1
|
Wu HH, Leng S, Eisenstat DD, Sergi C, Leng R. Targeting p53 for immune modulation: Exploring its functions in tumor immunity and inflammation. Cancer Lett 2025; 617:217614. [PMID: 40054656 DOI: 10.1016/j.canlet.2025.217614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
p53, often referred to as the "guardian of the genome," is a critical regulator of cellular responses to stress. p53 plays a dual role in tumor suppression and immune regulation. In addition to its well-known functions of maintaining genomic stability and inducing apoptosis, p53 orchestrates a complex interaction between innate and adaptive immune responses. This involvement contributes to pathogen clearance, immune surveillance, and immunogenic cell death (ICD). This review explores the influence of p53 on immune dynamics, detailing its effects on macrophages, dendritic cells, natural killer cells (NK), T cells, and B cells. This review explains how mutations in p53 disrupt immune responses, promoting tumor immune evasion, and highlights its regulation of inflammatory cytokines and pattern recognition receptors. Furthermore, p53's role in ICD marks it as a key player in antitumor immunity, which has significant implications for cancer immunotherapy. The review also discusses the role of p53 in inflammation, autoimmune diseases, and chronic infections, revealing its dual function in promoting and suppressing inflammation through interactions with NF-κB signaling. Therapeutically, approaches that target p53, including wild-type p53 reactivation and combination therapies with immune checkpoint inhibitors, show considerable promise. Advances in high-throughput technologies, such as single-cell RNA sequencing and CRISPR screens, provide new insights into the immunological functions of p53, including its role in microbiome-immune interactions and immune senescence. This comprehensive review highlights the importance of incorporating immunological insights from p53 into innovative therapeutic strategies, addressing existing knowledge gaps, and paving the way for personalized medicine.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada; Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta, T6G 1C9, Canada; Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, Alberta, T6G 2H7, Canada; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada; Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
2
|
Akintunde J, Olayinka M, Ugbaja V, Akinfenwa C, Akintola T, Akamo A, Bello I. Downregulation of inflammatory erectile dysfunction by Mantisa religiosa egg-cake through NO-cGMP-PKG dependent NF-kB signaling cascade activated by mixture of salt intake. Toxicol Rep 2023; 10:633-646. [PMID: 37250529 PMCID: PMC10220466 DOI: 10.1016/j.toxrep.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
We hypothesized whether 10% praying-mantis-egg-cake (10% PMEC) can be applied against inflammatory-erectile-dysfunction and whether it could be linked to NO-cGMP-dependent PKG signaling cascade. Ninety male albino-rats were randomly distributed into nine (n = 10) groups. Group I was given distilled water. Group II and III were pre-treated with 80 mg/kg NaCl and 75 mg/kg MSG, respectively. Group IV was pre-treated with 80 mg/kg NaCl + 75 mg/kg MSG. Group V was administered with 80 mg/kg NaCl+ 3 mg/kg Amylopidin. Group VI was given 80 mg/kg NaCl + 10% PMEC. Group VII was treated with 75 mg/kg MSG + 10% PMEC. Group VIII was treated with 80 mg/kg NaCl+ 75 mg/kg MSG + 10% PMEC. Group IX was post-treated with 10% PMEC for 14 days. Penile PDE-51, arginase, ATP hydrolytic, cholinergic, dopaminergic (MAO-A) and adenosinergic (ADA) enzymes were hyperactive on intoxication with NaCl and MSG. The erectile dysfunction caused by inflammation was linked to alteration of NO-cGMP-dependent PKG signaling cascade via up-regulation of key cytokines and chemokine (MCP-1). These lesions were prohibited by protein-rich-cake (10% PMEC). Thus, protein-rich-cake (10% PMEC) by a factor of 4 (25%) inhibited penile cytokines/MCP-1 on exposure to mixture of salt-intake through NO-cGMP-PKG dependent-NF-KB signaling cascade in rats.
Collapse
Affiliation(s)
- J.K. Akintunde
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M.C. Olayinka
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - V.C. Ugbaja
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - C.A. Akinfenwa
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - T.E. Akintola
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.J. Akamo
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - I.J. Bello
- School of Applied Sciences, Adeyemi Federal University of Education, Ondo, Nigeria
| |
Collapse
|
3
|
Halim F, Azhar Y, Suwarman S, Hernowo B. p53 Mutation as Plausible Predictor for Endocrine Resistance Therapy in Luminal Breast Cancer. F1000Res 2022; 11:330. [PMID: 36519010 PMCID: PMC9718986 DOI: 10.12688/f1000research.108628.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Endocrine therapy resistance in Luminal Breast Cancer is a significant issue to be tackled, but currently, no specific biomarker could be used to anticipate this event. p53 mutation is widely known as one of Breast Cancer's most prominent genetic alterations. Its mutation could generate various effects in Estrogen Receptor and Progesterone Receptor molecular works, tangled in events leading to the aggravation of endocrine therapy resistance. Hence the possibility of p53 mutation utilization as an endocrine therapy resistance predictive biomarker is plausible. The purpose of this review is to explore the latest knowledge of p53 role in Estrogen Receptor and Progesterone Receptor molecular actions, thus aggravating the Endocrine Therapy resistance in Luminal Breast Cancer, from which we could define possibilities and limitations to utilize p53 as the predictive biomarker of endocrine therapy resistance in Luminal Breast Cancer.
Collapse
Affiliation(s)
- Freda Halim
- Department of Surgery, Pelita Harapan University, Tangerang, Indonesia,
| | - Yohana Azhar
- Department of Surgery - Oncology, Head and Neck Division, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Suwarman Suwarman
- Department of Anesthesiology and Intensive Care, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Bethy Hernowo
- Department of Anatomical Pathology, Universitas Padjajaran, Bandung, West Java, Indonesia
| |
Collapse
|
4
|
Davies J, Muralidhar S, Randerson-Moor J, Harland M, O'Shea S, Diaz J, Walker C, Nsengimana J, Laye J, Mell T, Chan M, Appleton L, Birkeälv S, Adams DJ, Cook GP, Ball G, Bishop DT, Newton-Bishop JA. Ulcerated melanoma: Systems biology evidence of inflammatory imbalance towards pro-tumourigenicity. Pigment Cell Melanoma Res 2022; 35:252-267. [PMID: 34826184 DOI: 10.1111/pcmr.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023]
Abstract
Microscopic ulceration is an independent predictor of melanoma death. Here, we used systems biology to query the role of host and tumour-specific processes in defining the phenotype. Albumin level as a measure of systemic inflammation was predictive of fewer tumour-infiltrating lymphocytes and poorer survival in the Leeds Melanoma Cohort. Ulcerated melanomas were thicker and more mitotically active (with corresponding transcriptomic upregulated cell cycle pathways). Sequencing identified tumoural p53 and APC mutations, and TUBB2B amplification as associated with the phenotype. Ulcerated tumours had perturbed expression of cytokine genes, consistent with protumourigenic inflammation and histological and transcriptomic evidence for reduced adaptive immune cell infiltration. Pathway/network analysis of multiomic data using neural networks highlighted a role for the β-catenin pathway in the ulceration, linking genomic changes in the tumour to immunosuppression and cell proliferation. In summary, the data suggest that ulceration is in part associated with genomic changes but that host factors also predict melanoma death with evidence of reduced immune responses to the tumour.
Collapse
Affiliation(s)
- John Davies
- Leeds Institute of Data Analytics, University of Leeds, Leeds, UK
| | - Sathya Muralidhar
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Sally O'Shea
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Dermatology Department, South Infirmary-Victoria University Hospital Cork and University College Cork, Cork, Ireland
| | - Joey Diaz
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Christy Walker
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Population Health Sciences Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Jon Laye
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tracey Mell
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - May Chan
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Lizzie Appleton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Sofia Birkeälv
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Graham P Cook
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - David T Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | |
Collapse
|
5
|
Cheng YH, Chiang EPI, Syu JN, Chao CY, Lin HY, Lin CC, Yang MD, Tsai SY, Tang FY. Treatment of 13-cis retinoic acid and 1,25-dihydroxyvitamin D3 inhibits TNF-alpha-mediated expression of MMP-9 protein and cell invasion through the suppression of JNK pathway and microRNA 221 in human pancreatic adenocarcinoma cancer cells. PLoS One 2021; 16:e0247550. [PMID: 33730072 PMCID: PMC7968633 DOI: 10.1371/journal.pone.0247550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer type with a very high mortality rate. Inflammatory cytokine such as tumor necrosis factor- alpha (TNF-α) plays a pivotal role in the progression of PDAC. Recently, suppression of cell invasion by preventive agents has received considerable attention in the prevention of metastatic tumors. Several clinical studies suggested that natural forms or analogues of fat-soluble vitamins such as vitamin A and vitamin D can work as anti-cancer agents to inhibit the development of cancer. In this study, our results demonstrated that co-treatment of 13-cis retinoic acid (13-cis RA) and 1,25-dihydroxyvitamin D3 (1,25-VD3) significantly inhibited TNF-α mediated cell invasion in PDAC in vitro. Cotreatment of 13-cis RA and 1,25-VD3 also inhibited TNF-α mediated expression of matrix metalloproteinase-9 (MMP-9) protein through blocking c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) signaling pathways. Our results demonstrated that treatment of TNF-α lead to a decreased expression of tissue inhibitor of metalloproteinase- 3 (TIMP-3) protein and an induction of MMP-9 protein and cell invasion through an upregulation of microRNA-221 (miR-221) in human PDAC cells. Moreover, treatment of SP600125 (a specific inhibitor of JNK pathway) or cotreatment of 13-cis RA and 1,25-VD3 significantly induced a decreased expression of miR-221 and an increased expression of TIMP-3 protein. These results suggest that 13-cis RA and 1,25-VD3 significantly suppress TNF-α mediated cell invasion and therefore potentially act as preventive agents against PDAC.
Collapse
Affiliation(s)
- Yen-Huang Cheng
- Department of Emergency Medicine, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, Taiwan
| | - Jia-Ning Syu
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hung-Yu Lin
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Cheng-Chieh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Healthcare Administration, College of Health Science, Asia University, Taichung, Taiwan
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shu-Yao Tsai
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Feng-Yao Tang
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Rooban T, Joseph I, Preetha S, Elizabeth J, Rao UK, Ranganathan K. Study on TNFRSF mRNA Alterations and P53 Mutation in Head and Neck Squamous Cell Carcinoma. JOURNAL OF OROFACIAL SCIENCES 2020. [DOI: 10.4103/jofs.jofs_139_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 2019; 235:116825. [PMID: 31494169 DOI: 10.1016/j.lfs.2019.116825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistances against chemotherapeutics are among the major challenges related to cancer treatment. Recent studies have demonstrated that different conditions may tune the expression and activity of MDR transporters. For instance, inflammation occurs through a complex cytological process and chemical reactions in the most tumor microenvironment; it can play a critical role in cancer development and is capable of altering the expression and function of MDR transporters. Cytokines, interleukins, and prostaglandins are potent inflammatory mediators that can modulate the expression of MDRs at transcriptional and post-transcriptional levels in the most human cancer cells and tissues and potentially contribute to balance bioavailability of chemotherapeutic agents. Since cancer cases are usually accompanied by inflammatory responses, glucocorticoids and NSAIDs are the primary useful combination chemotherapies in a variety of cancer treatment protocols. In addition to the anti-inflammatory activities of these agents, they exert diverse modulatory effects on MDR-mediated drug resistance via specific mechanisms. Several factors, including cell and MDR-protein types, pharmacokinetics, and pharmacogenetics, mainly influence the regulatory mechanisms. Uncovering the networks between inflammation and multidrug resistance will be clinically helpful in the treatment of malignant cancers and decreasing the cancer mortality rates.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Dinmohammadi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Dong Z, Zhang H, Gong X, Wei W, Lv Y, Chen Z, Wang R, Yi J, Shen Y, Jin S. The Role of the Tumor Microenvironment in Neuropilin 1-Induced Radiation Resistance in Lung Cancer Cells. J Cancer 2019; 10:4017-4030. [PMID: 31417646 PMCID: PMC6692609 DOI: 10.7150/jca.28163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Neuropilin 1 (NRP1) is a pleiotropic receptor which can interact with multiple ligands and their receptors. It plays an important role in the process of axonal growth, angiogenesis, tumor metastasis and radiation resistance in endothelial cells and some tumor cells. Interaction of stromal and tumor cells plays a dynamic role in initiating and enhancing carcinogenesis, and has received considerable attention in recent years. Material and Methods: In this study, A549 lung cancer cell lines with different NRP1 expression levels were constructed in vitro, a two-dimensional (2D), three-dimensional (3D) co-culture system and tumor-bearing model was established in SCID mice. Western blot, qRT-PCR, immunofluorescence, cytometric bead array and flow cytometry were used to investigate the effect of the tumor microenvironment in NRP1-induced lung cancer cell radiation resistance. Results: In 2D or 3D co-culture system, NRP1 could be regulated inflammatory factors such as TNF, IL-6 IL-8 and IL-17 and the related chemokines MCP-1, IP-10 and RANTES in the tumor microenvironment, which in turn induced radiation resistance in lung cancer cells. In addition, different expression levels of NRP1 in 2D, 3D culture systems and tumor-bearing models were able to significantly regulate cell phenotype, proliferative capacity, epithelial-mesenchymal transition (EMT) and the radiation resistance of A549 cells. Conclusion: Our results verified that NRP1, inflammatory factors, chemokines and related signaling pathways, which affect the transformation of related cell components and thus lung cancer cell immune tolerance and migratory ability, all play an important role in radiation resistance.
Collapse
Affiliation(s)
- Zhuo Dong
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Haiyang Zhang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.,Department of Prosthodontics Dentistry, The Stomatology Hospital of Jilin University, Changchun, 130021, China
| | - Xinkou Gong
- Department of Radiology, The 2 nd Hospital of Jilin University, Changchun, 130021, China
| | - Wei Wei
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yahui Lv
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhiyuan Chen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| |
Collapse
|
9
|
Chaudhary S, Ganguly K, Muniyan S, Pothuraju R, Sayed Z, Jones DT, Batra SK, Macha MA. Immunometabolic Alterations by HPV Infection: New Dimensions to Head and Neck Cancer Disparity. J Natl Cancer Inst 2019; 111:233-244. [PMID: 30615137 PMCID: PMC6410958 DOI: 10.1093/jnci/djy207] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer, with high morbidity and mortality. Racial disparity in HNSCC is observed between African Americans (AAs) and whites, effecting both overall and 5-year survival, with worse prognosis for AAs. In addition to socio-economic status and demographic factors, many epidemiological studies have also identified factors including coexisting human papillomavirus (HPV) infection, primary tumor location, and a variety of somatic mutations that contribute to the prognostic incongruities in HNSCC patients among AAs and whites. Recent research also suggests HPV-induced dysregulation of tumor metabolism and immune microenvironment as the major regulators of HNSCC patient prognosis. Outcomes of several preclinical and clinical studies on targeted therapeutics warrant the need to elucidate the inherent mechanistic and population-based disparities underlying patient responses. This review systematically reports the underlying reasons for inconsistency in disease prognosis and therapy responses among HNSCC patients from different racial populations. The focus of this review is twofold: aside from discussing the causes of racial disparity, we also seek to identify the consequences of such disparity in terms of HPV infection and its associated mutational, metabolic, and immune landscapes. Considering the clinical impact of differential patient outcomes among AA and white populations, understanding the underlying cause of this disparity may pave the way for novel precision therapy for HNSCC.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Zafar Sayed
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Dwight T Jones
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
10
|
Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMedicine 2018; 37:557-562. [PMID: 30344124 PMCID: PMC6284454 DOI: 10.1016/j.ebiom.2018.10.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
P53 is a transcription factor very often mutated in malignancies. It functions towards the regulation of important cellular activities, such as cell cycle, senescence and apoptosis. Since inflammation and cancer are strongly associated through common pathways, P53 can suppress inflammation in a plethora of human tissues. Growth Hormone - Releasing Hormone is a hypothalamic peptide with a great capacity to affect the complex networks of cellular regulation via GHRH - specific receptors. GHRH antagonistic and agonistic analogs have been developed for clinical applications, including treatment of benign prostatic hyperplasia, breast, prostate and lung cancers, diabetes and neurodegenerative diseases. The epicenter of the current manuscript is the protective role of P53 against inflammation and cancer and emphasizes the p53 – mediated beneficial effects of GHRH antagonists in various human diseases. Inflammation is tightly associated with cancer. GHRH antagonists induce P53 expression. P53 exerts a protective effect against cancer and inflammation.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Andrew V Schally
- Department of Pathology and Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33156, USA; Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33156, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Poland
| |
Collapse
|
11
|
Yang Y, Li L, Chen F, Zhang L, Bu H. The Role of Interleukin-31 Polymorphisms in Non-Small Cell Lung Cancer Genetic Susceptibility and Clinical Outcome. Genet Test Mol Biomarkers 2018; 22:314-319. [PMID: 29791232 DOI: 10.1089/gtmb.2017.0256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Interleukin-31 (IL-31), a novel T helper type 2 effector cytokine, is known to have an important effect on the pathogenesis of allergic disease and tumors. However, the impact of IL-31 on human lung cancer remains unclear. METHODS This study explored the role of IL-31 polymorphisms in lung cancer and sought to characterize how IL-31 polymorphisms correlate with lung cancer tumorigenesis and patient survival rates. Using a single-nucleotide polymorphism genotype assay, we examined the expression of two IL-31 polymorphisms (rs7977932 and rs4758680) in samples from 302 lung cancer patients and 493 control cases. RESULTS Lung cancer patients who were homozygous CC for rs7977932 or carried the G allele of rs4758680 had significantly poorer prognoses compared to those who did not have these genotypes. Moreover, the rs7977932 CC genotype was significantly associated with metastasis and poor survival status in lung adenocarcinoma. CONCLUSION Our study indicates the importance of IL-31 polymorphisms for susceptibility and survival status in lung cancer.
Collapse
Affiliation(s)
- Yongfeng Yang
- 1 Laboratory of Pathology, West China Hospital, Sichuan University, Key Laboratory of Transplant Engineering and Immunology, Sichuan University , Chengdu, China
| | - Li Li
- 1 Laboratory of Pathology, West China Hospital, Sichuan University, Key Laboratory of Transplant Engineering and Immunology, Sichuan University , Chengdu, China
| | - Fei Chen
- 1 Laboratory of Pathology, West China Hospital, Sichuan University, Key Laboratory of Transplant Engineering and Immunology, Sichuan University , Chengdu, China
| | - Li Zhang
- 1 Laboratory of Pathology, West China Hospital, Sichuan University, Key Laboratory of Transplant Engineering and Immunology, Sichuan University , Chengdu, China
| | - Hong Bu
- 1 Laboratory of Pathology, West China Hospital, Sichuan University, Key Laboratory of Transplant Engineering and Immunology, Sichuan University , Chengdu, China .,2 Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University , Chengdu, Sichuan Province, China
| |
Collapse
|
12
|
Pileczki V, Pop L, Braicu C, Budisan L, Bolba Morar G, Del C Monroig-Bosque P, Sandulescu RV, Berindan-Neagoe I. Double gene siRNA knockdown of mutant p53 and TNF induces apoptosis in triple-negative breast cancer cells. Onco Targets Ther 2016; 9:6921-6933. [PMID: 27956838 PMCID: PMC5113913 DOI: 10.2147/ott.s110719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apoptosis is the major downregulated pathway in cancer. Simultaneous inhibition using specific small interfering RNA (siRNA) of two key player genes, p53 and TNF, is an interesting and feasible strategy when it comes to investigating various molecular pathways and biological processes in triple-negative breast cancer (TNBC), which is one of the most aggressive and therapeutically unresponsive forms of breast cancers. Our present research focuses on evaluating the impact of double p53-siRNA and TNF-siRNA knockdown at a cellular level, and also evaluating cell proliferation, apoptosis, induction of autophagy, and gene expression by using reverse transcription polymerase chain reaction array approaches. Simultaneous inhibition of p53 and TNF in Hs578T TNBC human cell line revealed a panel of up- and downregulated genes involved in apoptosis. Furthermore, the effects of double gene knockdown were validated in a second TNBC cell line, MDA-MB-231, by using reverse transcription polymerase chain reaction TaqMan assay. All our findings help in understanding the functional mechanisms of extrinsic apoptosis, cell signaling pathways, and the mechanisms involved in tumor cell survival, growth, and death in TNBC.
Collapse
Affiliation(s)
- Valentina Pileczki
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy
| | - Laura Pop
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Livia Budisan
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Bolba Morar
- Department of Senology, the Oncology Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania
| | | | - Robert V Sandulescu
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy
| | - Ioana Berindan-Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, the Oncology Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
13
|
Reddy VR, Annamalai T, Narayanan V, Ramanathan A. Hypermethylation of promoter region of LATS1--a CDK interacting protein in oral squamous cell carcinomas--a pilot study in India. Asian Pac J Cancer Prev 2015; 16:1599-603. [PMID: 25743838 DOI: 10.7314/apjcp.2015.16.4.1599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic silencing of tumor suppressor genes due to promoter hypermethylation is one of the frequent mechanisms observed in cancers. Hypermethylation of several tumor suppressor genes involved in cell cycle regulation has been reported in many types of tumors including oral squamous cell carcinomas. LATS1 (Large Tumor Suppressor, isoform 1) is a novel tumor suppressor gene that regulates cell cycle progression by forming complexes with the cyclin dependent kinase, CDK1. Promoter hypermethylation of the LATS1 gene has been observed in several carcinomas and also has been linked with prognosis. However, the methylation status of LATS1 in oral squamous cell carcinomas is not known. As oral cancer is one of the most prevalent forms of cancer in India, the present study was designed to investigate the methylation status of LATS1 promoter and associate it with histopathological findings in order to determine any associations of the genetic status with stage of differentiation. MATERIALS AND METHODS Tumor chromosomal DNA isolated from biopsy tissues of thirteen oral squamous cell carcinoma biopsy tissues were subjected to digestion with methylation sensitive HpaII enzyme followed by amplification with primers flanking CCGG motifs in promoter region of LATS1 gene. The PCR amplicons were subsequently subjected to agarose gel electrophoresis along with undigested amplification control. RESULTS HpaII enzyme based methylation sensitive PCR identified LATS1 promoter hypermethylation in seven out of thirteen oral squamous cell carcinoma samples. CONCLUSIONS The identification of LATS1 promoter hypermethylation in seven oral squamous cell carcinoma samples (54%), which included one sample with epithelial dysplasia, two early invasive and one moderately differentiated lesions indicates that the hypermethylation of this gene may be one of the early event during carcinogenesis. To the best of our knowledge, this is the first study to have explored and identified positive association between LATS1 promoter hypermethylation with histopathological features in oral squamous cell carcinomas.
Collapse
Affiliation(s)
- Vijaya Ramakrishna Reddy
- Oral and Maxillofacial Surgery, Rajah Muthiah Dental College and Hospital, Annamalai University, Annamalai Nagar, India E-mail :
| | | | | | | |
Collapse
|