1
|
Ohashi S, Nakamura M, Acharyya S, Inagaki M, Abe N, Kimura Y, Hashiya F, Abe H. Development and Comparison of 4-Thiouridine to Cytidine Base Conversion Reaction. ACS OMEGA 2024; 9:9300-9308. [PMID: 38434802 PMCID: PMC10905967 DOI: 10.1021/acsomega.3c08516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
To study transcriptome dynamics without harming cells, it is essential to convert chemical bases. 4-Thiouridine (4sU) is a biocompatible uridine analogue that can be converted into a cytidine analogue. Although several reactions can convert 4sU into a cytidine analogue, few studies have compared the features of these reactions. In this study, we performed three reported base conversion reactions, including osmium tetroxide, iodoacetamide, and sodium periodate treatment, as well as a new reaction using 2,4-dinitrofluorobenzene. We compared the reaction time, conversion efficacy, and effects on reverse transcription. These reactions successfully converted 4sU into a cytidine analogue quantitatively using trinucleotides. However, the conversion efficacy and effect on reverse transcription vary depending on the reaction with the RNA transcript. OsO4 treatment followed by NH4Cl treatment showed the best base-conversion efficiency. Nevertheless, each reaction has its own advantages and disadvantages as a tool for studying the transcriptome. Therefore, it is crucial to select the appropriate reaction for the target of interest.
Collapse
Affiliation(s)
- Sana Ohashi
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Mayu Nakamura
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Susit Acharyya
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Naoko Abe
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Fumitaka Hashiya
- Research
Center for Material Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Abe
- Graduate
School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Research
Center for Material Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Institute
for Glyco-core Research (iGCORE), Nagoya
University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
2
|
Riml C, Amort T, Rieder D, Gasser C, Lusser A, Micura R. Osmium-Mediated Transformation of 4-Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing. Angew Chem Int Ed Engl 2017; 56:13479-13483. [PMID: 28817234 DOI: 10.1002/anie.201707465] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 11/08/2023]
Abstract
To understand the functional roles of RNA in the cell, it is essential to elucidate the dynamics of their production, processing and decay. A recent method for assessing mRNA dynamics is metabolic labeling with 4-thiouridine (4sU), followed by thio-selective attachment of affinity tags. Detection of labeled transcripts by affinity purification and hybridization to microarrays or by deep sequencing then reveals RNA expression levels. Here, we present a novel sequencing method (TUC-seq) that eliminates affinity purification and allows for direct assessment of 4sU-labeled RNA. It employs an OsO4 -mediated transformation to convert 4sU into cytosine. We exemplify the utility of the new method for verification of endogenous 4sU in tRNAs and for the detection of pulse-labeled mRNA of seven selected genes in mammalian cells to determine the relative abundance of the new transcripts. The results prove TUC-seq as a straight-forward and highly versatile method for studies of cellular RNA dynamics.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Innrain 80-82, 6020, Innsbruck, Austria
| | - Thomas Amort
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Innrain 80-82, 6020, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Leopold-Franzens University, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Riml C, Amort T, Rieder D, Gasser C, Lusser A, Micura R. Osmium-Mediated Transformation of 4-Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI); Leopold-Franzens University; Innrain 80-82 6020 Innsbruck Austria
| | - Thomas Amort
- Division of Molecular Biology, Biocenter; Medical University of Innsbruck; 6020 Innsbruck Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter; Medical University of Innsbruck; 6020 Innsbruck Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI); Leopold-Franzens University; Innrain 80-82 6020 Innsbruck Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter; Medical University of Innsbruck; 6020 Innsbruck Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI); Leopold-Franzens University; Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|