1
|
Gao Y, Yang L, Guo Y, Zhou W, Ren S, Chen Y, Chen XG, Liu P, Gu J. Characterization, functional exploration, and evolutionary analysis of mirtronic microRNAs reveal their origin in the invasive vector mosquito, Aedes albopictus. INSECT SCIENCE 2025. [PMID: 40287948 DOI: 10.1111/1744-7917.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 04/29/2025]
Abstract
The mirtron pathway represents a distinct category of noncanonical microRNA (miRNA) biogenesis mechanisms. Current studies suggest that the mirtron pathway may be widely prevalent across various taxa, including animals and plants, but investigation of this pathway has focused mainly on mammals, particularly humans, and the biological functions and emerging roles of several mirtrons in human diseases have been elucidated. In the context of insects, mirtrons have only been comprehensively characterized and preliminarily functionally analyzed in Drosophila. The Asian tiger mosquito, Aedes albopictus, is a highly invasive species and an important vector of arbovirus transmission to humans. Although canonical miRNA function has been studied in depth in mosquitoes, the role of mirtrons in this species remains to be revealed. In this study, we identified and validated 2 novel conventional mirtrons in Ae. albopictus that are precursors of miR-11900 and miR-11893. Mirtronic miRNA biogenesis depends on the splicing of introns and cleavage by Dicer but does not necessarily correlate with intron location in host genes. The molecular evolution of mirtrons was analyzed using methods based on host genes and their exon‒intron architecture; the results indicate that mirtronic miRNAs are relatively young and that they may have appeared in Culicinae after the Anophelinae and Culicinae diverged. According to small RNA sequencing (RNA-seq) and RNA-seq data on post-mirtronic miRNA overexpression, mosquito mirtronic miRNAs are present in low abundance, and the absence of typical target genes in Ae. albopictus suggests they are not involved in post-transcriptional gene regulation. Overall, our results indicate that the emergence of 2 mirtrons in Ae. albopictus is likely due to the formation of Dicer-recognized secondary structures during the evolution of the intron sequence; these structures are similar to byproducts processed by Dicer, and their abundance is controlled by an alternative adventitious mirtron emergence-dependent mechanism. Our study identifies for the 1st time mirtrons in insect species distinct from Drosophila melanogaster, provides new insights into mirtron evolution, and provides a reference for the functional analysis of mirtrons.
Collapse
Affiliation(s)
- Yonghui Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Guo
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wankui Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory Hospital of Nanhai Economic Development Zone, China
| | - Shuyi Ren
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulan Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Guang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Webb J, Zhao M, Campbell AH, Paul NA, Cummins SF, Eamens AL. The microRNA Pathway of Macroalgae: Its Similarities and Differences to the Plant and Animal microRNA Pathways. Genes (Basel) 2025; 16:442. [PMID: 40282402 PMCID: PMC12026948 DOI: 10.3390/genes16040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
In plants and animals, the microRNA (miRNA) class of small regulatory RNA plays an essential role in controlling gene expression in all aspects of development, to respond to environmental stress, or to defend against pathogen attack. This well-established master regulatory role for miRNAs has led to each protein-mediated step of both the plant and animal miRNA pathways being thoroughly characterized. Furthermore, this degree of characterization has led to the development of a suite of miRNA-based technologies for gene expression manipulation for fundamental research or for use in industrial or medical applications. In direct contrast, molecular research on the miRNA pathway of macroalgae, specifically seaweeds (marine macroalgae), remains in its infancy. However, the molecular research conducted to date on the seaweed miRNA pathway has shown that it shares functional features specific to either the plant or animal miRNA pathway. In addition, of the small number of seaweed species where miRNA data is available, little sequence conservation of individual miRNAs exists. These preliminary findings show the pressing need for substantive research into the seaweed miRNA pathway to advance our current understanding of this essential gene expression regulatory process. Such research will also generate the knowledge required to develop novel miRNA-based technologies for use in seaweeds. In this review, we compare and contrast the seaweed miRNA pathway to those well-characterized pathways of plants and animals and outline the low degree of miRNA sequence conservation across the polyphyletic group known as the seaweeds.
Collapse
Affiliation(s)
- Jessica Webb
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Min Zhao
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Alexandra H. Campbell
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Nicholas A. Paul
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Scott F. Cummins
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Andrew L. Eamens
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
3
|
Kim H, Lee YY, Kim VN. The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol 2025; 26:276-296. [PMID: 39702526 DOI: 10.1038/s41580-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute. We also highlight newly identified cis-acting elements and their impact on miRNA maturation, informed by advanced high-throughput and structural studies, and discuss recently discovered mechanisms of clustered miRNA processing, target recognition and target-directed miRNA decay (TDMD). Lastly, we explore multiple regulatory layers of miRNA biogenesis, mediated by RNA-protein interactions, miRNA tailing (uridylation or adenylation) and RNA modifications.
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Young-Yoon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kelley LH, Caldas IV, Sullenberger MT, Yongblah KE, Niazi AM, Iyer A, Li Y, Tran PM, Valen E, Ahmed-Braimah YH, Maine EM. Poly(U) polymerase activity in Caenorhabditis elegans regulates abundance and tailing of sRNA and mRNA. Genetics 2024; 228:iyae120. [PMID: 39067069 PMCID: PMC11457939 DOI: 10.1093/genetics/iyae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Terminal nucleotidyltransferases add nucleotides to the 3' end of RNA to modify their stability and function. In Caenorhabditis elegans, the terminal uridyltransferases/poly(U) polymerases PUP-1 (aka CID-1, CDE-1), PUP-2, and PUP-3 affect germline identity, survival, and development. Here, we identify small RNA (sRNA) and mRNA targets of these PUPs and of a fourth predicted poly(U) polymerase, F43E2.1/PUP-4. Using genetic and RNA sequencing approaches, we identify RNA targets of each PUP and the U-tail frequency and length of those targets. At the whole organism level, PUP-1 is responsible for most sRNA U-tailing, and other PUPs contribute to modifying discrete subsets of sRNAs. Moreover, the expression of PUP-2, PUP-3, and especially PUP-4 limits uridylation on some sRNAs. The relationship between uridylation status and sRNA abundance suggests that U-tailing can have a negative or positive effect on abundance depending on context. sRNAs modified by PUP activity primarily target mRNAs that are ubiquitously expressed or most highly expressed in the germline. mRNA data obtained with a Nanopore-based method reveal that the addition of U-tails to nonadenylated mRNA is substantially reduced in the absence of PUP-3. Overall, this work identifies PUP RNA targets, defines the effect of uridylation loss on RNA abundance, and reveals the complexity of PUP regulation in C. elegans development.
Collapse
Affiliation(s)
- Leanne H Kelley
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Ian V Caldas
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | | | - Kevin E Yongblah
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Anoop Iyer
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Yini Li
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Patrick Minty Tran
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Yasir H Ahmed-Braimah
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Eleanor M Maine
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
7
|
Bernard EIM, Towler BP, Rogoyski OM, Newbury SF. Characterisation of the in-vivo miRNA landscape in Drosophila ribonuclease mutants reveals Pacman-mediated regulation of the highly conserved let-7 cluster during apoptotic processes. Front Genet 2024; 15:1272689. [PMID: 38444757 PMCID: PMC10912645 DOI: 10.3389/fgene.2024.1272689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles. Loss of function mutations in either Pacman or Dis3L2 have been demonstrated to result in distinct phenotypes, and both have been implicated in human disease. One mechanism by which gene expression is controlled is through the function of miRNAs which have been shown to be crucial for the control of almost all cellular processes. Although the biogenesis and mechanisms of action of miRNAs have been comprehensively studied, the mechanisms regulating their own turnover are not well understood. Here we characterise the miRNA landscape in a natural developing tissue, the Drosophila melanogaster wing imaginal disc, and assess the importance of Pacman and Dis3L2 on the abundance of miRNAs. We reveal a complex landscape of miRNA expression and show that whilst a null mutation in dis3L2 has a minimal effect on the miRNA expression profile, loss of Pacman has a profound effect with a third of all detected miRNAs demonstrating Pacman sensitivity. We also reveal a role for Pacman in regulating the highly conserved let-7 cluster (containing miR-100, let-7 and miR-125) and present a genetic model outlining a positive feedback loop regulated by Pacman which enhances our understanding of the apoptotic phenotype observed in Pacman mutants.
Collapse
Affiliation(s)
- Elisa I. M. Bernard
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oliver M. Rogoyski
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
8
|
Kang L, Li C, Qin A, Liu Z, Li X, Zeng L, Yu H, Wang Y, Song J, Chen R. Identification and Expression Analysis of the Nucleotidyl Transferase Protein (NTP) Family in Soybean ( Glycine max) under Various Abiotic Stresses. Int J Mol Sci 2024; 25:1115. [PMID: 38256188 PMCID: PMC10816777 DOI: 10.3390/ijms25021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Nucleotidyl transferases (NTPs) are common transferases in eukaryotes and play a crucial role in nucleotide modifications at the 3' end of RNA. In plants, NTPs can regulate RNA stability by influencing 3' end modifications, which in turn affect plant growth, development, stress responses, and disease resistance. Although the functions of NTP family members have been extensively studied in Arabidopsis, rice, and maize, there is limited knowledge about NTP genes in soybeans. In this study, we identified 16 members of the NTP family in soybeans, including two subfamilies (G1 and G2) with distinct secondary structures, conserved motifs, and domain distributions at the protein level. Evolutionary analysis of genes in the NTP family across multiple species and gene collinearity analysis revealed a relatively conserved evolutionary pattern. Analysis of the tertiary structure of the proteins showed that NTPs have three conserved aspartic acids that bind together to form a possible active site. Tissue-specific expression analysis indicated that some NTP genes exhibit tissue-specific expression, likely due to their specific functions. Stress expression analysis showed significant differences in the expression levels of NTP genes under high salt, drought, and cold stress. Additionally, RNA-seq analysis of soybean plants subjected to salt and drought stress further confirmed the association of soybean NTP genes with abiotic stress responses. Subcellular localization experiments revealed that GmNTP2 and GmNTP14, which likely have similar functions to HESO1 and URT1, are located in the nucleus. These research findings provide a foundation for further investigations into the functions of NTP family genes in soybeans.
Collapse
Affiliation(s)
- Liqing Kang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Zehui Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Xuanyue Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| |
Collapse
|
9
|
Lee S, Jee D, Srivastava S, Yang A, Ramidi A, Shang R, Bortolamiol-Becet D, Pfeffer S, Gu S, Wen J, Lai EC. Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals. Cell Rep 2023; 42:112111. [PMID: 36800291 PMCID: PMC10508058 DOI: 10.1016/j.celrep.2023.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Canonical microRNA (miRNA) hairpins are processed by the RNase III enzymes Drosha and Dicer into ∼22 nt RNAs loaded into an Argonaute (Ago) effector. In addition, splicing generates numerous intronic hairpins that bypass Drosha (mirtrons) to yield mature miRNAs. Here, we identify hundreds of previously unannotated, splicing-derived hairpins in intermediate-length (∼50-100 nt) but not small (20-30 nt) RNA data. Since we originally defined mirtrons from small RNA duplexes, we term this larger set as structured splicing-derived RNAs (ssdRNAs). These associate with Dicer and/or Ago complexes, but generally accumulate modestly and are poorly conserved. We propose they contaminate the canonical miRNA pathway, which consequently requires defense against the siege of splicing-derived substrates. Accordingly, ssdRNAs/mirtrons comprise dominant hairpin substrates for 3' tailing by multiple terminal nucleotidyltransferases, notably TUT4/7 and TENT2. Overall, the rampant proliferation of young mammalian mirtrons/ssdRNAs, coupled with an inhibitory molecular defense, comprises a Red Queen's race of intragenomic conflict.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA
| | - David Jee
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sid Srivastava
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; High Technology High School, Lincroft, NJ 07738, USA
| | - Acong Yang
- RNA Biology Laboratory, Center for Cancer Research, 8 National Cancer Institute, Frederick, MD 21702, USA
| | - Abhinav Ramidi
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; High Technology High School, Lincroft, NJ 07738, USA
| | - Renfu Shang
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA
| | - Diane Bortolamiol-Becet
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, 8 National Cancer Institute, Frederick, MD 21702, USA
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| | - Eric C Lai
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
10
|
de Rooij LA, Mastebroek DJ, ten Voorde N, van der Wall E, van Diest PJ, Moelans CB. The microRNA Lifecycle in Health and Cancer. Cancers (Basel) 2022; 14:cancers14235748. [PMID: 36497229 PMCID: PMC9736740 DOI: 10.3390/cancers14235748] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that regulate gene expression at the post-transcriptional level. They can bind to around 60% of all protein-coding genes with an average of 200 targets per miRNA, indicating their important function within physiological and pathological cellular processes. miRNAs can be quickly produced in high amounts through canonical and non-canonical pathways that involve a multitude of steps and proteins. In cancer, miRNA biogenesis, availability and regulation of target expression can be altered to promote tumour progression. This can be due to genetic causes, such as single nucleotide polymorphisms, epigenetic changes, differences in host gene expression, or chromosomal remodelling. Alternatively, post-transcriptional changes in miRNA stability, and defective or absent components and mediators of the miRNA-induced silencing complex can lead to altered miRNA function. This review provides an overview of the current knowledge on the lifecycle of miRNAs in health and cancer. Understanding miRNA function and regulation is fundamental prior to potential future application of miRNAs as cancer biomarkers.
Collapse
Affiliation(s)
- Laura Adriana de Rooij
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-887-556-557
| | - Dirk Jan Mastebroek
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nicky ten Voorde
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul Joannes van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Cathy Beatrice Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
11
|
Yang A, Bofill-De Ros X, Stanton R, Shao TJ, Villanueva P, Gu S. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat Commun 2022; 13:5260. [PMID: 36071058 PMCID: PMC9452540 DOI: 10.1038/s41467-022-32969-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
TENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination. Together with rescue experiments, we characterize TENT-specific effects by deep sequencing, Northern blot and in vitro assays. We find that 3' tailing is not random but highly specific. In addition to its known adenylation, TENT2 contributes to guanylation and uridylation on mature miRNAs. TUT4 uridylates most miRNAs whereas TUT7 is dispensable. Removing adenylation has a marginal impact on miRNA levels. By contrast, abolishing uridylation leads to dysregulation of a set of miRNAs. Besides let-7, miR-181b and miR-222 are negatively regulated by TUT4/7 via distinct mechanisms while the miR-888 cluster is upregulated specifically by TUT7. Our results uncover the selective actions of TENTs in generating 3' isomiRs and pave the way to investigate their functions.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ryan Stanton
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
12
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
Vieux KF, Prothro KP, Kelley LH, Palmer C, Maine EM, Veksler-Lublinsky I, McJunkin K. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res 2021; 49:11167-11180. [PMID: 34586415 DOI: 10.1093/nar/gkab840] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
microRNAs are frequently modified by addition of untemplated nucleotides to the 3' end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2-here named GLD-2-related 2 (GLDR-2)-is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.
Collapse
Affiliation(s)
- Karl-Frédéric Vieux
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA
| | - Katherine P Prothro
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leanne H Kelley
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Cameron Palmer
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | | | - Katherine McJunkin
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA
| |
Collapse
|
14
|
Evolution and Phylogeny of MicroRNAs - Protocols, Pitfalls, and Problems. Methods Mol Biol 2021. [PMID: 34432281 DOI: 10.1007/978-1-0716-1170-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
MicroRNAs are important regulators in many eukaryotic lineages. Typical miRNAs have a length of about 22nt and are processed from precursors that form a characteristic hairpin structure. Once they appear in a genome, miRNAs are among the best-conserved elements in both animal and plant genomes. Functionally, they play an important role in particular in development. In contrast to protein-coding genes, miRNAs frequently emerge de novo. The genomes of animals and plants harbor hundreds of mutually unrelated families of homologous miRNAs that tend to be persistent throughout evolution. The evolution of their genomic miRNA complement closely correlates with important morphological innovation. In addition, miRNAs have been used as valuable characters in phylogenetic studies. An accurate and comprehensive annotation of miRNAs is required as a basis to understand their impact on phenotypic evolution. Since experimental data on miRNA expression are limited to relatively few species and are subject to unavoidable ascertainment biases, it is inevitable to complement miRNA sequencing by homology based annotation methods. This chapter reviews the state of the art workflows for homology based miRNA annotation, with an emphasis on their limitations and open problems.
Collapse
|
15
|
Salim U, Kumar A, Kulshreshtha R, Vivekanandan P. Biogenesis, characterization, and functions of mirtrons. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1680. [PMID: 34155810 DOI: 10.1002/wrna.1680] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023]
Abstract
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression. They base pair with the complementary target mRNA at the 3'UTR and modulate cellular processes by repressing the mRNA translation or degrading the mRNA. There are well-documented mechanisms of biogenesis of miRNA; however, a sizeable number of miRNAs are also produced by non-canonical pathways. Mirtrons represent a predominant class of non-canonical miRNAs. Mirtrons originate from intronic regions and are produced in a splicing-dependent and Drosha-independent manner. Mirtrons constitute about 15% of all miRNAs produced in a human body and have caught attention of researchers worldwide due to their unconventional origin, sequence characteristics, evolutionary dynamics, ability to regulate variety of cellular processes and their immense potential in disease therapeutics. In this comprehensive review we collate the research done in the past decade including biogenesis, sequence characteristics, regulation, and emerging therapeutic roles of mirtrons. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Uzma Salim
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| |
Collapse
|
16
|
Dexheimer PJ, Wang J, Cochella L. Two MicroRNAs Are Sufficient for Embryonic Patterning in C. elegans. Curr Biol 2020; 30:5058-5065.e5. [PMID: 33125867 PMCID: PMC7758728 DOI: 10.1016/j.cub.2020.09.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are a class of post-transcriptional repressors with diverse roles in animal development and physiology [1]. The Microprocessor complex, composed of Drosha and Pasha/DGCR8, is necessary for the biogenesis of all canonical miRNAs and essential for the early stages of animal embryogenesis [2, 3, 4, 5, 6, 7, 8]. However, the cause for this requirement is largely unknown. Animals often express hundreds of miRNAs, and it remains unclear whether the Microprocessor is required to produce one or few essential miRNAs or many individually non-essential miRNAs. Additionally, both Drosha and Pasha/DGCR8 bind and cleave a variety of non-miRNA substrates [9, 10, 11, 12, 13, 14, 15], and it is unknown whether these activities account for the Microprocessor’s essential requirement. To distinguish between these possibilities, we developed a system in C. elegans to stringently deplete embryos of Microprocessor activity. Using a combination of auxin-inducible degradation (AID) and RNA interference (RNAi), we achieved Drosha and Pasha/DGCR8 depletion starting in the maternal germline, resulting in Microprocessor and miRNA-depleted embryos, which fail to undergo morphogenesis or form organs. Using a Microprocessor-bypass strategy, we show that this early embryonic arrest is rescued by the addition of just two miRNAs, one miR-35 and one miR-51 family member, resulting in morphologically normal larvae. Thus, just two out of ∼150 canonical miRNAs are sufficient for morphogenesis and organogenesis, and the processing of these miRNAs accounts for the essential requirement for Drosha and Pasha/DGCR8 during the early stages of C. elegans embryonic development. Video Abstract
Depletion of Drosha and Pasha results in embryos that fail to undergo morphogenesis The mirtron pathway enables expression of miRNAs in the absence of Drosha and Pasha Two miRNAs are sufficient to rescue embryogenesis in the absence of Drosha and Pasha miR-35 and miR-51 play an unexplored, likely conserved role in animal development
Collapse
Affiliation(s)
- Philipp J Dexheimer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
17
|
Malik D, Kobyłecki K, Krawczyk P, Poznański J, Jakielaszek A, Napiórkowska A, Dziembowski A, Tomecki R, Nowotny M. Structure and mechanism of CutA, RNA nucleotidyl transferase with an unusual preference for cytosine. Nucleic Acids Res 2020; 48:9387-9405. [PMID: 32785623 PMCID: PMC7498324 DOI: 10.1093/nar/gkaa647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Template-independent terminal ribonucleotide transferases (TENTs) catalyze the addition of nucleotide monophosphates to the 3′-end of RNA molecules regulating their fate. TENTs include poly(U) polymerases (PUPs) with a subgroup of 3′ CUCU-tagging enzymes, such as CutA in Aspergillus nidulans. CutA preferentially incorporates cytosines, processively polymerizes only adenosines and does not incorporate or extend guanosines. The basis of this peculiar specificity remains to be established. Here, we describe crystal structures of the catalytic core of CutA in complex with an incoming non-hydrolyzable CTP analog and an RNA with three adenosines, along with biochemical characterization of the enzyme. The binding of GTP or a primer with terminal guanosine is predicted to induce clashes between 2-NH2 of the guanine and protein, which would explain why CutA is unable to use these ligands as substrates. Processive adenosine polymerization likely results from the preferential binding of a primer ending with at least two adenosines. Intriguingly, we found that the affinities of CutA for the CTP and UTP are very similar and the structures did not reveal any apparent elements for specific NTP binding. Thus, the properties of CutA likely result from an interplay between several factors, which may include a conformational dynamic process of NTP recognition.
Collapse
Affiliation(s)
- Deepshikha Malik
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Kamil Kobyłecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Aleksandra Jakielaszek
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Agnieszka Napiórkowska
- Structural Biology Center, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Rafał Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw 02-106, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland
| |
Collapse
|
18
|
Vorozheykin PS, Titov II. Erratum to: How Animal miRNAs Structure Influences Their Biogenesis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
21
|
Yang A, Shao TJ, Bofill-De Ros X, Lian C, Villanueva P, Dai L, Gu S. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat Commun 2020; 11:2765. [PMID: 32488030 PMCID: PMC7265490 DOI: 10.1038/s41467-020-16533-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) associated with Argonaute proteins (AGOs) regulate gene expression in mammals. miRNA 3' ends are subject to frequent sequence modifications, which have been proposed to affect miRNA stability. However, the underlying mechanism is not well understood. Here, by genetic and biochemical studies as well as deep sequencing analyses, we find that AGO mutations disrupting miRNA 3' binding are sufficient to trigger extensive miRNA 3' modifications in HEK293T cells and in cancer patients. Comparing these modifications in TUT4, TUT7 and DIS3L2 knockout cells, we find that TUT7 is more robust than TUT4 in oligouridylating mature miRNAs, which in turn leads to their degradation by the DIS3L2 exonuclease. Our findings indicate a decay machinery removing AGO-associated miRNAs with an exposed 3' end. A set of endogenous miRNAs including miR-7, miR-222 and miR-769 are targeted by this machinery presumably due to target-directed miRNA degradation.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Chuanjiang Lian
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- State Key Laboratory of Veterinary Biotechnology and Heilongjiang Province Key Laboratory for Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lisheng Dai
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
22
|
A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 2020; 21:542-556. [PMID: 32483315 DOI: 10.1038/s41580-020-0246-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
RNA tailing, or the addition of non-templated nucleotides to the 3' end of RNA, is the most frequent and conserved type of RNA modification. The addition of tails and their composition reflect RNA maturation stages and have important roles in determining the fate of the modified RNAs. Apart from canonical poly(A) polymerases, which add poly(A) tails to mRNAs in a transcription-coupled manner, a family of terminal nucleotidyltransferases (TENTs), including terminal uridylyltransferases (TUTs), modify RNAs post-transcriptionally to control RNA stability and activity. The human genome encodes 11 different TENTs with distinct substrate specificity, intracellular localization and tissue distribution. In this Review, we discuss recent advances in our understanding of non-canonical RNA tails, with a focus on the functions of human TENTs, which include uridylation, mixed tailing and post-transcriptional polyadenylation of mRNAs, microRNAs and other types of non-coding RNA.
Collapse
|
23
|
|
24
|
Song J, Wang X, Song B, Gao L, Mo X, Yue L, Yang H, Lu J, Ren G, Mo B, Chen X. Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis. NATURE PLANTS 2019; 5:1260-1272. [PMID: 31792392 DOI: 10.1038/s41477-019-0562-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/28/2019] [Indexed: 05/22/2023]
Abstract
A key step in microRNA biogenesis is the processing of a primary precursor RNA by the microprocessor into a precursor miRNA (pre-miRNA) intermediate. In plants, little is known about the processes that act on pre-miRNAs to influence miRNA biogenesis. Here, we performed 3' rapid amplification of complementary DNA ends sequencing to profile pre-miRNA 3' ends in Arabidopsis. 3' end heterogeneity was prevalent, and the three microprocessor components promoted 3' end precision. Extensive cytidylation and uridylation of precise and imprecise pre-miRNA 3' ends were uncovered. The nucleotidyl transferase HESO1 uridylated pre-miRNAs in vitro and was responsible for most pre-miRNA uridylation in vivo. HESO1, NTP6 and NTP7 contribute to pre-miRNA cytidylation. Tailing of pre-miRNAs tended to restore trimmed pre-miRNAs to their intact length to promote further processing. In addition, HESO1-mediated uridylation led to the degradation of certain imprecisely processed pre-miRNAs. Thus, we uncovered widespread cytidylation and uridylation of pre-miRNAs and demonstrated diverse functions of pre-miRNA tailing in plants.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayun Lu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
25
|
Cheng L, Li F, Jiang Y, Yu H, Xie C, Shi Y, Gong Q. Structural insights into a unique preference for 3' terminal guanine of mirtron in Drosophila TUTase tailor. Nucleic Acids Res 2019; 47:495-508. [PMID: 30407553 PMCID: PMC6326804 DOI: 10.1093/nar/gky1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/23/2018] [Indexed: 01/19/2023] Open
Abstract
Terminal uridylyl transferase (TUTase) is one type of enzyme that modifies RNA molecules by facilitating the post-transcriptional addition of uridyl ribonucleotides to their 3' ends. Recent researches have reported that Drosophila TUTase, Tailor, exhibits an intrinsic preference for RNA substrates ending in 3'G, distinguishing it from any other known TUTases. Through this unique feature, Tailor plays a crucial role as the repressor in the biogenesis pathway of splicing-derived mirtron pre-miRNAs. Here we describe crystal structures of core catalytic domain of Tailor and its complexes with RNA stretches 5'-AGU-3' and 5'-AGUU-3'. We demonstrate that R327 and N347 are two key residues contributing cooperatively to Tailor's preference for 3'G, and R327 may play an extra role in facilitating the extension of polyuridylation chain. We also demonstrate that conformational stability of the exit of RNA-binding groove also contributes significantly to Tailor's activity. Overall, our work reveals useful insights to explain why Drosophila Tailor can preferentially select RNA substrates ending in 3'G and provides important values for further understanding the biological significances of biogenesis pathway of mirtron in flies.
Collapse
Affiliation(s)
- Lin Cheng
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Hailong Yu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Changlin Xie
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China.,High Magnet Field Laboratory, Chinese Academy of Science, 50 Shushanhu Road, Hefei, Anhui 230031, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| |
Collapse
|
26
|
Reichholf B, Herzog VA, Fasching N, Manzenreither RA, Sowemimo I, Ameres SL. Time-Resolved Small RNA Sequencing Unravels the Molecular Principles of MicroRNA Homeostasis. Mol Cell 2019; 75:756-768.e7. [PMID: 31350118 PMCID: PMC6713562 DOI: 10.1016/j.molcel.2019.06.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 11/27/2022]
Abstract
Argonaute-bound microRNAs silence mRNA expression in a dynamic and regulated manner to control organismal development, physiology, and disease. We employed metabolic small RNA sequencing for a comprehensive view on intracellular microRNA kinetics in Drosophila. Based on absolute rate of biogenesis and decay, microRNAs rank among the fastest produced and longest-lived cellular transcripts, disposing up to 105 copies per cell at steady-state. Mature microRNAs are produced within minutes, revealing tight intracellular coupling of biogenesis that is selectively disrupted by pre-miRNA-uridylation. Control over Argonaute protein homeostasis generates a kinetic bottleneck that cooperates with non-coding RNA surveillance to ensure faithful microRNA loading. Finally, regulated small RNA decay enables the selective rapid turnover of Ago1-bound microRNAs, but not of Ago2-bound small interfering RNAs (siRNAs), reflecting key differences in the robustness of small RNA silencing pathways. Time-resolved small RNA sequencing opens new experimental avenues to deconvolute the timescales, molecular features, and regulation of small RNA silencing pathways in living cells.
Collapse
Affiliation(s)
- Brian Reichholf
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veronika A Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | | | - Ivica Sowemimo
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
27
|
Kroupova A, Ivascu A, Reimão-Pinto MM, Ameres SL, Jinek M. Structural basis for acceptor RNA substrate selectivity of the 3' terminal uridylyl transferase Tailor. Nucleic Acids Res 2019; 47:1030-1042. [PMID: 30462292 PMCID: PMC6344859 DOI: 10.1093/nar/gky1164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
Non-templated 3′-uridylation of RNAs has emerged as an important mechanism for regulating the processing, stability and biological function of eukaryotic transcripts. In Drosophila, oligouridine tailing by the terminal uridylyl transferase (TUTase) Tailor of numerous RNAs induces their degradation by the exonuclease Dis3L2, which serves functional roles in RNA surveillance and mirtron RNA biogenesis. Tailor preferentially uridylates RNAs terminating in guanosine or uridine nucleotides but the structural basis underpinning its RNA substrate selectivity is unknown. Here, we report crystal structures of Tailor bound to a donor substrate analog or mono- and oligouridylated RNA products. These structures reveal specific amino acid residues involved in donor and acceptor substrate recognition, and complementary biochemical assays confirm the critical role of an active site arginine in conferring selectivity toward 3′-guanosine terminated RNAs. Notably, conservation of these active site features suggests that other eukaryotic TUTases, including mammalian TUT4 and TUT7, might exhibit similar, hitherto unknown, substrate selectivity. Together, these studies provide critical insights into the specificity of 3′-uridylation in eukaryotic post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Anastasia Ivascu
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Madalena M Reimão-Pinto
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
28
|
Liu Y, Wang M, Liu X, Quan J, Fang Y, Liu Y, Qiu Y, Yu Y, Zhou X. Drosophila Trf4-1 involves in mRNA and primary miRNA transcription. Biochem Biophys Res Commun 2019; 511:806-812. [PMID: 30837153 DOI: 10.1016/j.bbrc.2019.02.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 11/16/2022]
Abstract
Drosophila Trf4-1 (DmTrf4-1) is a polyadenylation polymerase or terminal nucleotidyl transferase (PAP/TENT) that has been reported to add poly(A) tails to snRNAs in nucleus or mRNAs in cytoplasm. Here, we found that the loss of Trf4-1 resulted in the reduction of mRNAs and primary miRNAs (pri-miRNAs) in both Drosophila S2 cells and adult flies. Interestingly, the role of Trf4-1 in transcription is independent of its PAP/TENT activity. Moreover, using the chromatin immunoprecipitation assay, we uncovered that the loss of Trf4-1 led to abnormal RNA polymerase II accumulation and reduced H3K4me3 binding in promoter regions. Thus, our study indicates a positive role of Trf4-1 in the transcription of mRNAs and pri-miRNAs.
Collapse
Affiliation(s)
- Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China; Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ming Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jia Quan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China; Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China; Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yang Qiu
- Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yang Yu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China; Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Abstract
MicroRNAs are ~22 nt small, non-coding RNAs that direct posttranscriptional silencing of gene expression to regulate animal development, physiology, and disease. An emerging mechanism that controls the biogenesis of microRNAs is the addition of non-templated nucleotides, predominantly uridine, to the 3' end of precursor-microRNAs, in a process that is commonly referred to as tailing. Here, we describe methods that enable the systematic characterization of tailing events in mature microRNAs and their precursors. We report protocols for untargeted and targeted cDNA library preparation procedures, as exemplified in the context of the model organism Drosophila melanogaster and focusing on precursor-microRNAs. We also refer to a dedicated computational framework for the subsequent analysis of untemplated nucleotide additions in cDNA libraries. The described methods for the systematic characterization of posttranscriptional modifications in gene regulatory small RNAs and their precursors will be instrumental in clarifying regulatory concepts that control posttranscriptional gene silencing.
Collapse
|
30
|
Yashiro Y, Tomita K. Function and Regulation of Human Terminal Uridylyltransferases. Front Genet 2018; 9:538. [PMID: 30483311 PMCID: PMC6240794 DOI: 10.3389/fgene.2018.00538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
RNA uridylylation plays a pivotal role in the biogenesis and metabolism of functional RNAs, and regulates cellular gene expression. RNA uridylylation is catalyzed by a subset of proteins from the non-canonical terminal nucleotidyltransferase family. In human, three proteins (TUT1, TUT4, and TUT7) have been shown to exhibit template-independent uridylylation activity at 3′-end of specific RNAs. TUT1 catalyzes oligo-uridylylation of U6 small nuclear (sn) RNA, which catalyzes mRNA splicing. Oligo-uridylylation of U6 snRNA is required for U6 snRNA maturation, U4/U6-di-snRNP formation, and U6 snRNA recycling during mRNA splicing. TUT4 and TUT7 catalyze mono- or oligo-uridylylation of precursor let-7 (pre–let-7). Let-7 RNA is broadly expressed in somatic cells and regulates cellular proliferation and differentiation. Mono-uridylylation of pre–let-7 by TUT4/7 promotes subsequent Dicer processing to up-regulate let-7 biogenesis. Oligo-uridylylation of pre–let-7 by TUT4/7 is dependent on an RNA-binding protein, Lin28. Oligo-uridylylated pre–let-7 is less responsive to processing by Dicer and degraded by an exonuclease DIS3L2. As a result, let-7 expression is repressed. Uridylylation of pre–let-7 depends on the context of the 3′-region of pre–let-7 and cell type. In this review, we focus on the 3′ uridylylation of U6 snRNA and pre-let-7, and describe the current understanding of mechanism of activity and regulation of human TUT1 and TUT4/7, based on their crystal structures that have been recently solved.
Collapse
Affiliation(s)
- Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
31
|
Zigáčková D, Vaňáčová Š. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0171. [PMID: 30397107 DOI: 10.1098/rstb.2018.0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dagmar Zigáčková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| |
Collapse
|
32
|
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2018; 20:5-20. [DOI: 10.1038/s41580-018-0059-1] [Citation(s) in RCA: 628] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Identifying and characterizing functional 3' nucleotide addition in the miRNA pathway. Methods 2018; 152:23-30. [PMID: 30138674 DOI: 10.1016/j.ymeth.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, modifications to microRNAs (miRNAs) via 3' end nucleotide addition have gone from a deep-sequencing curiosity to experimentally confirmed drivers of a range of regulatory activities. Here we overview the methods that have been deployed by researchers seeking to untangle these diverse functional roles and include characterizing not only the nucleotidyl transferases catalyzing the additions but also the nucleotides being added, and the timing of their addition during the miRNA pathway. These methods and their further development are key to clarifying the diverse and sometimes contradictory functional findings presently attributed to these nucleotide additions.
Collapse
|
34
|
Towler BP, Newbury SF. Regulation of cytoplasmic RNA stability: Lessons from Drosophila. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1499. [PMID: 30109918 DOI: 10.1002/wrna.1499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
The process of RNA degradation is a critical level of regulation contributing to the control of gene expression. In the last two decades a number of studies have shown the specific and targeted nature of RNA decay and its importance in maintaining homeostasis. The key players within the pathways of RNA decay are well conserved with their mutation or disruption resulting in distinct phenotypes as well as human disease. Model organisms including Drosophila melanogaster have played a substantial role in elucidating the mechanisms conferring control over RNA stability. A particular advantage of this model organism is that the functions of ribonucleases can be assessed in the context of natural cells within tissues in addition to individual immortalized cells in culture. Drosophila RNA stability research has demonstrated how the cytoplasmic decay machines, such as the exosome, Dis3L2 and Xrn1, are responsible for regulating specific processes including apoptosis, proliferation, wound healing and fertility. The work discussed here has begun to identify specific mRNA transcripts that appear sensitive to specific decay pathways representing mechanisms through which the ribonucleases control mRNA stability. Drosophila research has also contributed to our knowledge of how specific RNAs are targeted to the ribonucleases including AU rich elements, miRNA targeting and 3' tailing. Increased understanding of these mechanisms is critical to elucidating the control elicited by the cytoplasmic ribonucleases which is relevant to human disease. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
35
|
Menezes MR, Balzeau J, Hagan JP. 3' RNA Uridylation in Epitranscriptomics, Gene Regulation, and Disease. Front Mol Biosci 2018; 5:61. [PMID: 30057901 PMCID: PMC6053540 DOI: 10.3389/fmolb.2018.00061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence implicates a wide range of post-transcriptional RNA modifications that play crucial roles in fundamental biological processes including regulating gene expression. Collectively, they are known as epitranscriptomics. Recent studies implicate 3' RNA uridylation, the non-templated addition of uridine(s) to the terminal end of RNA, as a key player in epitranscriptomics. In this review, we describe the functional roles and significance of 3' terminal RNA uridylation that has diverse functions in regulating both mRNAs and non-coding RNAs. In mammals, three Terminal Uridylyl Transferases (TUTases) are primarily responsible for 3' RNA uridylation. These enzymes are also referred to as polyU polymerases. TUTase 1 (TUT1) is implicated in U6 snRNA maturation via uridylation. The TUTases TUT4 and/or TUT7 are the predominant mediators of all other cellular uridylation. Terminal uridylation promotes turnover for many polyadenylated mRNAs, replication-dependent histone mRNAs that lack polyA-tails, and aberrant structured noncoding RNAs. In addition, uridylation regulates biogenesis of a subset of microRNAs and generates isomiRs, sequent variant microRNAs that have altered function in specific cases. For example, the RNA binding protein and proto-oncogene LIN28A and TUT4 work together to polyuridylate pre-let-7, thereby blocking biogenesis and function of the tumor suppressor let-7 microRNA family. In contrast, monouridylation of Group II pre-miRNAs creates an optimal 3' overhang that promotes recognition and subsequent cleavage by the Dicer-TRBP complex that then yields the mature microRNA. Also, uridylation may play a role in non-canonical microRNA biogenesis. The overall significance of 3' RNA uridylation is discussed with an emphasis on mammalian development, gene regulation, and disease, including cancer and Perlman syndrome. We also introduce recent changes to the HUGO-approved gene names for multiple terminal nucleotidyl transferases that affects in part TUTase nomenclature (TUT1/TENT1, TENT2/PAPD4/GLD2, TUT4/ZCCHC11/TENT3A, TUT7/ZCCHC6/TENT3B, TENT4A/PAPD7, TENT4B/PAPD5, TENT5A/FAM46A, TENT5B/FAM46B, TENT5C/FAM46C, TENT5D/FAM46D, MTPAP/TENT6/PAPD1).
Collapse
Affiliation(s)
- Miriam R Menezes
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julien Balzeau
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - John P Hagan
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
36
|
Abstract
In bilaterian animals the 3′ ends of microRNAs (miRNAs) are frequently modified by tailing and trimming. These modifications affect miRNA-mediated gene regulation by modulating miRNA stability. Here, we analyzed data from three nonbilaterian animals: two cnidarians (Nematostella vectensis and Hydra magnipapillata) and one poriferan (Amphimedon queenslandica). Our analysis revealed that nonbilaterian miRNAs frequently undergo modifications like the bilaterian counterparts: the majority are expressed as different length isoforms and frequent modifications of the 3′ end by mono U or mono A tailing are observed. Moreover, as the factors regulating miRNA modifications are largely uncharacterized in nonbilaterian animal phyla, in present study, we investigated the evolution of 3′ terminal uridylyl transferases (TUTases) that are known to involved in miRNA 3′ nontemplated modifications in Bilateria. Phylogenetic analysis on TUTases showed that TUTase1 and TUTase6 are a result of duplication in bilaterians and that TUTase7 and TUTase4 are the result of a vertebrate-specific duplication. We also find an unexpected number of Drosophila-specific gene duplications and domain losses in most of the investigated gene families. Overall, our findings shed new light on the evolutionary history of TUTases in Metazoa, as they reveal that this core set of enzymes already existed in the last common ancestor of all animals and was probably involved in modifying small RNAs in a similar fashion to its present activity in bilaterians.
Collapse
Affiliation(s)
- Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Abstract
microRNAs (miRNAs) have vital roles in regulating gene expression-contributing to major diseases like cancer and heart disease. Over the last decade, thousands of miRNAs have been discovered through high throughput sequencing-based annotation. Different classes have been described, as well as a great dynamic range of expression levels. While sequencing approaches provide insight into biogenesis and allow confident identification, there is a need for additional methods for validation and characterization. Northern blotting was one of the first techniques used for studying miRNAs, and remains one of the most valuable as it avoids enzymatic manipulation of miRNA transcripts. Blotting can also provide insight into biogenesis by revealing RNA processing intermediates. Compared to sequencing, however, northern blotting is a relatively insensitive technology. This creates a challenge for detecting low expressed miRNAs, particularly those produced by inefficient, non-canonical pathways. In this chapter, we describe a strategy to study such miRNAs by northern blotting that involves ectopic expression of both miRNAs and miRNA-binding Argonaute (Ago) proteins. Through use of epitope tags, this strategy also provides a convenient method for verification of small RNA competency to be loaded into regulatory complexes.
Collapse
|
39
|
Mohammed J, Flynt AS, Panzarino AM, Mondal MMH, DeCruz M, Siepel A, Lai EC. Deep experimental profiling of microRNA diversity, deployment, and evolution across the Drosophila genus. Genome Res 2017; 28:52-65. [PMID: 29233922 PMCID: PMC5749182 DOI: 10.1101/gr.226068.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022]
Abstract
To assess miRNA evolution across the Drosophila genus, we analyzed several billion small RNA reads across 12 fruit fly species. These data permit comprehensive curation of species- and clade-specific variation in miRNA identity, abundance, and processing. Among well-conserved miRNAs, we observed unexpected cases of clade-specific variation in 5' end precision, occasional antisense loci, and putatively noncanonical loci. We also used strict criteria to identify a large set (649) of novel, evolutionarily restricted miRNAs. Within the bulk collection of species-restricted miRNAs, two notable subpopulations are splicing-derived mirtrons and testes-restricted, recently evolved, clustered (TRC) canonical miRNAs. We quantified miRNA birth and death using our annotation and a phylogenetic model for estimating rates of miRNA turnover. We observed striking differences in birth and death rates across miRNA classes defined by biogenesis pathway, genomic clustering, and tissue restriction, and even identified flux heterogeneity among Drosophila clades. In particular, distinct molecular rationales underlie the distinct evolutionary behavior of different miRNA classes. Mirtrons are associated with high rates of 3' untemplated addition, a mechanism that impedes their biogenesis, whereas TRC miRNAs appear to evolve under positive selection. Altogether, these data reveal miRNA diversity among Drosophila species and principles underlying their emergence and evolution.
Collapse
Affiliation(s)
- Jaaved Mohammed
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Alex S Flynt
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA.,Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Alexandra M Panzarino
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | - Matthew DeCruz
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric C Lai
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10021, USA.,Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
40
|
De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28984054 DOI: 10.1002/wrna.1440] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Caroline De Almeida
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Novel insights of microRNAs in the development of systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29:450-457. [DOI: 10.1097/bor.0000000000000420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Yang H, Song J, Yue L, Mo X, Song J, Mo B. Identification and expression profiling of Oryza sativa nucleotidyl transferase protein (NTP) genes under various stress conditions. Gene 2017; 628:93-102. [PMID: 28676446 DOI: 10.1016/j.gene.2017.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/28/2022]
Abstract
Nucleotidyl transferase proteins (NTPs) modify the 3' ends of mature small RNAs, leading to their stabilization or degradation. The first two plant NTPs, HESO1 and URT1, were identified in Arabidopsis. These two NTPs act cooperatively to uridylate the 3' terminal nucleotide of specific miRNAs, leading to their degradation and thereby affecting the expression of genes regulated by these miRNAs. Little is known about NTPs in other plants. Here, we performed a comprehensive analysis of 13 putative NTP genes in Oryza sativa, a major crop in global food production. Phylogenetic analysis showed homology among the NTPs from diverse plant species. Analysis of cis-acting promoter elements at OsNTP loci identified several stress response elements, indicating the potential involvement of NTPs in plant stress responses. The promoter analysis results were validated by expression of the OsNTP genes under abiotic stress treatments, with some OsNTPs clearly induced by salt, drought or cold stress. Moreover, the RT-PCR data showed that the OsNTP genes were differentially expressed in different developmental stages and tissues. These findings suggest that NTPs, which are involved in small RNA metabolic pathways, might play roles in plant stress resistance.
Collapse
Affiliation(s)
- Haiqi Yang
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jianbo Song
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; Department of Biochemistry and Molecular Biology, College of Science, Jiang Xi Agricultural University, Nanchang 330045, China
| | - Luming Yue
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaowei Mo
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Beixin Mo
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
43
|
Lin CJ, Wen J, Bejarano F, Hu F, Bortolamiol-Becet D, Kan L, Sanfilippo P, Kondo S, Lai EC. Characterization of a TUTase/RNase complex required for Drosophila gametogenesis. RNA (NEW YORK, N.Y.) 2017; 23:284-296. [PMID: 27974621 PMCID: PMC5311484 DOI: 10.1261/rna.059527.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Post-transcriptional regulatory strategies that involve coupling between terminal uridyltransferase (TUTase) and exoribonuclease enzymes have recently been characterized in diverse species. Of note, the 3' exoribonuclease Dis3L2 has received substantial attention as a factor that metabolizes uridylated substrates in contexts such as general mRNA degradation, turnover of specific miRNAs, and quality control of noncoding RNAs. To date, most studies of Dis3L2 have focused on fungi and mammalian cells. Here, we introduce Drosophila as a system that permits analysis of molecular mechanisms as well as the ability to interrogate organismal phenotypes. We started with a structure-function analysis of the Drosophila TUTase Tailor, which we recently identified to inhibit biogenesis of splicing-derived miRNA hairpins. Next, we show that Tailor/Dis3L2 form a complex via N-terminal domains in the respective proteins that are distinct from their catalytic domains. In vitro, Dis3L2 has nuclease activity, but substrate oligouridylation by Tailor stimulates their degradation by Dis3L2, especially for structured substrates. We analyzed mutants of Tailor and Dis3L2, which are viable and lack overt morphological defects. Instead, these mutants exhibit defects in female and male fertility, implying specific requirements in the germline. Dis3L2 defects are more severe than Tailor, and their requirements appear stronger in males than in females. In particular, loss of Dis3L2 completely blocks productive spermatogenesis, causing male sterility. RNA-seq analysis from single- and double-mutant testes reveals aberrant gene expression programs and suggests that noncoding RNAs may be preferentially affected by Dis3L2. Overall, our studies of a new tailing/trimming complex reveal unexpectedly specific requirements during gametogenesis.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | - Jiayu Wen
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Fernando Bejarano
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Fuqu Hu
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Diane Bortolamiol-Becet
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Lijuan Kan
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| | - Piero Sanfilippo
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Eric C Lai
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York 10065, USA
| |
Collapse
|
44
|
Cenik C, Chua HN, Singh G, Akef A, Snyder MP, Palazzo AF, Moore MJ, Roth FP. A common class of transcripts with 5'-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification. RNA (NEW YORK, N.Y.) 2017; 23:270-283. [PMID: 27994090 PMCID: PMC5311483 DOI: 10.1261/rna.059105.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/14/2016] [Indexed: 06/01/2023]
Abstract
Introns are found in 5' untranslated regions (5'UTRs) for 35% of all human transcripts. These 5'UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5'UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5'UTR intron status, we developed a classifier that can predict 5'UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5' proximal-intron-minus-like-coding regions ("5IM" transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5' cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5' proximal positions. Finally, N1-methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5' proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N1-methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC.
Collapse
Affiliation(s)
- Can Cenik
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Hon Nian Chua
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto M5S 3E1, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto M5G 1X5, Ontario, Canada
- DataRobot, Inc., Boston, Massachusetts 02109, USA
| | - Guramrit Singh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Abdalla Akef
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Frederick P Roth
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto M5S 3E1, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto M5G 1X5, Ontario, Canada
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston 02215, Massachusetts, USA
- The Canadian Institute for Advanced Research, Toronto M5G 1Z8, Ontario, Canada
| |
Collapse
|
45
|
Reimão-Pinto MM, Manzenreither RA, Burkard TR, Sledz P, Jinek M, Mechtler K, Ameres SL. Molecular basis for cytoplasmic RNA surveillance by uridylation-triggered decay in Drosophila. EMBO J 2016; 35:2417-2434. [PMID: 27729457 DOI: 10.15252/embj.201695164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023] Open
Abstract
The posttranscriptional addition of nucleotides to the 3' end of RNA regulates the maturation, function, and stability of RNA species in all domains of life. Here, we show that in flies, 3' terminal RNA uridylation triggers the processive, 3'-to-5' exoribonucleolytic decay via the RNase II/R enzyme CG16940, a homolog of the human Perlman syndrome exoribonuclease Dis3l2. Together with the TUTase Tailor, dmDis3l2 forms the cytoplasmic, terminal RNA uridylation-mediated processing (TRUMP) complex that functionally cooperates in the degradation of structured RNA RNA immunoprecipitation and high-throughput sequencing reveals a variety of TRUMP complex substrates, including abundant non-coding RNA, such as 5S rRNA, tRNA, snRNA, snoRNA, and the essential RNase MRP Based on genetic and biochemical evidence, we propose a key function of the TRUMP complex in the cytoplasmic quality control of RNA polymerase III transcripts. Together with high-throughput biochemical characterization of dmDis3l2 and bacterial RNase R, our results imply a conserved molecular function of RNase II/R enzymes as "readers" of destabilizing posttranscriptional marks-uridylation in eukaryotes and adenylation in prokaryotes-that play important roles in RNA surveillance.
Collapse
Affiliation(s)
| | | | - Thomas R Burkard
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Pawel Sledz
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karl Mechtler
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, IMBA, Vienna Biocenter Campus (VBC), Vienna, Austria
| |
Collapse
|
46
|
Rasschaert P, Figueroa T, Dambrine G, Rasschaert D, Laurent S. Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript. RNA Biol 2016; 13:1310-1322. [PMID: 27715458 DOI: 10.1080/15476286.2016.1244600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model - the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron - to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3' splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5'-tailed mirtron. We have thus identified the first 5'-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway.
Collapse
Affiliation(s)
- Perrine Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Thomas Figueroa
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Ginette Dambrine
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Denis Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Sylvie Laurent
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France.,b Département de Santé Animale , INRA , Nouzilly , France
| |
Collapse
|
47
|
Azlan A, Dzaki N, Azzam G. Argonaute: The executor of small RNA function. J Genet Genomics 2016; 43:481-94. [PMID: 27569398 DOI: 10.1016/j.jgg.2016.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/08/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Abstract
The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Najat Dzaki
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
48
|
Lim MYT, Ng AWT, Chou Y, Lim TP, Simcox A, Tucker-Kellogg G, Okamura K. The Drosophila Dicer-1 Partner Loquacious Enhances miRNA Processing from Hairpins with Unstable Structures at the Dicing Site. Cell Rep 2016; 15:1795-808. [PMID: 27184838 DOI: 10.1016/j.celrep.2016.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/03/2016] [Accepted: 04/15/2016] [Indexed: 12/24/2022] Open
Abstract
In Drosophila, Dicer-1 binds Loquacious-PB (Loqs-PB) as its major co-factor. Previous analyses indicated that loqs mutants only partially impede miRNA processing, but the activity of minor isoforms or maternally deposited Loqs was not eliminated in these studies. We addressed this by generating a cell line from loqs-null embryos and found that only ∼40% of miRNAs showed clear Loqs dependence. Genome-wide comparison of the hairpin structure and Loqs dependence suggested that Loqs substrates are influenced by base-pairing status at the dicing site. Artificial alteration of base-pairing stability at this position in model miRNA hairpins resulted in predicted changes in Loqs dependence, providing evidence for this hypothesis. Finally, we found that evolutionarily young miRNA genes tended to be Loqs dependent. We propose that Loqs may have roles in assisting the de novo emergence of miRNA genes by facilitating dicing of suboptimal hairpin substrates.
Collapse
Affiliation(s)
- Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore
| | - Alvin Wei Tian Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yuting Chou
- Sloan-Kettering Institute, Department of Developmental Biology, New York, NY 10065, USA
| | - Teck Por Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Amanda Simcox
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798, Singapore.
| |
Collapse
|
49
|
Krishna CV, Singh J, Thangavel C, Rattan S. Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting. Am J Physiol Gastrointest Liver Physiol 2016; 310:G449-59. [PMID: 26822916 PMCID: PMC4824177 DOI: 10.1152/ajpgi.00445.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) belong to a group of short noncoding RNA molecules with important roles in cellular biology. miRNAs regulate gene expression by repressing translation or degrading the target mRNA. Recently, a growing body of evidence suggests that miRNAs are implicated in many diseases and could be potential biomarkers. Fibrosis and/smooth muscle (SM) dysfunction contributes to the morbidity and mortality associated with several diseases of the gastrointestinal tract (GIT). Currently available therapeutic modalities are unsuccessful in efficiently blocking or reversing fibrosis and/or SM dysfunction. Recent understanding of the role of miRNAs in signaling pathway of fibrogenesis and SM phenotype switch has provided a new insight into translational research. However, much is still unknown about the molecular targets and therapeutic potential of miRNAs in the GIT. This review discusses miRNA biology, pathophysiology of fibrosis, and aging- associated SM dysfunction in relation to the deregulation of miRNAs in the GIT. We also highlight the role of selected miRNAs associated with fibrosis and SM dysfunction-related diseases of the GIT.
Collapse
Affiliation(s)
| | - Jagmohan Singh
- 2Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Chellappagounder Thangavel
- 3Department of Radiation Oncology, Sidney Kimmel Cancer Center (TC), Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- 2Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
50
|
Ajiro M, Jia R, Yang Y, Zhu J, Zheng ZM. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Res 2015; 44:1854-70. [PMID: 26704980 PMCID: PMC4770227 DOI: 10.1093/nar/gkv1500] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Alternative RNA splicing is an essential process to yield proteomic diversity in eukaryotic cells, and aberrant splicing is often associated with numerous human diseases and cancers. We recently described serine/arginine-rich splicing factor 3 (SRSF3 or SRp20) being a proto-oncogene. However, the SRSF3-regulated splicing events responsible for its oncogenic activities remain largely unknown. By global profiling of the SRSF3-regulated splicing events in human osteosarcoma U2OS cells, we found that SRSF3 regulates the expression of 60 genes including ERRFI1, ANXA1 and TGFB2, and 182 splicing events in 164 genes, including EP300, PUS3, CLINT1, PKP4, KIF23, CHK1, SMC2, CKLF, MAP4, MBNL1, MELK, DDX5, PABPC1, MAP4K4, Sp1 and SRSF1, which are primarily associated with cell proliferation or cell cycle. Two SRSF3-binding motifs, CCAGC(G)C and A(G)CAGCA, are enriched to the alternative exons. An SRSF3-binding site in the EP300 exon 14 is essential for exon 14 inclusion. We found that the expression of SRSF1 and SRSF3 are mutually dependent and coexpressed in normal and tumor tissues/cells. SRSF3 also significantly regulates the expression of at least 20 miRNAs, including a subset of oncogenic or tumor suppressive miRNAs. These data indicate that SRSF3 affects a global change of gene expression to maintain cell homeostasis.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Rong Jia
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, System Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, System Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|