1
|
Liang Z, Wang S, Zhu X, Ma J, Yao H, Wu Z. A small RNA from Streptococcus suis epidemic ST7 strain promotes bacterial survival in host blood and brain by enhancing oxidative stress resistance. Virulence 2025; 16:2491635. [PMID: 40237541 PMCID: PMC12005413 DOI: 10.1080/21505594.2025.2491635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Streptococcus suis is a Gram-positive pathogen causing septicaemia and meningitis in pigs and humans. However, how S. suis maintains a high bacterial load in the blood and brain is poorly understood. In this study, we found that a small RNA rss03 is predominantly present in S. suis, Streptococcus parasuis, and Streptococcus ruminantium, implying a conserved biological function. rss03 with a size of 303 nt mainly exists in S. suis sequence type (ST) 1 and epidemic ST7 strains that are responsible for human infections in China. Using MS2-affinity purification coupled with RNA sequencing (MAPS), proteomics analysis, and CopraRNA prediction, 14 direct targets of rss03 from an ST7 strain were identified. These direct targets mainly involve substance transport, transcriptional regulation, rRNA modification, and stress response. A more detailed analysis reveals that rss03 interacts with the coding region of glpF mRNA, and unexpectedly rss03 protects glpF mRNA from degradation by RNase J1. The GlpF protein is an aquaporin, contributes to S. suis oxidative stress resistance by H2O2 efflux, and facilitates bacterial survival in murine macrophages RAW264.7. Finally, we showed that rss03 and GlpF are required to maintain a high bacterial load in mouse blood and brain. Our study presents the first sRNA targetome in streptococci, enriches the knowledge of sRNA regulation in streptococci, and identifies pathways contributing to S. suis pathogenesis.
Collapse
Affiliation(s)
- Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Shuoyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xinchi Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-Breeding and Pig-Disease Prevention, Guangdong Haid Institute of Animal Husbandry & Veterinary, Guangzhou, China
| |
Collapse
|
2
|
Mediati DG, Dan W, Lalaouna D, Dinh H, Pokhrel A, Rowell KN, Michie KA, Stinear TP, Cain AK, Tree JJ. The 3' UTR of vigR is required for virulence in Staphylococcus aureus and has expanded through STAR sequence repeat insertions. Cell Rep 2024; 43:114082. [PMID: 38583155 DOI: 10.1016/j.celrep.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| | - William Dan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David Lalaouna
- Université de Strasbourg, CNRS, ARN UPR 9002, Strasbourg, France
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia; School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Keiran N Rowell
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Katharine A Michie
- Structural Biology Facility, University of New South Wales, Sydney, NSW, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amy K Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Drummond IY, DePaolo A, Krieger M, Driscoll H, Eckstrom K, Spatafora GA. Small regulatory RNAs are mediators of the Streptococcus mutans SloR regulon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543485. [PMID: 37398324 PMCID: PMC10312646 DOI: 10.1101/2023.06.02.543485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dental caries is among the most prevalent chronic infectious diseases worldwide. Streptococcus mutans , the chief causative agent of caries, uses a 25 kDa manganese dependent SloR protein to coordinate the uptake of essential manganese with the transcription of its virulence attributes. Small non-coding RNAs (sRNAs) can either enhance or repress gene expression and reports in the literature ascribe an emerging role for sRNAs in the environmental stress response. Herein, we identify 18-50 nt sRNAs as mediators of the S. mutans SloR and manganese regulons. Specifically, the results of sRNA-seq revealed 56 sRNAs in S. mutans that were differentially transcribed in the SloR-proficient UA159 and SloR-deficient GMS584 strains, and 109 sRNAs that were differentially expressed in UA159 cells grown in the presence of low versus high manganese. We describe SmsR1532 and SmsR1785 as SloR- and/or manganese-responsive sRNAs that are processed from large transcripts, and that bind SloR directly in their promoter regions. The predicted targets of these sRNAs include regulators of metal ion transport, growth management via a toxin-antitoxin operon, and oxidative stress tolerance. These findings support a role for sRNAs in coordinating intracellular metal ion homeostasis with virulence gene control in an important oral cariogen. IMPORTANCE Small regulatory RNAs (sRNAs) are critical mediators of environmental signaling, particularly in bacterial cells under stress, but their role in Streptococcus mutans is poorly understood. S. mutans, the principal causative agent of dental caries, uses a 25 kDa manganese-dependent protein, called SloR, to coordinate the regulated uptake of essential metal ions with the transcription of its virulence genes. In the present study, we identified and characterize sRNAs that are both SloR- and manganese-responsive. Taken together, this research can elucidate the details of regulatory networks that engage sRNAs in an important oral pathogen, and that can enable the development of an effective anti-caries therapeutic.
Collapse
|
4
|
Kreth J, Merritt J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular ecological studies. FEMS Microbiol Rev 2023; 47:fuac052. [PMID: 36564013 PMCID: PMC9936263 DOI: 10.1093/femsre/fuac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
A more comprehensive understanding of oral diseases like caries and periodontitis is dependent on an intimate understanding of the microbial ecological processes that are responsible for disease development. With this review, we provide a comprehensive overview of relevant molecular ecology techniques that have played critical roles in the current understanding of human oral biofilm development, interspecies interactions, and microbiome biogeography. The primary focus is on relevant technologies and examples available in the oral microbiology literature. However, most, if not all, of the described technologies should be readily adaptable for studies of microbiomes from other mucosal sites in the body. Therefore, this review is intended to serve as a reference guide used by microbiome researchers as they inevitably transition into molecular mechanistic studies of the many significant phenotypes observed clinically.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, MRB433, 3181 SW Sam Jackson Park Rd., #L595, Portland, OR 97239, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
5
|
Jia M, Yuan DY, Lovelace TC, Hu M, Benos PV. Causal Discovery in High-dimensional, Multicollinear Datasets. FRONTIERS IN EPIDEMIOLOGY 2022; 2:899655. [PMID: 36778756 PMCID: PMC9910507 DOI: 10.3389/fepid.2022.899655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022]
Abstract
As the cost of high-throughput genomic sequencing technology declines, its application in clinical research becomes increasingly popular. The collected datasets often contain tens or hundreds of thousands of biological features that need to be mined to extract meaningful information. One area of particular interest is discovering underlying causal mechanisms of disease outcomes. Over the past few decades, causal discovery algorithms have been developed and expanded to infer such relationships. However, these algorithms suffer from the curse of dimensionality and multicollinearity. A recently introduced, non-orthogonal, general empirical Bayes approach to matrix factorization has been demonstrated to successfully infer latent factors with interpretable structures from observed variables. We hypothesize that applying this strategy to causal discovery algorithms can solve both the high dimensionality and collinearity problems, inherent to most biomedical datasets. We evaluate this strategy on simulated data and apply it to two real-world datasets. In a breast cancer dataset, we identified important survival-associated latent factors and biologically meaningful enriched pathways within factors related to important clinical features. In a SARS-CoV-2 dataset, we were able to predict whether a patient (1) had Covid-19 and (2) would enter the ICU. Furthermore, we were able to associate factors with known Covid-19 related biological pathways.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Joint Carnegie Mellon - University of Pittsburgh Computational Biology PhD Program, Pittsburgh, PA, United States
| | - Daniel Y. Yuan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Joint Carnegie Mellon - University of Pittsburgh Computational Biology PhD Program, Pittsburgh, PA, United States
| | - Tyler C. Lovelace
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Joint Carnegie Mellon - University of Pittsburgh Computational Biology PhD Program, Pittsburgh, PA, United States
| | - Mengying Hu
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Joint Carnegie Mellon - University of Pittsburgh Computational Biology PhD Program, Pittsburgh, PA, United States
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Joint Carnegie Mellon - University of Pittsburgh Computational Biology PhD Program, Pittsburgh, PA, United States
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Baur ST, Poehlein A, Renz NJ, Hollitzer SK, Montoya Solano JD, Schiel-Bengelsdorf B, Daniel R, Dürre P. Modulation of sol mRNA expression by the long non-coding RNA Assolrna in Clostridium saccharoperbutylacetonicum affects solvent formation. Front Genet 2022; 13:966643. [PMID: 36035128 PMCID: PMC9402939 DOI: 10.3389/fgene.2022.966643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Solvents such as butanol are important platform chemicals and are often produced from petrochemical sources. Production of butanol and other compounds from renewable and sustainable resources can be achieved by solventogenic bacteria, such as the hyper-butanol producer Clostridium saccharoperbutylacetonicum. Its sol operon consists of the genes encoding butyraldehyde dehydrogenase, CoA transferase, and acetoacetate decarboxylase (bld, ctfA, ctfB, adc) and the gene products are involved in butanol and acetone formation. It is important to understand its regulation to further optimize the solvent production. In this study, a new long non-coding antisense transcript complementary to the complete sol operon, now called Assolrna, was identified by transcriptomic analysis and the regulatory mechanism of Assolrna was investigated. For this purpose, the promoter-exchange strain C. saccharoperbutylacetonicum ΔPasr::Pasr** was constructed. Additionally, Assolrna was expressed plasmid-based under control of the native Pasr promoter and the lactose-inducible PbgaL promoter in both the wild type and the promoter-exchange strain. Solvent formation was strongly decreased for all strains based on C. saccharoperbutylacetonicum ΔPasr::Pasr** and growth could not be restored by plasmid-based complementation of the exchanged promoter. Interestingly, very little sol mRNA expression was detected in the strain C. saccharoperbutylacetonicum ΔPasr::Pasr** lacking Assolrna expression. Butanol titers were further increased for the overexpression strain C. saccharoperbutylacetonicum [pMTL83151_asr_PbgaL] compared to the wild type. These results suggest that Assolrna has a positive effect on sol operon expression. Therefore, a possible stabilization mechanism of the sol mRNA by Assolrna under physiological concentrations is proposed.
Collapse
Affiliation(s)
- Saskia Tabea Baur
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Saskia Tabea Baur,
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Niklas Jan Renz
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | | | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
7
|
Mediati DG, Wong JL, Gao W, McKellar S, Pang CNI, Wu S, Wu W, Sy B, Monk IR, Biazik JM, Wilkins MR, Howden BP, Stinear TP, Granneman S, Tree JJ. RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3'UTR required for intermediate vancomycin resistance. Nat Commun 2022; 13:3558. [PMID: 35732665 PMCID: PMC9217812 DOI: 10.1038/s41467-022-31177-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Collapse
Affiliation(s)
- Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Julia L Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart McKellar
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sylvania Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Winton Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Brandon Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna M Biazik
- Electron Microscopy Unit, University of New South Wales, Kensington, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Sander Granneman
- Centre for Systems and Synthetic Biology, University of Edinburgh, Edinburgh, UK
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Miyakoshi M, Morita T, Kobayashi A, Berger A, Takahashi H, Gotoh Y, Hayashi T, Tanaka K. Glutamine synthetase mRNA releases sRNA from its 3'UTR to regulate carbon/nitrogen metabolic balance in Enterobacteriaceae. eLife 2022; 11:82411. [PMID: 36440827 PMCID: PMC9731577 DOI: 10.7554/elife.82411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in Salmonella enterica and Escherichia coli. The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3'UTR of the GS-encoding glnA mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate sucA through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the glnA 3'UTR deletion mutants expressed SucA at higher levels than the S. enterica and E. coli wild-type strains, respectively. In E. coli, the transcriptional regulator Nac also participates in the repression of sucA. Lastly, this study clarifies that the release of GlnZ from the glnA mRNA by RNase E is essential for the post-transcriptional regulation of sucA. Thus, the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukubaJapan,Transborder Medical Research Center, University of TsukubaTsukubaJapan,International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio UniversityTsuruokaJapan,Graduate School of Media and Governance, Keio UniversityFujisawaJapan
| | - Asaki Kobayashi
- Transborder Medical Research Center, University of TsukubaTsukubaJapan
| | - Anna Berger
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | | | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
9
|
Oogai Y, Nakata M. Small regulatory RNAs of oral streptococci and periodontal bacteria. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:209-216. [PMID: 34745393 PMCID: PMC8551640 DOI: 10.1016/j.jdsr.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022] Open
Abstract
Small regulatory RNAs (sRNAs) belong to a family of non-coding RNAs, and many of which regulate expression of genes via interaction with mRNA. The recent popularity of high-throughput next generation sequencers have presented abundant sRNA-related data, including sRNAs of several different oral bacterial species. Some sRNA candidates have been validated in terms of their expression and interaction with target mRNAs. Since the oral cavity is an environment constantly exposed to various stimuli, such as fluctuations in temperature and pH, and osmotic pressure, as well as changes in nutrient availability, oral bacteria require rapid control of gene expression for adaptation to such diverse conditions, while regulation via interactions of sRNAs with mRNA provides advantages for rapid adaptation. This review summarizes methods effective for identification and validation of sRNAs, as well as sRNAs identified to be associated with oral bacterial species, including cariogenic and periodontal pathogens, together with their confirmed and putative target genes.
Collapse
Affiliation(s)
- Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| |
Collapse
|
10
|
An mRNA-mRNA Interaction Couples Expression of a Virulence Factor and Its Chaperone in Listeria monocytogenes. Cell Rep 2021; 30:4027-4040.e7. [PMID: 32209466 PMCID: PMC8722363 DOI: 10.1016/j.celrep.2020.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/27/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
Bacterial pathogens often employ RNA regulatory elements located in the 5' untranslated regions (UTRs) to control gene expression. Using a comparative structural analysis, we examine the structure of 5' UTRs at a global scale in the pathogenic bacterium Listeria monocytogenes under different conditions. In addition to discovering an RNA thermoswitch and detecting simultaneous interaction of ribosomes and small RNAs with mRNA, we identify structural changes in the 5' UTR of an mRNA encoding the post-translocation chaperone PrsA2 during infection conditions. We demonstrate that the 5' UTR of the prsA2 mRNA base pairs with the 3' UTR of the full-length hly mRNA encoding listeriolysin O, thus preventing RNase J1-mediated degradation of the prsA2 transcript. Mutants lacking the hly-prsA2 interaction exhibit reduced virulence properties. This work highlights an additional level of RNA regulation, where the mRNA encoding a chaperone is stabilized by the mRNA encoding its substrate.
Collapse
|
11
|
Quorum Sensing in Streptococcus mutans Regulates Production of Tryglysin, a Novel RaS-RiPP Antimicrobial Compound. mBio 2021; 12:mBio.02688-20. [PMID: 33727351 PMCID: PMC8092268 DOI: 10.1128/mbio.02688-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria interact and compete with a large community of organisms in their natural environment. Streptococcus mutans is one such organism, and it is an important member of the oral microbiota. We found that S. mutans uses a quorum-sensing system to regulate production of a novel posttranslationally modified peptide capable of inhibiting growth of several streptococcal species. The genus Streptococcus encompasses a large bacterial taxon that commonly colonizes mucosal surfaces of vertebrates and is capable of disease etiologies originating from diverse body sites, including the respiratory, digestive, and reproductive tracts. Identifying new modes of treating infections is of increasing importance, as antibiotic resistance has escalated. Streptococcus mutans is an important opportunistic pathogen that is an agent of dental caries and is capable of systemic diseases such as endocarditis. As such, understanding how it regulates virulence and competes in the oral niche is a priority in developing strategies to defend from these pathogens. We determined that S. mutans UA159 possesses a bona fide short hydrophobic peptide (SHP)/Rgg quorum-sensing system that regulates a specialized biosynthetic operon featuring a radical-SAM (S-adenosyl-l-methionine) (RaS) enzyme and produces a ribosomally synthesized and posttranslationally modified peptide (RiPP). The pairing of SHP/Rgg regulatory systems with RaS biosynthetic operons is conserved across streptococci, and a locus similar to that in S. mutans is found in Streptococcus ferus, an oral streptococcus isolated from wild rats. We identified the RaS-RiPP product from this operon and solved its structure using a combination of analytical methods; we term these RiPPs tryglysin A and B for the unusual Trp-Gly-Lys linkage. We report that tryglysins specifically inhibit the growth of other streptococci, but not other Gram-positive bacteria such as Enterococcus faecalis or Lactococcus lactis. We predict that tryglysin is produced by S. mutans in its oral niche, thus inhibiting the growth of competing species, including several medically relevant streptococci.
Collapse
|
12
|
Xie Z, Zou Z, Raz A, Qin H, Fischetti V, Zhang S, Kreth J, Merritt J. Regulatory control of the Streptococcus mutans HdrRM LytTR Regulatory System functions via a membrane sequestration mechanism. Mol Microbiol 2020; 114:681-693. [PMID: 32706915 DOI: 10.1111/mmi.14576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/04/2023]
Abstract
Bacteria sense and respond to environmental changes via several broad categories of sensory signal transduction systems. Recently, we described the key features of a previously unrecognized, but widely conserved class of prokaryotic sensory system that we refer to as the LytTR Regulatory System (LRS). Our previous studies suggest that most, if not all, prokaryotic LRS membrane proteins serve as inhibitors of their cognate transcription regulators, but the inhibitory mechanisms employed have thus far remained a mystery. Using the Streptococcus mutans HdrRM LRS as a model, we demonstrate how the LRS membrane protein HdrM inhibits its cognate transcription regulator HdrR by tightly sequestering HdrR in a membrane-localized heteromeric HdrR/M complex. Membrane sequestration of HdrR prevents the positive feedback autoregulatory function of HdrR, thereby maintaining a low basal expression of the hdrRM operon. However, this mechanism can be antagonized by ectopically expressing a competitive inhibitor mutant form of HdrR that lacks its DNA binding ability while still retaining its HdrM interaction. Our results indicate that sequestration of HdrR is likely to be the only mechanism required to inhibit its transcription regulator function, suggesting that endogenous activation of the HdrRM LRS is probably achieved through a modulation of the HdrR/M interaction.
Collapse
Affiliation(s)
- Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhengzhong Zou
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Hua Qin
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Vincent Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Shan Zhang
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
13
|
Marx P, Sang Y, Qin H, Wang Q, Guo R, Pfeifer C, Kreth J, Merritt J. Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms. NPJ Biofilms Microbiomes 2020; 6:17. [PMID: 32221309 PMCID: PMC7101444 DOI: 10.1038/s41522-020-0128-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 01/28/2023] Open
Abstract
Transcription regulators from the LexA-like Protein Superfamily control a highly diverse assortment of genetic pathways in response to environmental stress. All characterized members of this family modulate their functionality and stability via a strict coordination with the coprotease function of RecA. Using the LexA-like protein IrvR from Streptococcus mutans, we demonstrate an exception to the RecA paradigm and illustrate how this evolutionary innovation has been coopted to diversify the stress responsiveness of S. mutans biofilms. Using a combination of genetics and biophysical measurements, we demonstrate how non-SOS stresses and SOS stresses each trigger separate regulatory mechanisms that stimulate production of a surface lectin responsible for remodeling the viscoelastic properties of extant biofilms during episodes of environmental stress. These studies demonstrate how changes in the external environment or even anti-biofilm therapeutic agents can activate biofilm-specific adaptive mechanisms responsible for bolstering the integrity of established biofilm communities. Such changes in biofilm community structure are likely to play central roles in the notorious recalcitrance of biofilm infections.
Collapse
Affiliation(s)
- Patrick Marx
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Yu Sang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Hua Qin
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Qingjing Wang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Rongkai Guo
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Carmem Pfeifer
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jens Kreth
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Justin Merritt
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
14
|
Jørgensen MG, Pettersen JS, Kallipolitis BH. sRNA-mediated control in bacteria: An increasing diversity of regulatory mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194504. [PMID: 32061884 DOI: 10.1016/j.bbagrm.2020.194504] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Small regulatory RNAs (sRNAs) act as post-transcriptional regulators controlling bacterial adaptation to environmental changes. Our current understanding of the mechanisms underlying sRNA-mediated control is mainly based on studies in Escherichia coli and Salmonella. Ever since the discovery of sRNAs decades ago, these Gram-negative species have served as excellent model organisms in the field of sRNA biology. More recently, the role of sRNAs in gene regulation has become the center of attention in a broader range of species, including Gram-positive model organisms. Here, we highlight some of the most apparent similarities and differences between Gram-negative and Gram-positive bacteria with respect to the mechanisms underlying sRNA-mediated control. Although key aspects of sRNA regulation appear to be highly conserved, novel themes are arising from studies in Gram-positive species, such as a clear abundance of sRNAs acting through multiple C-rich motifs, and an apparent lack of RNA-binding proteins with chaperone activity.
Collapse
Affiliation(s)
- Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
15
|
Lei L, Yang Y, Yang Y, Wu S, Ma X, Mao M, Hu T. Mechanisms by Which Small RNAs Affect Bacterial Activity. J Dent Res 2019; 98:1315-1323. [PMID: 31547763 DOI: 10.1177/0022034519876898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oral cavity contains a distinct habitat that supports diverse bacterial flora. Recent observations have provided additional evidence that sRNAs are key regulators of bacterial physiology and pathogenesis. These sRNAs have been divided into 5 functional groups: cis-encoded RNAs, trans-encoded RNAs, RNA regulators of protein activity, bacterial CRISPR (clustered regularly interspaced short palindromic repeat) RNAs, and a novel category of miRNA-size small RNAs (msRNAs). In this review, we discuss a critical group of key commensal and opportunistic oral pathogens. In general, supragingival bacterial sRNAs function synergistically to fine-tune the regulation of cellular processes and stress responses in adaptation to environmental changes. Particularly in the cariogenic bacteria Streptococcus mutans, both the antisense vicR RNA and msRNA1657 can impede the metabolism of bacterial exopolysaccharides, prevent biofilm formation, and suppress its cariogenicity. In Enterococcus faecalis, selected sRNAs control the expression of proteins involved in diverse cellular processes and stress responses. In subgingival plaques, sRNAs from periodontal pathogens can function as novel bacterial signaling molecules that mediate bacterial-human interactions in periodontal homeostasis. In Porphyromonas gingivalis, the expression profiles of putative sRNA101 and sRNA42 were found to respond to hemin availability after hemin starvation. Regarding Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), a major periodontal pathogen associated with aggressive periodontitis, the predicted sRNAs interact with several virulence genes, including those encoding leukotoxin and cytolethal distending toxin. Furthermore, in clinical isolates, these associated RNAs could be explored not only as potential biomarkers for oral disease monitoring but also as alternative types of regulators for drug design. Thus, this emerging subspecialty of bacterial regulatory RNAs could reshape our understanding of bacterial gene regulation from their key roles of endogenous regulatory RNAs to their activities in pathologic processes.
Collapse
Affiliation(s)
- L Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Y Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S Wu
- West China Hospital, Sichuan University, Chengdu, China
| | - X Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - M Mao
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - T Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Mu R, Shinde P, Zou Z, Kreth J, Merritt J. Examining the Protein Interactome and Subcellular Localization of RNase J2 Complexes in Streptococcus mutans. Front Microbiol 2019; 10:2150. [PMID: 31620106 PMCID: PMC6759994 DOI: 10.3389/fmicb.2019.02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Regulated RNA turnover is vital for the control of gene expression in all cellular life. In Escherichia coli, this process is largely controlled by a stable degradosome complex containing RNase E and a variety of additional enzymes. In the Firmicutes phylum, species lack RNase E and often encode the paralogous enzymes RNase J1 and RNase J2. Unlike RNase J1, surprisingly little is known about the regulatory function and protein interactions of RNase J2, despite being a central pleiotropic regulator for the streptococci and other closely related organisms. Using crosslink coimmunoprecipitation in Streptococcus mutans, we have identified the major proteins found within RNase J2 protein complexes located in the cytoplasm and at the cell membrane. In both subcellular fractions, RNase J2 exhibited the most robust interactions with RNase J1, while additional transient and/or weaker "degradosome-like" interactions were also detected. In addition, RNase J2 exhibits multiple novel interactions that have not been previously reported for any RNase J proteins, some of which were highly biased for either the cytoplasmic or membrane fractions. We also determined that the RNase J2 C-terminal domain (CTD) encodes a structure that is likely conserved among RNase J enzymes and may have an analogous function to the C-terminal portion of RNase E. While we did observe a number of parallels between the RNase J2 interactome and the E. coli degradosome paradigm, our results suggest that S. mutans degradosomes are either unlikely to exist or are quite distinct from those of E. coli.
Collapse
Affiliation(s)
- Rong Mu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Pushkar Shinde
- Emory College of Arts and Sciences, Atlanta, GA, United States
| | - Zhengzhong Zou
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
17
|
Miyakoshi M, Matera G, Maki K, Sone Y, Vogel J. Functional expansion of a TCA cycle operon mRNA by a 3' end-derived small RNA. Nucleic Acids Res 2019; 47:2075-2088. [PMID: 30541135 PMCID: PMC6393394 DOI: 10.1093/nar/gky1243] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 01/24/2023] Open
Abstract
Global RNA profiling studies in bacteria have predicted the existence of many of small noncoding RNAs (sRNAs) that are processed off mRNA 3′ ends to regulate other mRNAs via the RNA chaperones Hfq and ProQ. Here, we present targets of SdhX (RybD), an Hfq-dependent sRNA that is generated by RNase E mediated 3′ processing of the ∼10 000-nt mRNA of the TCA cycle operon sdhCDAB-sucABCD in enteric bacteria. An in silico search predicted ackA mRNA, which encodes acetate kinase, as a conserved primary target of SdhX. Through base pairing, SdhX represses AckA synthesis during growth of Salmonella on acetate. Repression can be achieved by a naturally occurring 38-nucleotide SdhX variant, revealing the shortest functional Hfq-associated sRNA yet. Salmonella SdhX also targets the mRNAs of fumB (anaerobic fumarase) and yfbV, a gene of unknown function adjacent to ackA. Instead, through a slightly different seed sequence, SdhX can repress other targets in Escherichia coli, namely katG (catalase) and fdoG (aerobic formate dehydrogenase). This study illustrates how a key operon from central metabolism is functionally connected to other metabolic pathways through a 3′ appended sRNA, and supports the notion that mRNA 3′UTRs are a playground for the evolution of regulatory RNA networks in bacteria.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Japan.,Department of Biotechnology, Akita Prefectural University, 010-0195 Akita, Japan.,Center for Food Science and Wellness, Gunma University, 371-8510 Maebashi, Japan.,RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Gianluca Matera
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Kanako Maki
- Department of Biotechnology, Akita Prefectural University, 010-0195 Akita, Japan
| | - Yasuhiro Sone
- Department of Biotechnology, Akita Prefectural University, 010-0195 Akita, Japan
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
18
|
Chen X, Liu C, Peng X, He Y, Liu H, Song Y, Xiong K, Zou L. Sortase A‐mediated modification of the
Streptococcus mutans
transcriptome and virulence traits. Mol Oral Microbiol 2019; 34:219-233. [PMID: 31342653 DOI: 10.1111/omi.12266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
- Department of Periodontics West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Yuanli He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Haixia Liu
- Stomatological Hospital of Chongqing Medical University Chongqing China
| | - Ying Song
- Stomatological Hospital of Chongqing Medical University Chongqing China
| | - Kaixin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases Sichuan University Chengdu China
- Department of Conservation Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
19
|
Broglia L, Materne S, Lécrivain AL, Hahnke K, Le Rhun A, Charpentier E. RNase Y-mediated regulation of the streptococcal pyrogenic exotoxin B. RNA Biol 2018; 15:1336-1347. [PMID: 30290721 PMCID: PMC6284565 DOI: 10.1080/15476286.2018.1532253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoribonuclease Y (RNase Y) is a crucial regulator of virulence in Gram-positive bacteria. In the human pathogen Streptococcus pyogenes, RNase Y is required for the expression of the major secreted virulence factor streptococcal pyrogenic exotoxin B (SpeB), but the mechanism involved in this regulation remains elusive. Here, we demonstrate that the 5′ untranslated region of speB mRNA is processed by several RNases including RNase Y. In particular, we identify two RNase Y cleavage sites located downstream of a guanosine (G) residue. To assess whether this nucleotide is required for RNase Y activity in vivo, we mutated it and demonstrate that the presence of this G residue is essential for the processing of the speB mRNA 5′ UTR by RNase Y. Although RNase Y directly targets and processes speB, we show that RNase Y-mediated regulation of speB expression occurs primarily at the transcriptional level and independently of the processing in the speB mRNA 5′ UTR. To conclude, we demonstrate for the first time that RNase Y processing of an mRNA target requires the presence of a G. We also provide new insights on the speB 5′ UTR and on the role of RNase Y in speB regulation.
Collapse
Affiliation(s)
- Laura Broglia
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Solange Materne
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anne-Laure Lécrivain
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Karin Hahnke
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anaïs Le Rhun
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Emmanuelle Charpentier
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
20
|
Raina M, King A, Bianco C, Vanderpool CK. Dual-Function RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.RWR-0032-2018. [PMID: 30191807 PMCID: PMC6130917 DOI: 10.1128/microbiolspec.rwr-0032-2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteria are known to use RNA, either as mRNAs encoding proteins or as noncoding small RNAs (sRNAs), to regulate numerous biological processes. However, a few sRNAs have two functions: they act as base-pairing RNAs and encode a small protein with additional regulatory functions. Thus, these so called "dual-function" sRNAs can serve as both a riboregulator and an mRNA. In some cases, these two functions can act independently within the same pathway, while in other cases, the base-pairing function and protein function act in different pathways. Here, we discuss the five known dual-function sRNAs-SgrS from enteric species, RNAIII and Psm-mec from Staphylococcus aureus, Pel RNA from Streptococcus pyogenes, and SR1 from Bacillus subtilis-and review their mechanisms of action and roles in regulating diverse biological processes. We also discuss the prospect of finding additional dual-function sRNAs and future challenges in studying the overlap and competition between the functions.
Collapse
Affiliation(s)
- Medha Raina
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| | - Alisa King
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - Colleen Bianco
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | | |
Collapse
|
21
|
Durand S, Condon C. RNases and Helicases in Gram-Positive Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0003-2017. [PMID: 29651979 PMCID: PMC11633581 DOI: 10.1128/microbiolspec.rwr-0003-2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 01/18/2023] Open
Abstract
RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis, the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis, the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Ciaran Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
22
|
Liu N, Chaudhry MT, Xie Z, Kreth J, Merritt J. Identification of New Degrons in Streptococcus mutans Reveals a Novel Strategy for Engineering Targeted, Controllable Proteolysis. Front Microbiol 2017; 8:2572. [PMID: 29312250 PMCID: PMC5742171 DOI: 10.3389/fmicb.2017.02572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Recently, controllable, targeted proteolysis has emerged as one of the most promising new strategies to study essential genes and otherwise toxic mutations. One of the principal limitations preventing the wider adoption of this approach is due to the lack of easily identifiable species-specific degrons that can be used to trigger the degradation of target proteins. Here, we report new advancements in the targeted proteolysis concept by creating the first prokaryotic N-terminal targeted proteolysis system. We demonstrate how proteins from the LexA-like protein superfamily can be exploited as species-specific reservoirs of N- and/or C-degrons, which are easily identifiable due to their proximity to strictly conserved residues found among LexA-like proteins. Using the LexA-like regulator HdiR of Streptococcus mutans, we identified two separate N-degrons derived from HdiR that confer highly efficient constitutive proteolysis upon target proteins when added as N-terminal peptide tags. Both degrons mediate degradation via AAA+ family housekeeping proteases with one degron primarily targeting FtsH and the other targeting the ClpP-dependent proteases. To modulate degron activity, our approach incorporates a hybrid N-terminal protein tag consisting of the ubiquitin-like protein NEDD8 fused to an HdiR degron. The NEDD8 fusion inhibits degron function until the NEDD8-specific endopeptidase NEDP1 is heterologously expressed to expose the N-degron. By fusing the NEDD8-degron tag onto GFP, luciferase, and the pleiotropic regulator RNase J2, we demonstrate that the N-terminal proteolysis approach exhibits far superior performance compared to the classic transcriptional depletion approach and is similarly applicable for the study of highly toxic mutations.
Collapse
Affiliation(s)
- Nan Liu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | | | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
23
|
Sass A, Kiekens S, Coenye T. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci Rep 2017; 7:15665. [PMID: 29142288 PMCID: PMC5688073 DOI: 10.1038/s41598-017-15818-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Small RNAs play a regulatory role in many central metabolic processes of bacteria, as well as in developmental processes such as biofilm formation. Small RNAs of Burkholderia cenocepacia, an opportunistic pathogenic beta-proteobacterium, are to date not well characterised. To address that, we performed genome-wide transcriptome structure analysis of biofilm grown B. cenocepacia J2315. 41 unannotated short transcripts were identified in intergenic regions of the B. cenocepacia genome. 15 of these short transcripts, highly abundant in biofilms, widely conserved in Burkholderia sp. and without known function, were selected for in-depth analysis. Expression profiling showed that most of these sRNAs are more abundant in biofilms than in planktonic cultures. Many are also highly abundant in cells grown in minimal media, suggesting they are involved in adaptation to nutrient limitation and growth arrest. Their computationally predicted targets include a high proportion of genes involved in carbon metabolism. Expression and target genes of one sRNA suggest a potential role in regulating iron homoeostasis. The strategy used for this study to detect sRNAs expressed in B. cenocepacia biofilms has successfully identified sRNAs with a regulatory function.
Collapse
Affiliation(s)
- Andrea Sass
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Sanne Kiekens
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Senpuku H, Yonezawa H, Yoneda S, Suzuki I, Nagasawa R, Narisawa N. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2017; 33:47-58. [PMID: 28845576 DOI: 10.1111/omi.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Saori Yoneda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Pediatric Dentistry, Nihon University at Matsudo, Chiba, Japan
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Graduate School of Science and Engineering, Hosei University, Shinjuku-ku, Tokyo, Japan
| | - Naoki Narisawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
25
|
Liao S, De A, Thompson T, Chapman L, Bitoun JP, Yao X, Yu Q, Ma F, Wen ZT. Expression of BrpA in Streptococcus mutans is regulated by FNR-box mediated repression. Mol Oral Microbiol 2017; 32:517-525. [PMID: 28744965 DOI: 10.1111/omi.12193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
Our previous studies showed that brpA in Streptococcus mutans, which encodes a member of the LytR-CpsA-Psr family of proteins, can be co-transcribed with brpB upstream as a bicistronic operon, and the intergenic region also has strong promoter activity. To elucidate how brpA expression is regulated, the promoter regions were analyzed using polymerase chain reaction-based deletions and site-directed mutagenesis and a promoterless luciferase gene as a reporter. Allelic exchange mutagenesis was also used to examine genes encoding putative trans-acting factors, and the impact of such mutations on brpA expression was analyzed by reporter assays. Multiple elements in the short brpA promoter (nucleotide -1 to -344 relative to start cordon ATG) were shown to have a major impact on brpA expression, including an FNR-box, for a putative binding site of an FNR-type of transcriptional regulator. When compared with the intact brpA promoter, mutations of the highly conserved nucleotides in FNR-box from TTGATgtttAcCtt to TTACAgaaaGtTac resulted in 1362-fold increases of luciferase activity (P < .001), indicative of the FNR-box-mediated repression as a major mechanism in regulation of brpA expression. When luciferase reporter was fused to the upstream brpBA promoter (nucleotides -784 to -1144), luciferase activity was decreased by 4.5-fold (P < .001) in the brpA mutant, TW14D, and by 67.7-fold (P < .001) in the brpB mutant, JB409, compared with the wild-type, UA159. However, no such effects were observed when the reporter gene was fused to the short brpA promoter and its derivatives. These results also suggest that brpA expression in S. mutans is auto-regulated through the upstream brpBA promoter.
Collapse
Affiliation(s)
- S Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - T Thompson
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Chapman
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J P Bitoun
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - X Yao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Q Yu
- Department of Biostatistics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - F Ma
- Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Z T Wen
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
26
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
27
|
Durand S, Braun F, Helfer AC, Romby P, Condon C. sRNA-mediated activation of gene expression by inhibition of 5'-3' exonucleolytic mRNA degradation. eLife 2017; 6. [PMID: 28436820 PMCID: PMC5419742 DOI: 10.7554/elife.23602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control by small regulatory RNA (sRNA) is critical for rapid adaptive processes. sRNAs can directly modulate mRNA degradation in Proteobacteria without interfering with translation. However, Firmicutes have a fundamentally different set of ribonucleases for mRNA degradation and whether sRNAs can regulate the activity of these enzymes is an open question. We show that Bacillus subtilis RoxS, a major trans-acting sRNA shared with Staphylococus aureus, prevents degradation of the yflS mRNA, encoding a malate transporter. In the presence of malate, RoxS transiently escapes from repression by the NADH-sensitive transcription factor Rex and binds to the extreme 5'-end of yflS mRNA. This impairs the 5'-3' exoribonuclease activity of RNase J1, increasing the half-life of the primary transcript and concomitantly enhancing ribosome binding to increase expression of the transporter. Globally, the different targets regulated by RoxS suggest that it helps readjust the cellular NAD+/NADH balance when perturbed by different stimuli.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Anne-Catherine Helfer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Pascale Romby
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France.,Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Ciarán Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
28
|
Kacharia FR, Millar JA, Raghavan R. Emergence of New sRNAs in Enteric Bacteria is Associated with Low Expression and Rapid Evolution. J Mol Evol 2017; 84:204-213. [PMID: 28405712 DOI: 10.1007/s00239-017-9793-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Non-coding small RNAs (sRNAs) are critical to post-transcriptional gene regulation in bacteria. However, unlike for protein-coding genes, the evolutionary forces that shape sRNAs are not understood. We investigated sRNAs in enteric bacteria and discovered that recently emerged sRNAs evolve at significantly faster rates than older sRNAs. Concomitantly, younger sRNAs are expressed at significantly lower levels than older sRNAs. This process could potentially facilitate the integration of newly emerged sRNAs into bacterial regulatory networks. Furthermore, it has previously been difficult to trace the evolutionary histories of sRNAs because rapid evolution obscures their original sources. We overcame this challenge by identifying a recently evolved sRNA in Escherichia coli, which allowed us to determine that novel sRNAs could emerge from vestigial bacteriophage genes, the first known source for sRNA origination.
Collapse
Affiliation(s)
- Fenil R Kacharia
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, 97201, USA
| | - Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, 97201, USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
29
|
Neuhaus K, Landstorfer R, Simon S, Schober S, Wright PR, Smith C, Backofen R, Wecko R, Keim DA, Scherer S. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq - ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 2017; 18:216. [PMID: 28245801 PMCID: PMC5331693 DOI: 10.1186/s12864-017-3586-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Background While NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA. Results Based on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition. Conclusion Determination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3586-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany.
| | - Richard Landstorfer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Svenja Simon
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Steffen Schober
- Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Cameron Smith
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Romy Wecko
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Daniel A Keim
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| |
Collapse
|
30
|
Gimpel M, Brantl S. Dual-function small regulatory RNAs in bacteria. Mol Microbiol 2016; 103:387-397. [PMID: 27750368 DOI: 10.1111/mmi.13558] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Abstract
Dual-function sRNAs are a subgroup of small regulatory RNAs that act on the one hand as base-pairing sRNAs to inhibit or activate target gene expression and on the other hand as peptide-encoding mRNAs that function either in the same or in another metabolic pathway. Here, we review and compare the five currently known and intensively characterized dual-function sRNAs with regard to their two functions, their biological role, their evolutionary conservation and their requirements for RNA chaperones. Furthermore, we summarize the data available on five potential dual-function sRNAs, whose base-pairing function is well established whereas the role of their encoded peptides has not yet been elucidated. In addition, we provide three examples for RNAs with more than one function that do not fall into the above-mentioned category. With the application of RNAseq, peptidomics and transcriptomics it can be expected that the number of dual-function sRNAs will considerably increase within the next years, thus enhancing our knowledge on the regulatory potential of these RNAs.
Collapse
Affiliation(s)
- Matthias Gimpel
- Biologisch-Pharmazeutische Fakultät, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, AG Bakteriengenetik, Philosophenweg 12, Jena, D-07743, Germany
| | - Sabine Brantl
- Biologisch-Pharmazeutische Fakultät, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, AG Bakteriengenetik, Philosophenweg 12, Jena, D-07743, Germany
| |
Collapse
|
31
|
Bouloc P, Repoila F. Fresh layers of RNA-mediated regulation in Gram-positive bacteria. Curr Opin Microbiol 2016; 30:30-35. [DOI: 10.1016/j.mib.2015.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/25/2023]
|
32
|
Bonocora RP, Smith C, Lapierre P, Wade JT. Genome-Scale Mapping of Escherichia coli σ54 Reveals Widespread, Conserved Intragenic Binding. PLoS Genet 2015; 11:e1005552. [PMID: 26425847 PMCID: PMC4591121 DOI: 10.1371/journal.pgen.1005552] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial RNA polymerases must associate with a σ factor to bind promoter DNA and initiate transcription. There are two families of σ factor: the σ70 family and the σ54 family. Members of the σ54 family are distinct in their ability to bind promoter DNA sequences, in the context of RNA polymerase holoenzyme, in a transcriptionally inactive state. Here, we map the genome-wide association of Escherichia coli σ54, the archetypal member of the σ54 family. Thus, we vastly expand the list of known σ54 binding sites to 135. Moreover, we estimate that there are more than 250 σ54 sites in total. Strikingly, the majority of σ54 binding sites are located inside genes. The location and orientation of intragenic σ54 binding sites is non-random, and many intragenic σ54 binding sites are conserved. We conclude that many intragenic σ54 binding sites are likely to be functional. Consistent with this assertion, we identify three conserved, intragenic σ54 promoters that drive transcription of mRNAs with unusually long 5ʹ UTRs. Bacterial RNA polymerases must associate with a σ factor to bind to promoter DNA sequences upstream of genes and initiate transcription. There are two families of σ factor: σ70 and σ54. Members of the σ54 family are distinct from members of the σ70 family in their ability to bind promoter DNA sequences, in association with RNA polymerase, in a transcriptionally inactive state. We have determined positions in the Escherichia coli genome that are bound by σ54, the archetypal member of the σ54 family. Surprisingly, we identified 135 binding sites for σ54, a huge increase over the number of previously described sites. Our data suggest that there are more than 250 σ54 sites in total. Strikingly, most σ54 binding sites are located inside genes, whereas only one intragenic σ54 binding site has previously been described. The location and orientation of intragenic σ54 binding sites is non-random, and many intragenic σ54 binding sites are conserved in other bacterial species. We conclude that many intragenic σ54 binding sites are likely to be functional. Consistent with this notion, we identify three σ54 promoters in E. coli that are located inside genes but drive transcription of unusual mRNAs for the neighboring genes.
Collapse
Affiliation(s)
- Richard P. Bonocora
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Kreth J, Liu N, Chen Z, Merritt J. RNA regulators of host immunity and pathogen adaptive responses in the oral cavity. Microbes Infect 2015; 17:493-504. [PMID: 25790757 PMCID: PMC4485933 DOI: 10.1016/j.micinf.2015.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
The recent explosion of RNA-seq studies has resulted in a newfound appreciation for the importance of riboregulatory RNAs in the posttranscriptional control of eukaryotic and prokaryotic genetic networks. The current review will explore the role of trans-riboregulatory RNAs in various adaptive responses of host and pathogen in the oral cavity.
Collapse
Affiliation(s)
- Jens Kreth
- OUHSC Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OUHSC College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Nan Liu
- Department of Restorative Dentistry, Oregon Health and Science University, 2730 SW Moody Ave., Portland, OR, 97201-5042, USA
| | - Zhiyun Chen
- OUHSC Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, 2730 SW Moody Ave., Portland, OR, 97201-5042, USA.
| |
Collapse
|
34
|
Durand S, Tomasini A, Braun F, Condon C, Romby P. sRNA and mRNA turnover in Gram-positive bacteria. FEMS Microbiol Rev 2015; 39:316-30. [PMID: 25934118 DOI: 10.1093/femsre/fuv007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 01/18/2023] Open
Abstract
It is widely recognized that RNA degradation plays a critical role in gene regulation when fast adaptation of cell growth is required to respond to stress and changing environmental conditions. Bacterial ribonucleases acting alone or in concert with various trans-acting regulatory factors are important mediators of RNA degradation. Here, we will give an overview of what is known about ribonucleases in several Gram-positive bacteria, their specificities and mechanisms of action. In addition, we will illustrate how sRNAs act in a coordinated manner with ribonucleases to regulate the turnover of particular mRNA targets, and the complex interplay existing between the ribosome, the ribonucleases and RNAs.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Arnaud Tomasini
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| | - Frédérique Braun
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| |
Collapse
|
35
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Chen X, Liu N, Khajotia S, Qi F, Merritt J. RNases J1 and J2 are critical pleiotropic regulators in Streptococcus mutans. MICROBIOLOGY-SGM 2015; 161:797-806. [PMID: 25635274 DOI: 10.1099/mic.0.000039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/26/2022]
Abstract
In recent years, it has become increasingly evident that post-transcriptional control mechanisms are the principal source of gene regulation for a large number of prokaryotic genetic pathways, particularly those involved in virulence and environmental adaptation. Post-transcriptional regulation is largely governed by RNA stability, which itself is determined by target accessibility to RNase degradation. In most Firmicutes species, mRNA stability is strongly impacted by the activity of two recently discovered RNases referred to as RNase J1 and RNase J2. Little is known about RNase J1 function in bacteria and even less is known about RNase J2. In the current study, we mutated both RNase J orthologues in Streptococcus mutans to determine their functional roles in the cell. Single and double RNase J mutants were viable, but grew very slowly on agar plates. All of the mutants shared substantial defects in growth, morphology, acid tolerance, natural competence and biofilm formation. However, most of these defects were more severe in the RNase J2 mutant. Phenotypic suppression results also implicate a role for RNase J2 as a regulator of RNase J1 function. Unlike Bacillus subtilis, RNase J2 is a major pleiotropic regulator in S. mutans, which indicates some fundamental differences from B. subtilis in global gene regulation. Key conserved residues among the RNase J2 orthologues of lactic acid bacteria may hint at a greater role for RNase J2 in these species.
Collapse
Affiliation(s)
- Xi Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nan Liu
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sharukh Khajotia
- Department of Dental Materials, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fengxia Qi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Division of Oral Biology, University of Oklahoma Health Sciences Center, OK 73104, USA
| | - Justin Merritt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA Division of Oral Biology, University of Oklahoma Health Sciences Center, OK 73104, USA
| |
Collapse
|
37
|
|