therapeutics, 480 Arsenal Way, Watertown, Massachusetts 02472, United States
| |
Collapse
|
32
|
Seefeldt AC, Aguirre Rivera J, Johansson M. Direct Measurements of Erythromycin's Effect on Protein Synthesis Kinetics in Living Bacterial Cells. J Mol Biol 2021; 433:166942. [PMID: 33744313 DOI: 10.1016/j.jmb.2021.166942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Macrolide antibiotics, such as erythromycin, bind to the nascent peptide exit tunnel (NPET) of the bacterial ribosome and modulate protein synthesis depending on the nascent peptide sequence. Whereas in vitro biochemical and structural methods have been instrumental in dissecting and explaining the molecular details of macrolide-induced peptidyl-tRNA drop-off and ribosome stalling, the dynamic effects of the drugs on ongoing protein synthesis inside live bacterial cells are far less explored. In the present study, we used single-particle tracking of dye-labeled tRNAs to study the kinetics of mRNA translation in the presence of erythromycin, directly inside live Escherichia coli cells. In erythromycin-treated cells, we find that the dwells of elongator tRNAPhe on ribosomes extend significantly, but they occur much more seldom. In contrast, the drug barely affects the ribosome binding events of the initiator tRNAfMet. By overexpressing specific short peptides, we further find context-specific ribosome binding dynamics of tRNAPhe, underscoring the complexity of erythromycin's effect on protein synthesis in bacterial cells.
Collapse
Affiliation(s)
| | | | - Magnus Johansson
- Department of Cell and Molecular Biology, Uppsala University, Sweden.
| |
Collapse
|
33
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
34
|
Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G. ABC-F translation factors: from antibiotic resistance to immune response. FEBS Lett 2020; 595:675-706. [PMID: 33135152 DOI: 10.1002/1873-3468.13984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
Collapse
Affiliation(s)
- Corentin R Fostier
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Laura Monlezun
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Farès Ousalem
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Shikha Singh
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - John F Hunt
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - Grégory Boël
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
35
|
Jednačak T, Mikulandra I, Novak P. Advanced Methods for Studying Structure and Interactions of Macrolide Antibiotics. Int J Mol Sci 2020; 21:E7799. [PMID: 33096889 PMCID: PMC7589898 DOI: 10.3390/ijms21207799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Macrolide antibiotics are macrocyclic compounds that are clinically used and prescribed for the treatment of upper and lower respiratory tract infections. They inhibit the synthesis of bacterial proteins by reversible binding to the 23S rRNA at or near the peptidyl transferase center. However, their excellent antibacterial profile was largely compromised by the emergence of bacterial resistance. Today, fighting resistance to antibiotics is one of the greatest challenges in medicinal chemistry. Considering various physicochemical properties of macrolides, understanding their structure and interactions with macromolecular targets is crucial for the design of new antibiotics efficient against resistant pathogens. The solid-state structures of some macrolide-ribosome complexes have recently been solved, throwing new light on the macrolide binding mechanisms. On the other hand, a combination of NMR spectroscopy and molecular modeling calculations can be applied to study free and bound conformations in solution. In this article, a description of advanced physicochemical methods for elucidating the structure and interactions of macrolide antibiotics in solid state and solution will be provided, and their principal advantages and drawbacks will be discussed.
Collapse
Affiliation(s)
- Tomislav Jednačak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| | | | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| |
Collapse
|
36
|
Li W, Chang STL, Ward FR, Cate JHD. Selective inhibition of human translation termination by a drug-like compound. Nat Commun 2020; 11:4941. [PMID: 33009412 PMCID: PMC7532171 DOI: 10.1038/s41467-020-18765-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
37
|
Nicholson D, Edwards TA, O'Neill AJ, Ranson NA. Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Structure 2020; 28:1087-1100.e3. [PMID: 32857965 PMCID: PMC7546915 DOI: 10.1016/j.str.2020.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii. Cryo-EM structures of the ribosome from the pathogenic bacteria A. baumannii Unique structural features compared with other bacterial ribosomes The site and mode of binding of amikacin and tigecycline to this ribosome A putative alternative tigecycline-binding site at the 50S central protuberance
Collapse
Affiliation(s)
- David Nicholson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Alex J O'Neill
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
38
|
Herrero del Valle A, Innis CA. Prospects for antimicrobial development in the cryo-EM era – a focus on the ribosome. FEMS Microbiol Rev 2020; 44:793-803. [DOI: 10.1093/femsre/fuaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Resistance to antimicrobial drugs used to treat bacterial, viral, fungal and parasitic infections is a major health concern requiring a coordinated response across the globe. An important aspect in the fight against antimicrobial resistance is the development of novel drugs that are effective against resistant pathogens. Drug development is a complex trans-disciplinary endeavor, in which structural biology plays a major role by providing detailed functional and mechanistic information on an antimicrobial target and its interactions with small molecule inhibitors. Although X-ray crystallography and nuclear magnetic resonance have until now been the methods of choice to characterize microbial targets and drive structure-based drug development, cryo-electron microscopy is rapidly gaining ground in these areas. In this perspective, we will discuss how cryo-electron microscopy is changing our understanding of an established antimicrobial target, the ribosome, and how methodological developments could help this technique become an integral part of the antimicrobial drug discovery pipeline.
Collapse
Affiliation(s)
- Alba Herrero del Valle
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| | - C Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
39
|
Canestrari JG, Lasek-Nesselquist E, Upadhyay A, Rofaeil M, Champion MM, Wade JT, Derbyshire KM, Gray TA. Polycysteine-encoding leaderless short ORFs function as cysteine-responsive attenuators of operonic gene expression in mycobacteria. Mol Microbiol 2020; 114:93-108. [PMID: 32181921 PMCID: PMC8764745 DOI: 10.1111/mmi.14498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Genome-wide transcriptomic analyses have revealed abundant expressed short open reading frames (ORFs) in bacteria. Whether these short ORFs, or the small proteins they encode, are functional remains an open question. One quarter of mycobacterial mRNAs are leaderless, beginning with a 5'-AUG or GUG initiation codon. Leaderless mRNAs often encode unannotated short ORFs as the first gene of a polycistronic transcript. Here, we show that polycysteine-encoding leaderless short ORFs function as cysteine-responsive attenuators of operonic gene expression. Detailed mutational analysis shows that one polycysteine short ORF controls expression of the downstream genes. Our data indicate that ribosomes stalled in the polycysteine tract block mRNA structures that otherwise sequester the ribosome-binding site of the 3'gene. We assessed endogenous proteomic responses to cysteine limitation in Mycobacterium smegmatis using mass spectrometry. Six cysteine metabolic loci having unannotated polycysteine-encoding leaderless short ORF architectures responded to cysteine limitation, revealing widespread cysteine-responsive attenuation in mycobacteria. Individual leaderless short ORFs confer independent operon-level control, while their shared dependence on cysteine ensures a collective response mediated by ribosome pausing. We propose the term ribulon to classify ribosome-directed regulons. Regulon-level coordination by ribosomes on sensory short ORFs illustrates one utility of the many unannotated short ORFs expressed in bacterial genomes.
Collapse
Affiliation(s)
- Jill G Canestrari
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Erica Lasek-Nesselquist
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ashutosh Upadhyay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Martina Rofaeil
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Keith M Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Todd A Gray
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
40
|
Pichkur EB, Paleskava A, Tereshchenkov AG, Kasatsky P, Komarova ES, Shiriaev DI, Bogdanov AA, Dontsova OA, Osterman IA, Sergiev PV, Polikanov YS, Myasnikov AG, Konevega AL. Insights into the improved macrolide inhibitory activity from the high-resolution cryo-EM structure of dirithromycin bound to the E. coli 70S ribosome. RNA (NEW YORK, N.Y.) 2020; 26:715-723. [PMID: 32144191 PMCID: PMC7266154 DOI: 10.1261/rna.073817.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/27/2019] [Indexed: 05/05/2023]
Abstract
Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.
Collapse
Affiliation(s)
- Evgeny B Pichkur
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina, 188300, Russia
- National Research Center "Kurchatov Institute," Moscow, 123182, Russia
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina, 188300, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Andrey G Tereshchenkov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Pavel Kasatsky
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina, 188300, Russia
| | - Ekaterina S Komarova
- Department of Bioengineering and Bioinformatics and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, 143025, Russia
| | - Dmitrii I Shiriaev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexey A Bogdanov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Olga A Dontsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, 143025, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, 143025, Russia
| | - Petr V Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, 143025, Russia
| | - Yury S Polikanov
- Departments of Biological Sciences and Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Alexander G Myasnikov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina, 188300, Russia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Centre for Integrative Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, Illkirch, 67404, France
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina, 188300, Russia
- National Research Center "Kurchatov Institute," Moscow, 123182, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| |
Collapse
|
41
|
Herrero Del Valle A, Seip B, Cervera-Marzal I, Sacheau G, Seefeldt AC, Innis CA. Ornithine capture by a translating ribosome controls bacterial polyamine synthesis. Nat Microbiol 2020; 5:554-561. [PMID: 32094585 PMCID: PMC7250644 DOI: 10.1038/s41564-020-0669-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Polyamines are essential metabolites that play an important role in cell growth, stress adaptation, and microbial virulence1–3. In order to survive and multiply within a human host, pathogenic bacteria adjust the expression and activity of polyamine biosynthetic enzymes in response to different environmental stresses and metabolic cues2. Here, we show that ornithine capture by the ribosome and the nascent peptide SpeFL controls polyamine synthesis in γ-proteobacteria by inducing the expression of the ornithine decarboxylase SpeF4, via a mechanism involving ribosome stalling and transcription antitermination. In addition, we present the cryo-EM structure of an Escherichia coli (E. coli) ribosome stalled during translation of speFL in the presence of ornithine. The structure shows how the ribosome and the SpeFL sensor domain form a highly selective binding pocket that accommodates a single ornithine molecule but excludes near-cognate ligands. Ornithine pre-associates with the ribosome and is then held in place by the sensor domain, leading to the compaction of the SpeFL effector domain and blocking the action of release factor RF1. Thus, our study not only reveals basic strategies by which nascent peptides assist the ribosome in detecting a specific metabolite, but also provides a framework for assessing how ornithine promotes virulence in several human pathogens.
Collapse
Affiliation(s)
- Alba Herrero Del Valle
- Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France.,Institut National de la Santé et de la Recherche Médicale (U1212), Bordeaux, France.,Centre National de la Recherche Scientifique (UMR 5320), Bordeaux, France
| | - Britta Seip
- Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France.,Institut National de la Santé et de la Recherche Médicale (U1212), Bordeaux, France.,Centre National de la Recherche Scientifique (UMR 5320), Bordeaux, France.,Evotec International GmbH, Göttingen, Germany
| | - Iñaki Cervera-Marzal
- Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France.,Institut National de la Santé et de la Recherche Médicale (U1212), Bordeaux, France.,Centre National de la Recherche Scientifique (UMR 5320), Bordeaux, France.,Aix Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Guénaël Sacheau
- Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France.,Institut National de la Santé et de la Recherche Médicale (U1212), Bordeaux, France.,Centre National de la Recherche Scientifique (UMR 5320), Bordeaux, France.,Sopra Steria, Saint-Herblain, France
| | - A Carolin Seefeldt
- Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France.,Institut National de la Santé et de la Recherche Médicale (U1212), Bordeaux, France.,Centre National de la Recherche Scientifique (UMR 5320), Bordeaux, France.,Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - C Axel Innis
- Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France. .,Institut National de la Santé et de la Recherche Médicale (U1212), Bordeaux, France. .,Centre National de la Recherche Scientifique (UMR 5320), Bordeaux, France.
| |
Collapse
|
42
|
Guerin F, Rose S, Cattoir V, Douthwaite S. Helcococcus kunzii methyltransferase Erm(47) responsible for MLSB resistance is induced by diverse ribosome-targeting antibiotics. J Antimicrob Chemother 2020; 75:371-378. [PMID: 31670815 DOI: 10.1093/jac/dkz441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the mechanism of induction of erm(47) and its atypical expression in the Gram-positive opportunistic pathogen Helcococcus kunzii, where it confers resistance to a subset of clinically important macrolide, lincosamide and streptogramin B (MLSB) antibiotics. METHODS The resistant H. kunzii clinical isolate UCN99 was challenged with subinhibitory concentrations of a wide range of ribosome-targeting drugs. The methylation status of the H. kunzii ribosomal RNA at the MLSB binding site was then determined using an MS approach and was correlated with any increase in resistance to the drugs. RESULTS The H. kunzii erm(47) gene encodes a monomethyltransferase. Expression is induced by subinhibitory concentrations of the macrolide erythromycin, as is common for many erm genes, and surprisingly also by 16-membered macrolide, lincosamide, streptogramin, ketolide, chloramphenicol and linezolid antibiotics, all of which target the 50S ribosomal subunit. No induction was detected with spectinomycin, which targets the 30S subunit. CONCLUSIONS The structure of the erm(47) leader sequence functions as a hair trigger for the induction mechanism that expresses resistance. Consequently, translation of the erm(47) mRNA is tripped by MLSB compounds and also by drugs that target the 50S ribosomal subunit outside the MLSB site. Expression of erm(47) thus extends previous assumptions about how erm genes can be induced.
Collapse
Affiliation(s)
- François Guerin
- Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre - CS30001 - 14033 Caen Cedex 9, France
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Vincent Cattoir
- Service de Bactériologie-Hygiène hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU de Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France.,Unité Inserm U1230, Université de Rennes 1, 2 avenue du Pr. Léon Bernard, 35043 Rennes, France
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
43
|
Dao Duc K, Batra SS, Bhattacharya N, Cate JHD, Song YS. Differences in the path to exit the ribosome across the three domains of life. Nucleic Acids Res 2019; 47:4198-4210. [PMID: 30805621 PMCID: PMC6486554 DOI: 10.1093/nar/gkz106] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/22/2019] [Indexed: 01/07/2023] Open
Abstract
The ribosome exit tunnel is an important structure involved in the regulation of translation and other essential functions such as protein folding. By comparing 20 recently obtained cryo-EM and X-ray crystallography structures of the ribosome from all three domains of life, we here characterize the key similarities and differences of the tunnel across species. We first show that a hierarchical clustering of tunnel shapes closely reflects the species phylogeny. Then, by analyzing the ribosomal RNAs and proteins, we explain the observed geometric variations and show direct association between the conservations of the geometry, structure and sequence. We find that the tunnel is more conserved in the upper part close to the polypeptide transferase center, while in the lower part, it is substantially narrower in eukaryotes than in bacteria. Furthermore, we provide evidence for the existence of a second constriction site in eukaryotic exit tunnels. Overall, these results have several evolutionary and functional implications, which explain certain differences between eukaryotes and prokaryotes in their translation mechanisms. In particular, they suggest that major co-translational functions of bacterial tunnels were externalized in eukaryotes, while reducing the tunnel size provided some other advantages, such as facilitating the nascent chain elongation and enabling antibiotic resistance.
Collapse
Affiliation(s)
- Khanh Dao Duc
- Computer Science Division, University of California, Berkeley, CA 94720, USA
| | - Sanjit S Batra
- Computer Science Division, University of California, Berkeley, CA 94720, USA
| | | | - Jamie H D Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, CA 94720, USA.,Department of Statistics, University of California, Berkeley, CA 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
44
|
Halfon Y, Matzov D, Eyal Z, Bashan A, Zimmerman E, Kjeldgaard J, Ingmer H, Yonath A. Exit tunnel modulation as resistance mechanism of S. aureus erythromycin resistant mutant. Sci Rep 2019; 9:11460. [PMID: 31391518 PMCID: PMC6685948 DOI: 10.1038/s41598-019-48019-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.
Collapse
Affiliation(s)
- Yehuda Halfon
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Donna Matzov
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Zohar Eyal
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Anat Bashan
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Ella Zimmerman
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel
| | - Jette Kjeldgaard
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800, Kgs, Lyngby, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Ada Yonath
- The Weizmann Institute of Science, The Department of structural biology, Rehovot, 7610001, Israel.
| |
Collapse
|
45
|
Abstract
Many antibiotics available in the clinic today directly inhibit bacterial translation. Despite the past success of such drugs, their efficacy is diminishing with the spread of antibiotic resistance. Through the use of ribosomal modifications, ribosomal protection proteins, translation elongation factors and mistranslation, many pathogens are able to establish resistance to common therapeutics. However, current efforts in drug discovery are focused on overcoming these obstacles through the modification or discovery of new treatment options. Here, we provide an overview for common mechanisms of resistance to translation-targeting drugs and summarize several important breakthroughs in recent drug development.
Collapse
Affiliation(s)
- Anne Witzky
- 1 Department of Molecular Genetics, Ohio State University , Columbus, OH 43210 , USA.,2 Center for RNA Biology, Ohio State University , Columbus, OH 43210 , USA
| | - Rodney Tollerson
- 2 Center for RNA Biology, Ohio State University , Columbus, OH 43210 , USA.,3 Department of Microbiology, Ohio State University , Columbus, OH 43210 , USA
| | - Michael Ibba
- 2 Center for RNA Biology, Ohio State University , Columbus, OH 43210 , USA.,3 Department of Microbiology, Ohio State University , Columbus, OH 43210 , USA
| |
Collapse
|
46
|
Shanmuganathan V, Schiller N, Magoulopoulou A, Cheng J, Braunger K, Cymer F, Berninghausen O, Beatrix B, Kohno K, von Heijne G, Beckmann R. Structural and mutational analysis of the ribosome-arresting human XBP1u. eLife 2019; 8:46267. [PMID: 31246176 PMCID: PMC6624018 DOI: 10.7554/elife.46267] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
XBP1u, a central component of the unfolded protein response (UPR), is a mammalian protein containing a functionally critical translational arrest peptide (AP). Here, we present a 3 Å cryo-EM structure of the stalled human XBP1u AP. It forms a unique turn in the ribosomal exit tunnel proximal to the peptidyl transferase center where it causes a subtle distortion, thereby explaining the temporary translational arrest induced by XBP1u. During ribosomal pausing the hydrophobic region 2 (HR2) of XBP1u is recognized by SRP, but fails to efficiently gate the Sec61 translocon. An exhaustive mutagenesis scan of the XBP1u AP revealed that only 8 out of 20 mutagenized positions are optimal; in the remaining 12 positions, we identify 55 different mutations increase the level of translational arrest. Thus, the wildtype XBP1u AP induces only an intermediate level of translational arrest, allowing efficient targeting by SRP without activating the Sec61 channel.
Collapse
Affiliation(s)
- Vivekanandan Shanmuganathan
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nina Schiller
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Jingdong Cheng
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Braunger
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Cymer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Otto Berninghausen
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Birgitta Beatrix
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Takayama, Japan
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
47
|
Nguyen HL, An PH, Thai NQ, Linh HQ, Li MS. Erythromycin, Cethromycin and Solithromycin display similar binding affinities to the E. coli's ribosome: A molecular simulation study. J Mol Graph Model 2019; 91:80-90. [PMID: 31200217 DOI: 10.1016/j.jmgm.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/09/2019] [Accepted: 06/02/2019] [Indexed: 01/06/2023]
Abstract
Macrolide antibiotics bind to the exit tunnel of the ribosome and inhibit protein synthesis blocking its translocation. Thus, antibiotics including the known macrolide Erythromycin (ERY) are active against bacteria. However, at present, some bacteria show resistance to drugs, which requires the development of new powerful antibacterial agents. One possible way is to use the ERY structure, but change its side chains, while the size of the lactone ring can remain unchanged or change. In this work we consider Cethromycin (CET) and Solithromycin (SOL), which are ketolides with quinolylallyl group at C6 and aminophenyl at C11, respectively (both of them have the same lactone ring as ERY). Experiments have shown that these ketolides have improved efficacy against pathogens, but their binding affinity to the E. coli's ribosome is almost identical. To clarify this issue, we have studied in detail the binding mechanisms of ERY, CET and SOL using the docking and molecular dynamic simulations. In agreement with the experiments, we showed that these compounds have similar binding affinities. Desosamine and lactone ring groups play a critical role in the binding of ERY to the ribosome. In CET and SOL, the contribution of keto and alkylaryl groups is balanced by cyclic carbamate. We have demonstrated that increased fluctuations in the ribosomal residues at the binding site led to an increase in the entropic term in the free binding energy of ERY compared to SOL and CET. The alkyl-aryl arm of both ketolides strongly interacts with A752 and U2609. In addition, the presence of macrolides in the exit tunnel can alter the conformation of U2585, which is located in the peptidyl transferase center, through non-bonded interaction. Therefore, the side chain of ketolides affects not only the binding site but also other residues possibly leading to a strong effect on the protein synthesis process. We predict that to combat bacterial mutations, it is necessary either to design a bulk and charged group as a cladinose, or to use several groups with different signs of charges. This prediction can be used for the development of new efficient antibiotics.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh, Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Biomedical Engineering Department, University of Technology - VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Pham Hong An
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh, Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Department of Theoretical Physics, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
| | - Nguyen Quoc Thai
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh, Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; Biomedical Engineering Department, University of Technology - VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam; Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Viet Nam
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology - VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Viet Nam
| | - Mai Suan Li
- Institute of Physics, Polish Acad Sci, Al. Lotnikow 32/46, 02-668, Warsaw, Poland.
| |
Collapse
|
48
|
Abstract
The ribosome is a major antibiotic target. Many types of inhibitors can stop cells from growing by binding at functional centers of the ribosome and interfering with its ability to synthesize proteins. These antibiotics were usually viewed as general protein synthesis inhibitors, which indiscriminately stop translation at every codon of every mRNA, preventing the ribosome from making any protein. However, at each step of the translation cycle, the ribosome interacts with multiple ligands (mRNAs, tRNA substrates, translation factors, etc.), and as a result, the properties of the translation complex vary from codon to codon and from gene to gene. Therefore, rather than being indiscriminate inhibitors, many ribosomal antibiotics impact protein synthesis in a context-specific manner. This review presents a snapshot of the growing body of evidence that some, and possibly most, ribosome-targeting antibiotics manifest site specificity of action, which is modulated by the nature of the nascent protein, the mRNA, or the tRNAs.
Collapse
Affiliation(s)
- Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois, Chicago, Illinois 60607, USA; ,
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois, Chicago, Illinois 60607, USA; ,
| |
Collapse
|
49
|
Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci 2018; 43:668-684. [PMID: 30054232 PMCID: PMC6108949 DOI: 10.1016/j.tibs.2018.06.011] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023]
Abstract
Macrolide antibiotics inhibit protein synthesis by targeting the bacterial ribosome. They bind at the nascent peptide exit tunnel and partially occlude it. Thus, macrolides have been viewed as 'tunnel plugs' that stop the synthesis of every protein. More recent evidence, however, demonstrates that macrolides selectively inhibit the translation of a subset of cellular proteins, and that their action crucially depends on the nascent protein sequence and on the antibiotic structure. Therefore, macrolides emerge as modulators of translation rather than as global inhibitors of protein synthesis. The context-specific action of macrolides is the basis for regulating the expression of resistance genes. Understanding the details of the mechanism of macrolide action may inform rational design of new drugs and unveil important principles of translation regulation.
Collapse
Affiliation(s)
- Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
50
|
Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc Natl Acad Sci U S A 2018; 115:8978-8983. [PMID: 30126986 PMCID: PMC6130385 DOI: 10.1073/pnas.1808535115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recent increase in multidrug-resistant pathogenic bacteria is limiting the utility of our current arsenal of clinically important antibiotics. The development of improved antibiotics would therefore benefit from a better understanding of the current resistance mechanisms employed by bacteria. Many Gram-positive bacteria, including pathogenic Staphylococcus aureus and Enterococcus faecalis, utilize ribosome protection proteins to confer resistance to medically relevant antibiotics, such as streptogramins A, lincosamides, and pleuromutilins. We have employed cryo-electron microscopy to reveal the structural basis for how the Bacillus subtilis VmlR protein binds to the ribosome to confer resistance to the streptogramin A antibiotic virginiamycin M, the lincosamide lincomycin, and the pleuromutilin tiamulin. Many Gram-positive pathogenic bacteria employ ribosomal protection proteins (RPPs) to confer resistance to clinically important antibiotics. In Bacillus subtilis, the RPP VmlR confers resistance to lincomycin (Lnc) and the streptogramin A (SA) antibiotic virginiamycin M (VgM). VmlR is an ATP-binding cassette (ABC) protein of the F type, which, like other antibiotic resistance (ARE) ABCF proteins, is thought to bind to antibiotic-stalled ribosomes and promote dissociation of the drug from its binding site. To investigate the molecular mechanism by which VmlR confers antibiotic resistance, we have determined a cryo-electron microscopy (cryo-EM) structure of an ATPase-deficient B. subtilis VmlR-EQ2 mutant in complex with a B. subtilis ErmDL-stalled ribosomal complex (SRC). The structure reveals that VmlR binds within the E site of the ribosome, with the antibiotic resistance domain (ARD) reaching into the peptidyltransferase center (PTC) of the ribosome and a C-terminal extension (CTE) making contact with the small subunit (SSU). To access the PTC, VmlR induces a conformational change in the P-site tRNA, shifting the acceptor arm out of the PTC and relocating the CCA end of the P-site tRNA toward the A site. Together with microbiological analyses, our study indicates that VmlR allosterically dissociates the drug from its ribosomal binding site and exhibits specificity to dislodge VgM, Lnc, and the pleuromutilin tiamulin (Tia), but not chloramphenicol (Cam), linezolid (Lnz), nor the macrolide erythromycin (Ery).
Collapse
|