1
|
Wen H, Zuo Y, Li L, Zhan L, Xue J, Sun W, Xu E. Hypoxic postconditioning restores mitophagy against transient global cerebral ischemia via Parkin-induced posttranslational modification of TBK1. Neurobiol Dis 2023; 179:106043. [PMID: 36805078 DOI: 10.1016/j.nbd.2023.106043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Hypoxic postconditioning (HPC) has been reported to enhance Parkin-catalyzed mitochondrial ubiquitination to restore mitophagy in hippocampal CA1 against transient global cerebral ischemia (tGCI). However, the molecular mechanism leading ubiquitinated mitochondria to final clearance during HPC-mediated mitophagy after tGCI is unclear. This study aims to investigate whether HPC restores mitophagy after tGCI through Parkin-induced K63-linked poly-ubiquitination (K63-Ub) to activate tumor necrosis factor associated factor family member associated nuclear factor κB activator -binding kinase 1 (TBK1) in CA1 of male rats. We found that HPC maintained TBK1 expression, promoted p62 and TBK1 phosphorylation in mitochondria, and enhanced their recruitments to mitochondria in CA1 after tGCI. However, these effects were partially abolished by TBK1 inhibitor BX795. K63-Ub of mitochondrial TBK1 was disturbed at 26 h of reperfusion after tGCI, which was reversed by HPC. The maintenance of K63-Ub of mitochondrial TBK1 induced by HPC was counteracted under Parkin knockdown with AAV-mediated Prkn small-interfering RNA, accompanied by the suppression on TBK1 activation and the reduction of mitochondrial p62 phosphorylation. This innovative study indicated that HPC maintained K63-Ub of TBK1 in a Parkin-dependent manner to promote TBK1 phosphorylation, and then phosphorylated TBK1 activated p62 to restore mitophagy, thereby alleviating neuronal damage in CA1 after tGCI.
Collapse
Affiliation(s)
- Haixia Wen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yunyan Zuo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Luxi Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Jiahui Xue
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Weiwen Sun
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - En Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China.
| |
Collapse
|
2
|
Gurr SJ, Trigg SA, Vadopalas B, Roberts SB, Putnam HM. Acclimatory gene expression of primed clams enhances robustness to elevated pCO 2. Mol Ecol 2022; 31:5005-5023. [PMID: 35947503 DOI: 10.1111/mec.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sub-lethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data analyzed after 1) a 110-day acclimation under ambient (921 μatm, naïve) and moderately-elevated pCO2 (2870 μatm, pre-exposed); then following 2) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately-elevated: 2750 μatm; severely-elevated: 4940 μatm), a 7-day return to ambient pCO2 , and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately-elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation, and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defense under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicates pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.
Collapse
Affiliation(s)
- Samuel J Gurr
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Shelly A Trigg
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | | | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
3
|
Abstract
While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis, chromatin undergoes dramatic changes: transcription stalls, chromatin-binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade, the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis, chromosomes lose their cell type-specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis, cells are capable of quickly rearranging the chromosome conformation to form the cell type-specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors, and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation.
Collapse
Affiliation(s)
- Marlies E. Oomen
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-0103, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-0103, USA
| |
Collapse
|
5
|
Haack TB, Ignatius E, Calvo-Garrido J, Iuso A, Isohanni P, Maffezzini C, Lönnqvist T, Suomalainen A, Gorza M, Kremer LS, Graf E, Hartig M, Berutti R, Paucar M, Svenningsson P, Stranneheim H, Brandberg G, Wedell A, Kurian MA, Hayflick SA, Venco P, Tiranti V, Strom TM, Dichgans M, Horvath R, Holinski-Feder E, Freyer C, Meitinger T, Prokisch H, Senderek J, Wredenberg A, Carroll CJ, Klopstock T. Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. Am J Hum Genet 2016; 99:735-743. [PMID: 27545679 PMCID: PMC5010644 DOI: 10.1016/j.ajhg.2016.06.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tobias B Haack
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Erika Ignatius
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland; Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Finland
| | - Javier Calvo-Garrido
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden
| | - Arcangela Iuso
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland; Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Finland
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Finland
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Matteo Gorza
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Laura S Kremer
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Monika Hartig
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Paucar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Göran Brandberg
- Department of Pediatrics, Falu lasarett, 79182 Falun, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Manju A Kurian
- Neurosciences Unit, Institute of Child Health, University College London, London WC1N 3BG, UK; Department of Paediatric Neurology, Great Ormond Street Hospital, London WC1N 3BG, UK
| | - Susan A Hayflick
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paola Venco
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; DZNE - German Center for Neurodegenerative Diseases, 80336 Munich, Germany
| | - Rita Horvath
- MGZ - Medical Genetics Center, 80335 Munich, Germany; Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jan Senderek
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Christopher J Carroll
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Thomas Klopstock
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; DZNE - German Center for Neurodegenerative Diseases, 80336 Munich, Germany; Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, 80336 Munich, Germany.
| |
Collapse
|
6
|
Brackley CA, Brown JM, Waithe D, Babbs C, Davies J, Hughes JR, Buckle VJ, Marenduzzo D. Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol 2016; 17:59. [PMID: 27036497 PMCID: PMC4815170 DOI: 10.1186/s13059-016-0909-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/23/2016] [Indexed: 12/20/2022] Open
Abstract
The three-dimensional (3D) organization of chromosomes can be probed using methods like Capture-C. However, it is unclear how such population-level data relate to the organization within a single cell, and the mechanisms leading to the observed interactions are still largely obscure. We present a polymer modeling scheme based on the assumption that chromosome architecture is maintained by protein bridges, which form chromatin loops. To test the model, we perform FISH experiments and compare with Capture-C data. Starting merely from the locations of protein binding sites, our model accurately predicts the experimentally observed chromatin interactions, revealing a population of 3D conformations.
Collapse
Affiliation(s)
- Chris A. Brackley
- />SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ UK
| | - Jill M. Brown
- />MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS UK
| | - Dominic Waithe
- />Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS UK
| | - Christian Babbs
- />MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS UK
| | - James Davies
- />MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS UK
| | - Jim R. Hughes
- />MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS UK
| | - Veronica J. Buckle
- />MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS UK
| | - Davide Marenduzzo
- />SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ UK
| |
Collapse
|