1
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Bentley DL. Multiple Forms and Functions of Premature Termination by RNA Polymerase II. J Mol Biol 2025; 437:168743. [PMID: 39127140 PMCID: PMC11649484 DOI: 10.1016/j.jmb.2024.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
Collapse
Affiliation(s)
- David L Bentley
- Dept. Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Sibai DS, Tremblay MG, Lessard F, Tav C, Sabourin-Félix M, Robinson M, Moss T. TTF1 control of LncRNA synthesis delineates a tumor suppressor pathway directly regulating the ribosomal RNA genes. J Cell Physiol 2024; 239:e31303. [PMID: 38764354 DOI: 10.1002/jcp.31303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
The tumor suppressor p14/19ARF regulates ribosomal RNA (rRNA) synthesis by controlling the nucleolar localization of Transcription Termination Factor 1 (TTF1). However, the role played by TTF1 in regulating the rRNA genes and in potentially controlling growth has remained unclear. We now show that TTF1 expression regulates cell growth by determining the cellular complement of ribosomes. Unexpectedly, it achieves this by acting as a "roadblock" to synthesis of the noncoding LncRNA and pRNA that we show are generated from the "Spacer Promoter" duplications present upstream of the 47S pre-rRNA promoter on the mouse and human ribosomal RNA genes. Unexpectedly, the endogenous generation of these noncoding RNAs does not induce CpG methylation or gene silencing. Rather, it acts in cis to suppress 47S preinitiation complex formation and hence de novo pre-rRNA synthesis by a mechanism reminiscent of promoter interference or occlusion. Taken together, our data delineate a pathway from p19ARF to cell growth suppression via the regulation of ribosome biogenesis by noncoding RNAs and validate a key cellular growth law in mammalian cells.
Collapse
Affiliation(s)
- Dany S Sibai
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Cancer Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Michel G Tremblay
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Frédéric Lessard
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Christophe Tav
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Cancer Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Marianne Sabourin-Félix
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Mark Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Tom Moss
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Cancer Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Ren L, Ma W, Wang Y. Predicting RNA polymerase II transcriptional elongation pausing and associated histone code. Brief Bioinform 2024; 25:bbae246. [PMID: 38783706 PMCID: PMC11116834 DOI: 10.1093/bib/bbae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
RNA Polymerase II (Pol II) transcriptional elongation pausing is an integral part of the dynamic regulation of gene transcription in the genome of metazoans. It plays a pivotal role in many vital biological processes and disease progression. However, experimentally measuring genome-wide Pol II pausing is technically challenging and the precise governing mechanism underlying this process is not fully understood. Here, we develop RP3 (RNA Polymerase II Pausing Prediction), a network regularized logistic regression machine learning method, to predict Pol II pausing events by integrating genome sequence, histone modification, gene expression, chromatin accessibility, and protein-protein interaction data. RP3 can accurately predict Pol II pausing in diverse cellular contexts and unveil the transcription factors that are associated with the Pol II pausing machinery. Furthermore, we utilize a forward feature selection framework to systematically identify the combination of histone modification signals associated with Pol II pausing. RP3 is freely available at https://github.com/AMSSwanglab/RP3.
Collapse
Affiliation(s)
- Lixin Ren
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wanbiao Ma
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, 55 Zhongguancun East Road, Haidian District, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Wuhua District, Kunming 650223, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 1 Xiangshan Zhi Nong, West Lake District, Hangzhou 330106, China
| |
Collapse
|
5
|
Xi S, Nguyen T, Murray S, Lorenz P, Mellor J. Size fractionated NET-Seq reveals a conserved architecture of transcription units around yeast genes. Yeast 2024; 41:222-241. [PMID: 38433440 DOI: 10.1002/yea.3931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Collapse
Affiliation(s)
- Shidong Xi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Tania Nguyen
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Struan Murray
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Phil Lorenz
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Hao N, Donnelly AJ, Dodd IB, Shearwin KE. When push comes to shove - RNA polymerase and DNA-bound protein roadblocks. Biophys Rev 2023; 15:355-366. [PMID: 37396453 PMCID: PMC10310618 DOI: 10.1007/s12551-023-01064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
In recent years, transcriptional roadblocking has emerged as a crucial regulatory mechanism in gene expression, whereby other DNA-bound obstacles can block the progression of transcribing RNA polymerase (RNAP), leading to RNAP pausing and ultimately dissociation from the DNA template. In this review, we discuss the mechanisms by which transcriptional roadblocks can impede RNAP progression, as well as how RNAP can overcome these obstacles to continue transcription. We examine different DNA-binding proteins involved in transcriptional roadblocking and their biophysical properties that determine their effectiveness in blocking RNAP progression. The catalytically dead CRISPR-Cas (dCas) protein is used as an example of an engineered programmable roadblock, and the current literature in understanding the polarity of dCas roadblocking is also discussed. Finally, we delve into a stochastic model of transcriptional roadblocking and highlight the importance of transcription factor binding kinetics and its resistance to dislodgement by an elongating RNAP in determining the strength of a roadblock.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Alana J. Donnelly
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Ian B. Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
7
|
Xie J, Libri D, Porrua O. Mechanisms of eukaryotic transcription termination at a glance. J Cell Sci 2023; 136:286227. [PMID: 36594557 DOI: 10.1242/jcs.259873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription termination is the final step of a transcription cycle, which induces the release of the transcript at the termination site and allows the recycling of the polymerase for the next round of transcription. Timely transcription termination is critical for avoiding interferences between neighbouring transcription units as well as conflicts between transcribing RNA polymerases (RNAPs) and other DNA-associated processes, such as replication or DNA repair. Understanding the mechanisms by which the very stable transcription elongation complex is dismantled is essential for appreciating how physiological gene expression is maintained and also how concurrent processes that occur synchronously on the DNA are coordinated. Although the strategies employed by the different classes of eukaryotic RNAPs are traditionally considered to be different, novel findings point to interesting commonalities. In this Cell Science at a Glance and the accompanying poster, we review the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.
Collapse
Affiliation(s)
- Juanjuan Xie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| |
Collapse
|
8
|
Bauer SL, Grochalski TNT, Smialowska A, Åström SU. Sir2 and Reb1 antagonistically regulate nucleosome occupancy in subtelomeric X-elements and repress TERRAs by distinct mechanisms. PLoS Genet 2022; 18:e1010419. [PMID: 36137093 PMCID: PMC9531808 DOI: 10.1371/journal.pgen.1010419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/04/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibiting the DNA damage response. In Saccharomyces cerevisiae, silent information regulator (Sir) proteins bind to terminal repeats and to subtelomeric X-elements, resulting in transcriptional silencing. Herein, we show that sir2 mutant strains display a specific loss of a nucleosome residing in the X-elements and that this deficiency is remarkably consistent between different telomeres. The X-elements contain several binding sites for the transcription factor Reb1 and we found that Sir2 and Reb1 compete for stabilizing/destabilizing this nucleosome, i.e. inactivation of Reb1 in a sir2 background reinstated the lost nucleosome. The telomeric-repeat-containing RNAs (TERRAs) originate from subtelomeric regions and extend into the terminal repeats. Both Sir2 and Reb1 repress TERRAs and in a sir2 reb1 double mutant, TERRA levels increased synergistically, showing that Sir2 and Reb1 act in different pathways for repressing TERRAs. We present evidence that Reb1 restricts TERRAs by terminating transcription. Mapping the 5′-ends of TERRAs from several telomeres revealed that the Sir2-stabilized nucleosome is the first nucleosome downstream from the transcriptional start site for TERRAs. Finally, moving an X-element to a euchromatic locus changed nucleosome occupancy and positioning, demonstrating that X-element nucleosome structure is dependent on the local telomere environment. Telomeres are specialized structures at the end of linear chromosomes that protect the genetic material from degradation and mistaken recognition as sites of damage. Telomere dysfunction has been linked to several diseases and senescence. The telomeres contain repetitive DNA sequences bound by specialized proteins. Here, we describe two such proteins, Sir2 and Reb1, which regulate the formation of nucleosomes at a repetitive sequence known as the X-element. Sir2 has very important roles in regulating the accessibility of telomeres to the cellular machinery that reads and transcribes the genetic material. Reb1 had not been previously implicated in telomere biology, but is rather known as a general regulator of transcription. We explored the effects of removing either or both of these factors on telomeric features and their relationship in regulating the structure and accessibility of the telomeres in budding yeast. We show that Sir2 and Reb1 have opposing roles in stabilizing and de-stabilizing a nucleosome at the telomeres, but that both inhibit the accumulation of a non-coding RNA molecule transcribed from the telomeres.
Collapse
Affiliation(s)
- Stefanie L. Bauer
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Thomas N. T. Grochalski
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Agata Smialowska
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Stefan U. Åström
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
9
|
Hedouin S, Logsdon GA, Underwood JG, Biggins S. A transcriptional roadblock protects yeast centromeres. Nucleic Acids Res 2022; 50:7801-7815. [PMID: 35253883 PMCID: PMC9371891 DOI: 10.1093/nar/gkac117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
Centromeres are the chromosomal loci essential for faithful chromosome segregation during cell division. Although centromeres are transcribed and produce non-coding RNAs (cenRNAs) that affect centromere function, we still lack a mechanistic understanding of how centromere transcription is regulated. Here, using a targeted RNA isoform sequencing approach, we identified the transcriptional landscape at and surrounding all centromeres in budding yeast. Overall, cenRNAs are derived from transcription readthrough of pericentromeric regions but rarely span the entire centromere and are a complex mixture of molecules that are heterogeneous in abundance, orientation, and sequence. While most pericentromeres are transcribed throughout the cell cycle, centromere accessibility to the transcription machinery is restricted to S-phase. This temporal restriction is dependent on Cbf1, a centromere-binding transcription factor, that we demonstrate acts locally as a transcriptional roadblock. Cbf1 deletion leads to an accumulation of cenRNAs at all phases of the cell cycle which correlates with increased chromosome mis-segregation that is partially rescued when the roadblock activity is restored. We propose that a Cbf1-mediated transcriptional roadblock protects yeast centromeres from untimely transcription to ensure genomic stability.
Collapse
Affiliation(s)
- Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason G Underwood
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, CA 94025, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Aiello U, Challal D, Wentzinger G, Lengronne A, Appanah R, Pasero P, Palancade B, Libri D. Sen1 is a key regulator of transcription-driven conflicts. Mol Cell 2022; 82:2952-2966.e6. [PMID: 35839782 DOI: 10.1016/j.molcel.2022.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Cellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops. Sen1 prevents genomic instability, but how this relates to its molecular functions remains unclear. We generated high-resolution, genome-wide maps of transcription-dependent conflicts and R-loops using a Sen1 mutant that has lost interaction with the replisome but is termination proficient. We show that, under physiological conditions, Sen1 removes RNA polymerase II at TRCs within genes and the rDNA and at sites of transcription-transcription conflicts, thus qualifying as a "key regulator of conflicts." We demonstrate that genomic stability is affected by Sen1 mutation only when in addition to its role at the replisome, the termination of non-coding transcription or R-loop removal are additionally compromised.
Collapse
Affiliation(s)
- Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Drice Challal
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Rowin Appanah
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
11
|
Brooks AN, Hughes AL, Clauder-Münster S, Mitchell LA, Boeke JD, Steinmetz LM. Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science 2022; 375:1000-1005. [PMID: 35239377 DOI: 10.1126/science.abg0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.
Collapse
Affiliation(s)
- Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sandra Clauder-Münster
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo. Genes (Basel) 2021; 12:genes12121939. [PMID: 34946888 PMCID: PMC8701712 DOI: 10.3390/genes12121939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Saccharomyces cerevisiae has approximately 200 copies of the 35S rDNA gene, arranged tandemly on chromosome XII. This gene is transcribed by RNA polymerase I (Pol I) and the 35S rRNA transcript is processed to produce three of the four rRNAs required for ribosome biogenesis. An intergenic spacer (IGS) separates each copy of the 35S gene and contains the 5S rDNA gene, the origin of DNA replication, and the promoter for the adjacent 35S gene. Pol I is a 14-subunit enzyme responsible for the majority of rRNA synthesis, thereby sustaining normal cellular function and growth. The A12.2 subunit of Pol I plays a crucial role in cleavage, termination, and nucleotide addition during transcription. Deletion of this subunit causes alteration of nucleotide addition kinetics and read-through of transcription termination sites. To interrogate both of these phenomena, we performed native elongating transcript sequencing (NET-seq) with an rpa12Δ strain of S. cerevisiae and evaluated the resultant change in Pol I occupancy across the 35S gene and the IGS. Compared to wild-type (WT), we observed template sequence-specific changes in Pol I occupancy throughout the 35S gene. We also observed rpa12Δ Pol I occupancy downstream of both termination sites and throughout most of the IGS, including the 5S gene. Relative occupancy of rpa12Δ Pol I increased upstream of the promoter-proximal Reb1 binding site and dropped significantly downstream, implicating this site as a third terminator for Pol I transcription. Collectively, these high-resolution results indicate that the A12.2 subunit of Pol I plays an important role in transcription elongation and termination.
Collapse
|
13
|
Wiedermannová J, Krásný L. β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck. Nucleic Acids Res 2021; 49:10221-10234. [PMID: 34551438 PMCID: PMC8501993 DOI: 10.1093/nar/gkab803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle (‘sitting duck’) to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5′–3′ RNA exonuclease (torpedo) latches itself onto the 5′ end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5′–3′ exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5′–3′ exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Correspondence may also be addressed to Jana Wiedermannová. Tel: +44 191 208 3226; Fax: +44 191 208 3205;
| | - Libor Krásný
- To whom correspondence should be addressed. Tel: +420 241063208;
| |
Collapse
|
14
|
Shuman S. Transcriptional interference at tandem lncRNA and protein-coding genes: an emerging theme in regulation of cellular nutrient homeostasis. Nucleic Acids Res 2020; 48:8243-8254. [PMID: 32720681 PMCID: PMC7470944 DOI: 10.1093/nar/gkaa630] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022] Open
Abstract
Tandem transcription interference occurs when the act of transcription from an upstream promoter suppresses utilization of a co-oriented downstream promoter. Because eukaryal genomes are liberally interspersed with transcription units specifying long non-coding (lnc) RNAs, there are many opportunities for lncRNA synthesis to negatively affect a neighboring protein-coding gene. Here, I review two eukaryal systems in which lncRNA interference with mRNA expression underlies a regulated biological response to nutrient availability. Budding yeast SER3 is repressed under serine-replete conditions by transcription of an upstream SRG1 lncRNA that traverses the SER3 promoter and elicits occlusive nucleosome rearrangements. SER3 is de-repressed by serine withdrawal, which leads to shut-off of SRG1 synthesis. The fission yeast phosphate homeostasis (PHO) regulon comprises three phosphate acquisition genes – pho1, pho84, and tgp1 – that are repressed under phosphate-replete conditions by 5′ flanking lncRNAs prt, prt2, and nc-tgp1, respectively. lncRNA transcription across the PHO mRNA promoters displaces activating transcription factor Pho7. PHO mRNAs are transcribed during phosphate starvation when lncRNA synthesis abates. The PHO regulon is de-repressed in phosphate-replete cells by genetic manipulations that favor ‘precocious’ lncRNA 3′-processing/termination upstream of the mRNA promoters. PHO lncRNA termination is governed by the Pol2 CTD code and is subject to metabolite control by inositol pyrophosphates.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
de Jonge WJ, Brok M, Lijnzaad P, Kemmeren P, Holstege FCP. Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function. Mol Syst Biol 2020; 16:e9885. [PMID: 33280256 PMCID: PMC7586999 DOI: 10.15252/msb.20209885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Protein-DNA interactions are dynamic, and these dynamics are an important aspect of chromatin-associated processes such as transcription or replication. Due to a lack of methods to study on- and off-rates across entire genomes, protein-DNA interaction dynamics have not been studied extensively. Here, we determine in vivo off-rates for the Saccharomyces cerevisiae chromatin organizing factor Abf1, at 191 sites simultaneously across the yeast genome. Average Abf1 residence times span a wide range, varying between 4.2 and 33 min. Sites with different off-rates are associated with different functional characteristics. This includes their transcriptional dependency on Abf1, nucleosome positioning and the size of the nucleosome-free region, as well as the ability to roadblock RNA polymerase II for termination. The results show how off-rates contribute to transcription factor function and that DIVORSEQ (Determining In Vivo Off-Rates by SEQuencing) is a meaningful way of investigating protein-DNA binding dynamics genome-wide.
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | |
Collapse
|
16
|
Hildreth AE, Ellison MA, Francette AM, Seraly JM, Lotka LM, Arndt KM. The nucleosome DNA entry-exit site is important for transcription termination and prevention of pervasive transcription. eLife 2020; 9:e57757. [PMID: 32845241 PMCID: PMC7449698 DOI: 10.7554/elife.57757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022] Open
Abstract
Compared to other stages in the RNA polymerase II transcription cycle, the role of chromatin in transcription termination is poorly understood. We performed a genetic screen in Saccharomyces cerevisiae to identify histone mutants that exhibit transcriptional readthrough of terminators. Amino acid substitutions identified by the screen map to the nucleosome DNA entry-exit site. The strongest H3 mutants revealed widespread genomic changes, including increased sense-strand transcription upstream and downstream of genes, increased antisense transcription overlapping gene bodies, and reduced nucleosome occupancy particularly at the 3' ends of genes. Replacement of the native sequence downstream of a gene with a sequence that increases nucleosome occupancy in vivo reduced readthrough transcription and suppressed the effect of a DNA entry-exit site substitution. Our results suggest that nucleosomes can facilitate termination by serving as a barrier to transcription and highlight the importance of the DNA entry-exit site in broadly maintaining the integrity of the transcriptome.
Collapse
Affiliation(s)
- A Elizabeth Hildreth
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Mitchell A Ellison
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Alex M Francette
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Julia M Seraly
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Lauren M Lotka
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Karen M Arndt
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
17
|
Fine Chromatin-Driven Mechanism of Transcription Interference by Antisense Noncoding Transcription. Cell Rep 2020; 31:107612. [DOI: 10.1016/j.celrep.2020.107612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023] Open
|
18
|
Simultaneous Measurement of Transcriptional and Post-transcriptional Parameters by 3' End RNA-Seq. Cell Rep 2020; 24:2468-2478.e4. [PMID: 30157438 PMCID: PMC6130049 DOI: 10.1016/j.celrep.2018.07.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
Cellular RNA levels are determined by transcription and decay rates, which are fundamental in understanding gene expression regulation. Measurement of these two parameters is usually performed independently, complicating analysis as well as introducing methodological biases and batch effects that hamper direct comparison. Here, we present a simple approach of concurrent sequencing of S. cerevisiae poly(A)+ and poly(A)- RNA 3' ends to simultaneously estimate total RNA levels, transcription, and decay rates from the same RNA sample. The transcription data generated correlate well with reported estimates and also reveal local RNA polymerase stalling and termination sites with high precision. Although the method by design uses brief metabolic labeling of newly synthesized RNA with 4-thiouracil, the results demonstrate that transcription estimates can also be gained from unlabeled RNA samples. These findings underscore the potential of the approach, which should be generally applicable to study a range of biological questions in diverse organisms.
Collapse
|
19
|
Donovan DA, Crandall JG, Banks OGB, Jensvold ZD, Truong V, Dinwiddie D, McKnight LE, McKnight JN. Engineered Chromatin Remodeling Proteins for Precise Nucleosome Positioning. Cell Rep 2019; 29:2520-2535.e4. [PMID: 31747617 PMCID: PMC6884087 DOI: 10.1016/j.celrep.2019.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of chromatin structure is essential for controlling access of DNA to factors that require association with specific DNA sequences. Here we describe the development and validation of engineered chromatin remodeling proteins (E-ChRPs) for inducing programmable changes in nucleosome positioning by design. We demonstrate that E-ChRPs function both in vitro and in vivo to specifically reposition target nucleosomes and entire nucleosomal arrays. We show that induced, systematic positioning of nucleosomes over yeast Ume6 binding sites leads to Ume6 exclusion, hyperacetylation, and transcriptional induction at target genes. We also show that programmed global loss of nucleosome-free regions at Reb1 targets is generally inhibitory with mildly repressive transcriptional effects. E-ChRPs are compatible with multiple targeting modalities, including the SpyCatcher and dCas9 moieties, resulting in high versatility and enabling diverse future applications. Thus, engineered chromatin remodeling proteins represent a simple and robust means to probe and disrupt DNA-dependent processes in different chromatin contexts.
Collapse
Affiliation(s)
- Drake A Donovan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Orion G B Banks
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Zena D Jensvold
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Vi Truong
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Devin Dinwiddie
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Laura E McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jeffrey N McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
20
|
Soudet J, Stutz F. Regulation of Gene Expression and Replication Initiation by Non‐Coding Transcription: A Model Based on Reshaping Nucleosome‐Depleted Regions. Bioessays 2019; 41:e1900043. [DOI: 10.1002/bies.201900043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/19/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Julien Soudet
- Department of Cell BiologyUniversity of Geneva 1211 Geneva Switzerland
| | - Françoise Stutz
- Department of Cell BiologyUniversity of Geneva 1211 Geneva Switzerland
| |
Collapse
|
21
|
Abstract
Transcription factor (TF) binding to DNA is crucial for transcriptional regulation. There are multiple methods for mapping such binding. These methods balance between input requirements, spatial resolution, and compatibility with high-throughput automation. Here, we describe SLIM-ChIP (short-fragment-enriched, low-input, indexed MNase ChIP), which combines enzymatic fragmentation of chromatin and on-bead indexing to address these desiderata. SLIM-ChIP reproduces a high-resolution binding map of yeast Reb1 comparable with existing methods, yet with less input material and full compatibility with high-throughput procedures. We demonstrate the robustness and flexibility of SLIM-ChIP by probing additional factors in yeast and mouse. Finally, we show that SLIM-ChIP provides information on the chromatin landscape surrounding the bound transcription factor. We identify a class of Reb1 sites where the proximal −1 nucleosome tightly interacts with Reb1 and maintains unidirectional transcription. SLIM-ChIP is an attractive solution for mapping DNA binding proteins and charting the surrounding chromatin occupancy landscape at a single-cell level. SLIM-ChIP is a low-input, robust, high-resolution, automatable TF mapping protocol SLIM-ChIP is applicable to a range of TFs from yeast to mammals DNA fragments from SLIM-ChIP provide targeted footprinting at the bound site RSC-mediated Reb1-nucleosome interactions affect promoter directionality
Collapse
|
22
|
Wu AC, Van Werven FJ. Transcribe this way: Rap1 confers promoter directionality by repressing divergent transcription. Transcription 2019; 10:164-170. [PMID: 31057041 PMCID: PMC6602560 DOI: 10.1080/21541264.2019.1608716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, divergent transcription is a major source of noncoding RNAs. Recent studies have uncovered that in yeast, the transcription factor Rap1 restricts transcription in the divergent direction and thereby controls promoter directionality. Here, we summarize these findings, propose regulatory principles, and discuss the implications for eukaryotic gene regulation.
Collapse
Affiliation(s)
- Andrew C.K. Wu
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
23
|
Pokorzynski ND, Brinkworth AJ, Carabeo R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Chlamydia trachomatis. eLife 2019; 8:e42295. [PMID: 30938288 PMCID: PMC6504234 DOI: 10.7554/elife.42295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
During infection, pathogens are starved of essential nutrients such as iron and tryptophan by host immune effectors. Without conserved global stress response regulators, how the obligate intracellular bacterium Chlamydia trachomatis arrives at a physiologically similar 'persistent' state in response to starvation of either nutrient remains unclear. Here, we report on the iron-dependent regulation of the trpRBA tryptophan salvage pathway in C. trachomatis. Iron starvation specifically induces trpBA expression from a novel promoter element within an intergenic region flanked by trpR and trpB. YtgR, the only known iron-dependent regulator in Chlamydia, can bind to the trpRBA intergenic region upstream of the alternative trpBA promoter to repress transcription. Simultaneously, YtgR binding promotes the termination of transcripts from the primary promoter upstream of trpR. This is the first description of an iron-dependent mechanism regulating prokaryotic tryptophan biosynthesis that may indicate the existence of novel approaches to gene regulation and stress response in Chlamydia.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Amanda J Brinkworth
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Rey Carabeo
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| |
Collapse
|
24
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
25
|
Candelli T, Gros J, Libri D. Pervasive transcription fine-tunes replication origin activity. eLife 2018; 7:40802. [PMID: 30556807 PMCID: PMC6314782 DOI: 10.7554/elife.40802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase (RNAPII) transcription occurs pervasively, raising the important question of its functional impact on other DNA-associated processes, including replication. In budding yeast, replication originates from Autonomously Replicating Sequences (ARSs), generally located in intergenic regions. The influence of transcription on ARSs function has been studied for decades, but these earlier studies have neglected the role of non-annotated transcription. We studied the relationships between pervasive transcription and replication origin activity using high-resolution transcription maps. We show that ARSs alter the pervasive transcription landscape by pausing and terminating neighboring RNAPII transcription, thus limiting the occurrence of pervasive transcription within origins. We propose that quasi-symmetrical binding of the ORC complex to ARS borders and/or pre-RC formation are responsible for pausing and termination. We show that low, physiological levels of pervasive transcription impact the function of replication origins. Overall, our results have important implications for understanding the impact of genomic location on origin function.
Collapse
Affiliation(s)
- Tito Candelli
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Gros
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
26
|
Atkinson SR, Marguerat S, Bitton DA, Rodríguez-López M, Rallis C, Lemay JF, Cotobal C, Malecki M, Smialowski P, Mata J, Korber P, Bachand F, Bähler J. Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:1195-1213. [PMID: 29914874 PMCID: PMC6097657 DOI: 10.1261/rna.065524.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/14/2018] [Indexed: 05/31/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses.
Collapse
Affiliation(s)
- Sophie R Atkinson
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Marguerat
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Danny A Bitton
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Maria Rodríguez-López
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Pawel Smialowski
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Philipp Korber
- LMU Munich, Biomedical Center, 82152 Planegg-Martinsried near Munich, Germany
| | - François Bachand
- Department of Biochemistry, Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
27
|
Bresson S, Tollervey D. Surveillance-ready transcription: nuclear RNA decay as a default fate. Open Biol 2018; 8:170270. [PMID: 29563193 PMCID: PMC5881035 DOI: 10.1098/rsob.170270] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells synthesize enormous quantities of RNA from diverse classes, most of which are subject to extensive processing. These processes are inherently error-prone, and cells have evolved robust quality control mechanisms to selectively remove aberrant transcripts. These surveillance pathways monitor all aspects of nuclear RNA biogenesis, and in addition remove nonfunctional transcripts arising from spurious transcription and a host of non-protein-coding RNAs (ncRNAs). Surprisingly, this is largely accomplished with only a handful of RNA decay enzymes. It has, therefore, been unclear how these factors efficiently distinguish between functional RNAs and huge numbers of diverse transcripts that must be degraded. Here we describe how bona fide transcripts are specifically protected, particularly by 5' and 3' modifications. Conversely, a plethora of factors associated with the nascent transcripts all act to recruit the RNA quality control, surveillance and degradation machinery. We conclude that initiating RNAPII is 'surveillance ready', with degradation being a default fate for all transcripts that lack specific protective features. We further postulate that this promiscuity is a key feature that allowed the proliferation of vast numbers of ncRNAs in eukaryotes, including humans.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
28
|
Candelli T, Challal D, Briand JB, Boulay J, Porrua O, Colin J, Libri D. High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast. EMBO J 2018; 37:embj.201797490. [PMID: 29351914 DOI: 10.15252/embj.201797490] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/04/2023] Open
Abstract
Transcription termination delimits transcription units but also plays important roles in limiting pervasive transcription. We have previously shown that transcription termination occurs when elongating RNA polymerase II (RNAPII) collides with the DNA-bound general transcription factor Reb1. We demonstrate here that many different DNA-binding proteins can induce termination by a similar roadblock (RB) mechanism. We generated high-resolution transcription maps by the direct detection of RNAPII upon nuclear depletion of two essential RB factors or when the canonical termination pathways for coding and non-coding RNAs are defective. We show that RB termination occurs genomewide and functions independently of (and redundantly with) the main transcription termination pathways. We provide evidence that transcriptional readthrough at canonical terminators is a significant source of pervasive transcription, which is controlled to a large extent by RB termination. Finally, we demonstrate the occurrence of RB termination around centromeres and tRNA genes, which we suggest shields these regions from RNAPII to preserve their functional integrity.
Collapse
Affiliation(s)
- Tito Candelli
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France.,Ecole doctorale Structure et Dynamique des Systèmes Vivants, Université Paris Saclay, Gif sur Yvette, France
| | - Drice Challal
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France.,Ecole doctorale Structure et Dynamique des Systèmes Vivants, Université Paris Saclay, Gif sur Yvette, France
| | - Jean-Baptiste Briand
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France.,Ecole doctorale Structure et Dynamique des Systèmes Vivants, Université Paris Saclay, Gif sur Yvette, France
| | - Jocelyne Boulay
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, Univ Paris-Saclay, Centre Energie Atomique, Gif sur Yvette, France
| | - Odil Porrua
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France
| | - Jessie Colin
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Paris, France
| |
Collapse
|
29
|
McKinlay A, Podicheti R, Wendte JM, Cocklin R, Rusch DB. RNA polymerases IV and V influence the 3' boundaries of Polymerase II transcription units in Arabidopsis. RNA Biol 2017; 15:269-279. [PMID: 29199514 DOI: 10.1080/15476286.2017.1409930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved in plants as specialized forms of Pol II. Their functions are best understood in the context of RNA-directed DNA methylation (RdDM), a process in which Pol IV-dependent 24 nt siRNAs direct the de novo cytosine methylation of regions transcribed by Pol V. Pol V has additional functions, independent of Pol IV and 24 nt siRNA biogenesis, in maintaining the repression of transposons and genomic repeats whose silencing depends on maintenance cytosine methylation. Here we report that Pol IV and Pol V play unexpected roles in defining the 3' boundaries of Pol II transcription units. Nuclear run-on assays reveal that in the absence of Pol IV or Pol V, Pol II occupancy downstream of poly A sites increases for approximately 12% of protein-coding genes. This effect is most pronounced for convergently transcribed gene pairs. Although Pols IV and V are detected near transcript ends of the affected Pol II - transcribed genes, their role in limiting Pol II read-through is independent of siRNA biogenesis or cytosine methylation for the majority of these genes. Interestingly, we observed that splicing was less efficient in pol IV or pol V mutant plants, compared to wild-type plants, suggesting that Pol IV or Pol V might affect pre-mRNA processing. We speculate that Pols IV and V (and/or their associated factors) play roles in Pol II transcription termination and pre-mRNA splicing by influencing polymerase elongation rates and/or release at collision sites for convergent genes.
Collapse
Affiliation(s)
- Anastasia McKinlay
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ram Podicheti
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA.,c School of Informatics and Computing, Indiana University , Bloomington , IN , USA
| | - Jered M Wendte
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ross Cocklin
- a Department of Biology , Indiana University , Bloomington , Indiana , USA.,d Howard Hughes Medical Institute, Indiana University , Bloomington , Indiana
| | - Douglas B Rusch
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA
| |
Collapse
|
30
|
Roy K, Chanfreau GF. A global function for transcription factors in assisting RNA polymerase II termination. Transcription 2017; 9:41-46. [PMID: 29106321 DOI: 10.1080/21541264.2017.1300121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The role of transcription factors (TFs) on nucleosome positioning, RNA polymerase recruitment, and transcription initiation has been extensively characterized. Here, we propose that a subset of TFs such as Reb1, Abf1, Rap1, and TFIIIB also serve a major function in partitioning transcription units by assisting the Nrd1p-Nab3p-Sen1p Pol II termination pathway.
Collapse
Affiliation(s)
- Kevin Roy
- a Department of Chemistry and Biochemistry and the Molecular Biology Institute , University of California Los Angeles , CA , USA
| | - Guillaume F Chanfreau
- a Department of Chemistry and Biochemistry and the Molecular Biology Institute , University of California Los Angeles , CA , USA
| |
Collapse
|
31
|
Bunina D, Štefl M, Huber F, Khmelinskii A, Meurer M, Barry JD, Kats I, Kirrmaier D, Huber W, Knop M. Upregulation of SPS100 gene expression by an antisense RNA via a switch of mRNA isoforms with different stabilities. Nucleic Acids Res 2017; 45:11144-11158. [PMID: 28977638 PMCID: PMC5737743 DOI: 10.1093/nar/gkx737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Pervasive transcription of genomes generates multiple classes of non-coding RNAs. One of these classes are stable long non-coding RNAs which overlap coding genes in antisense direction (asRNAs). The function of such asRNAs is not fully understood but several cases of antisense-dependent gene expression regulation affecting the overlapping genes have been demonstrated. Using high-throughput yeast genetics and a limited set of four growth conditions we previously reported a regulatory function for ∼25% of asRNAs, most of which repress the expression of the sense gene. To further explore the roles of asRNAs we tested more conditions and identified 15 conditionally antisense-regulated genes, 6 of which exhibited antisense-dependent enhancement of gene expression. We focused on the sporulation-specific gene SPS100, which becomes upregulated upon entry into starvation or sporulation as a function of the antisense transcript SUT169. We demonstrate that the antisense effect is mediated by its 3' intergenic region (3'-IGR) and that this regulation can be transferred to other genes. Genetic analysis revealed that SUT169 functions by changing the relative expression of SPS100 mRNA isoforms from a short and unstable transcript to a long and stable species. These results suggest a novel mechanism of antisense-dependent gene regulation via mRNA isoform switching.
Collapse
Affiliation(s)
- Daria Bunina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Martin Štefl
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Florian Huber
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Anton Khmelinskii
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Joseph D. Barry
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Daniel Kirrmaier
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Robert F. Bidirectional terminators: an underestimated aspect of gene regulation. Curr Genet 2017; 64:389-391. [PMID: 29018946 DOI: 10.1007/s00294-017-0763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
Recent experimental and computational work revealed that transcriptional terminators in Saccharomyces cerevisiae can terminate transcription coming from both directions. This mechanism helps budding yeast cope with the pervasive nature of transcription by limiting aberrant transcription from invading neighboring genes.
Collapse
Affiliation(s)
- François Robert
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
33
|
Xue Y, Pradhan SK, Sun F, Chronis C, Tran N, Su T, Van C, Vashisht A, Wohlschlegel J, Peterson CL, Timmers HTM, Kurdistani SK, Carey MF. Mot1, Ino80C, and NC2 Function Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Mol Cell 2017; 67:594-607.e4. [PMID: 28735899 DOI: 10.1016/j.molcel.2017.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 01/02/2023]
Abstract
Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.
Collapse
Affiliation(s)
- Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nancy Tran
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Christopher Van
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - H T Marc Timmers
- Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Bosio MC, Fermi B, Dieci G. Transcriptional control of yeast ribosome biogenesis: A multifaceted role for general regulatory factors. Transcription 2017; 8:254-260. [PMID: 28448767 DOI: 10.1080/21541264.2017.1317378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Saccharomyces cerevisiae, a group of more than 200 co-regulated genes (Ribi genes) is involved in ribosome biogenesis. This regulon has recently been shown to rely on a small set of transcriptional regulators (mainly Abf1, but also Reb1, Tbf1 and Rap1) previously referred to as general regulatory factors (GRFs) because of their widespread binding and action at many promoters and other specialized genomic regions. Intriguingly, Abf1 binding to Ribi genes is differentially modulated in response to distinct nutrition signaling pathways. Such a dynamic promoter association has the potential to orchestrate both activation and repression of Ribi genes in synergy with neighboring regulatory sites and through the functional interplay of histone acetyltransferases and deacetylases.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| | - Beatrice Fermi
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| | - Giorgio Dieci
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| |
Collapse
|
35
|
Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol 2017; 46:72-80. [PMID: 28363125 DOI: 10.1016/j.ceb.2017.03.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022]
Abstract
The synthesis of nascent RNA is a discontinuous process in which phases of productive elongation by RNA polymerase are interrupted by frequent pauses. Transcriptional pausing was first observed decades ago, but was long considered to be a special feature of transcription at certain genes. This view was challenged when studies using genome-wide approaches revealed that RNA polymerase II pauses at promoter-proximal regions in large sets of genes in Drosophila and mammalian cells. High-resolution genomic methods uncovered that pausing is not restricted to promoters, but occurs globally throughout gene-body regions, implying the existence of key-rate limiting steps in nascent RNA synthesis downstream of transcription initiation. Here, we outline the experimental breakthroughs that led to the discovery of pervasive transcriptional pausing, discuss its emerging roles and regulation, and highlight the importance of pausing in human development and disease.
Collapse
|
36
|
Baejen C, Andreani J, Torkler P, Battaglia S, Schwalb B, Lidschreiber M, Maier KC, Boltendahl A, Rus P, Esslinger S, Söding J, Cramer P. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes. Mol Cell 2017; 66:38-49.e6. [PMID: 28318822 DOI: 10.1016/j.molcel.2017.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/06/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023]
Abstract
At the end of protein-coding genes, RNA polymerase (Pol) II undergoes a concerted transition that involves 3'-processing of the pre-mRNA and transcription termination. Here, we present a genome-wide analysis of the 3'-transition in budding yeast. We find that the 3'-transition globally requires the Pol II elongation factor Spt5 and factors involved in the recognition of the polyadenylation (pA) site and in endonucleolytic RNA cleavage. Pol II release from DNA occurs in a narrow termination window downstream of the pA site and requires the "torpedo" exonuclease Rat1 (XRN2 in human). The Rat1-interacting factor Rai1 contributes to RNA degradation downstream of the pA site. Defects in the 3'-transition can result in increased transcription at downstream genes.
Collapse
Affiliation(s)
- Carlo Baejen
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jessica Andreani
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Phillipp Torkler
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sofia Battaglia
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bjoern Schwalb
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Innovative Medicine and Science for Life Laboratory, Novum, Hälsovägen 7, 141 83 Huddinge, Sweden
| | - Kerstin C Maier
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrea Boltendahl
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stephanie Esslinger
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Johannes Söding
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
37
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
38
|
Wang Q, Donze D. Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae. Gene 2016; 594:108-116. [PMID: 27601258 DOI: 10.1016/j.gene.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
Abstract
Eukaryotic promoters generally contain nucleosome depleted regions near their transcription start sites. In the model organism Saccharomyces cerevisiae, these regions are adjacent to binding sites for general regulatory transcription factors, and the Reb1 protein is commonly bound to promoter DNA near such regions. The yeast TFC6 promoter is a unique RNA polymerase II promoter in that it is autoregulated by its own gene product Tfc6p, which is part of the RNA polymerase III transcription factor complex TFIIIC. We previously demonstrated that mutation of a potential Reb1 binding site adjacent to the TFIIIC binding site in the TFC6 promoter modestly reduces transcript levels, but leads to a severe decrease in Tfc6 protein levels due to an upstream shift in the TFC6 transcription start site. Here we confirm that Reb1p indeed binds to the TFC6 promoter, and is important for proper transcription start site selection and protein expression. Interestingly, loss of Reb1p association at this site has a similar effect on the adjacent divergently transcribed ESC2 promoter, resulting in a significant increase of 5'-extended ESC2 transcripts and reduction of Esc2 protein levels. This altered divergent transcription may be the result of changes in nucleosome positioning at this locus in the absence of Reb1p binding. We speculate that an important function of general regulatory factors such as Reb1p is to establish and maintain proper transcription start sites at promoters, and that when binding of such factors is compromised, resulting effects on mRNA translation may be an underappreciated aspect of gene regulation studies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
39
|
Roy K, Gabunilas J, Gillespie A, Ngo D, Chanfreau GF. Common genomic elements promote transcriptional and DNA replication roadblocks. Genome Res 2016; 26:1363-1375. [PMID: 27540088 PMCID: PMC5052057 DOI: 10.1101/gr.204776.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022]
Abstract
RNA polymerase II (Pol II) transcription termination by the Nrd1p-Nab3p-Sen1p (NNS) pathway is critical for the production of stable noncoding RNAs and the control of pervasive transcription in Saccharomyces cerevisiae. To uncover determinants of NNS termination, we mapped the 3′-ends of NNS-terminated transcripts genome-wide. We found that nucleosomes and specific DNA-binding proteins, including the general regulatory factors (GRFs) Reb1p, Rap1p, and Abf1p, and Pol III transcription factors enhance the efficiency of NNS termination by physically blocking Pol II progression. The same DNA-bound factors that promote NNS termination were shown previously to define the 3′-ends of Okazaki fragments synthesized by Pol δ during DNA replication. Reduced binding of these factors results in defective NNS termination and Pol II readthrough. Furthermore, inactivating NNS enables Pol II elongation through these roadblocks, demonstrating that effective Pol II termination depends on a synergy between the NNS machinery and obstacles in chromatin. Consistent with this finding, loci exhibiting Pol II readthrough at GRF binding sites are depleted for upstream NNS signals. Overall, these results underscore how RNA termination signals influence the behavior of Pol II at chromatin obstacles, and establish that common genomic elements define boundaries for both DNA and RNA synthesis machineries.
Collapse
Affiliation(s)
- Kevin Roy
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | - Jason Gabunilas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | - Abigail Gillespie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | - Duy Ngo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| |
Collapse
|
40
|
Porrua O, Boudvillain M, Libri D. Transcription Termination: Variations on Common Themes. Trends Genet 2016; 32:508-522. [DOI: 10.1016/j.tig.2016.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
|
41
|
Abstract
Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3' end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3' end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or "fail-safe" mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3'5' exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII.
Collapse
Affiliation(s)
- Jean-François Lemay
- a Department of Biochemistry ; Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Pavillon de Recherche Appliquée sur le Cancer (PRAC) ; Sherbrooke, Quebec
| | - François Bachand
- a Department of Biochemistry ; Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Pavillon de Recherche Appliquée sur le Cancer (PRAC) ; Sherbrooke, Quebec
| |
Collapse
|
42
|
Abstract
Terminating transcription is a highly intricate process for mammalian protein-coding genes. First, the chromatin template slows down transcription at the gene end. Then, the transcript is cleaved at the poly(A) signal to release the messenger RNA. The remaining transcript is selectively unraveled and degraded. This induces critical conformational changes in the heart of the enzyme that trigger termination. Termination can also occur at variable positions along the gene and so prevent aberrant transcript formation or intentionally make different transcripts. These may form multiple messenger RNAs with altered regulatory properties or encode different proteins. Finally, termination can be perturbed to achieve particular cellular needs or blocked in cancer or virally infected cells. In such cases, failure to terminate transcription can spell disaster for the cell.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
43
|
Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A, Chao J, Elliott O, Liu ZP, Economides AN, Bradner JE, Rabadan R, Basu U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2016; 161:774-89. [PMID: 25957685 DOI: 10.1016/j.cell.2015.04.034] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 04/20/2015] [Indexed: 01/19/2023]
Abstract
We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem cells (ESCs) by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3' regulatory region super-enhancer function. CRISPR-Cas9-mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3' regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Jiguang Wang
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jianbo Sun
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Jaime Chao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Oliver Elliott
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Aris N Economides
- Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - James E Bradner
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Raul Rabadan
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
44
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
45
|
Mellor J, Woloszczuk R, Howe FS. The Interleaved Genome. Trends Genet 2016; 32:57-71. [DOI: 10.1016/j.tig.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
|
46
|
Holmes RK, Tuck AC, Zhu C, Dunn-Davies HR, Kudla G, Clauder-Munster S, Granneman S, Steinmetz LM, Guthrie C, Tollervey D. Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough. PLoS Genet 2015; 11:e1005735. [PMID: 26694144 PMCID: PMC4687934 DOI: 10.1371/journal.pgen.1005735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/20/2015] [Indexed: 01/25/2023] Open
Abstract
Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3’ end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3’ end formation. Tiling arrays and RNAPII mapping data revealed 3’ extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression. Npl3 is a yeast mRNA binding protein with many reported functions in RNA processing. We wanted to identify direct targets and therefore combined analyses of the transcriptome-wide effects of the loss of Npl3 on gene expression with UV crosslinking and bioinformatics to identify RNA-binding sites for Npl3. We found that Npl3 binds diverse sites on large numbers of transcripts, and that the loss of Npl3 results in transcriptional readthrough on many genes. One effect of this transcription readthrough is that the expression of numerous flanking genes is strongly down regulated. This underlines the importance of faithful termination for the correct regulation of gene expression. The effects of the loss of Npl3 are seen on both mRNAs and non-protein coding RNAs. These have distinct but overlapping termination mechanisms, with both classes requiring Npl3 for correct RNA packaging.
Collapse
Affiliation(s)
- Rebecca K. Holmes
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alex C. Tuck
- FMI Basel, Basel, Switzerland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Hywel R. Dunn-Davies
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Grzegorz Kudla
- The Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | - Sander Granneman
- SynthSys, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Tudek A, Candelli T, Libri D. Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité? Biochimie 2015; 117:28-36. [DOI: 10.1016/j.biochi.2015.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
|
48
|
Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 2015; 16:190-202. [DOI: 10.1038/nrm3943] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|